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Economic Methodology and Computability:
Implications for The Evaluation of Econometric Forecasts

Scott Moss and Bruce Edmonds1

1 Introduction

The purpose of this paper is to bring standard propositions of economics together with

computability theory in order to assess the use of econometric forecasting in policy analy-

sis. Our criterion for the applicability of econometric forecasting will be in terms of the

relative accuracies of alternative forecasts as a result of improved model specification,

estimation and/or data collection and processing techniques. We will justify this criterion

by demonstrating that standard economic methodology going back to Friedman (1953)

implies that elementary welfare considerations impose a duty on forecasters to identify the

conditions in which their forecasts are the best available.

This approach gives our arguments particular importance when forecasts are used for

policy analysis by rational decision-makers and their advisors. It also removes from us

any requirement to specify correctly what is in the heads of econometricians. Nonetheless,

we note that econometricians often write and speak as if they view econometric forecast-

ing as a progressive science in which the reasons for specific forecasting failures are rec-

ognized, understood and corrected. Consequently, revised models will be more accurate in

the sense of making correct forecasts should the circumstances of the last forecasting fail-

ure recur. The arguments of this paper apply equally to the possibility that econometric

forecasting can be a progressive science in this sense.

We formulate the question of whether it is possible for forecasters to execute their duty

to choose the best available model or for econometric forecasting to be a progressive sci-

ence so that it can be answered by an appeal to computability theory. We find that in some

conditions individual forecasting procedures can be compared for systematic differences

in accuracy. However, there are no general procedures which can be used to makea priori

comparisons of forecasting model goodness.

1This paper follows on from previous work by Moss, Michael Artis and Paul Ormerod
funded by the ESRC under contract R000232821. The authors wish to express their grati-
tude to Michael Artis of the University of Manchester and European University Institute
for extended discussions about previous draughts of this paper. He does not bear any
responsibility and does not necessarily agree with our arguments.
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2 The Methodological Issues2

Our concern with forecasting in particular together with the importance of forecasting

in the formulation of economic and business policies leads us naturally to associate the use

of forecasting models and methods with policy analysis. For the present, we simply

assume that econometric models should be assessed according to the accuracy of their

forecasts. We also recognize that many econometric modellers would not accept that fore-

casting accuracy is an appropriate test of their models. For this reason, we return to the

issue in section 4.

In line with the foregoing remarks, we will take it for granted that a forecasting

model should be used for policy prescription only when that application maximizes the

policy analyst's subjective expectation of policy benefit. In effect, a standard cost-benefit

approach is applied to methodological issues.

Define a policy as a set of individual actsP. We suppose the set of acts to be supported

by a forecasting model whenever all of the conditions in which that model is the best

available model are satisfied. This will mean that the model is specified in some appropri-

ate way, that the estimation techniques yield the best possible estimates of the “true”

parameters of the model, that the observed data either conform to the definitions of the

variables of the model or the model has been specified to take account of the differences

between the true and the observed data.

Suppose that there is some set of conditions in which the model specification and esti-

mation, the data and the computational procedures are all appropriate to the determination

of some optimal set of policy decisions. That is, there is some forecasting model which,

when applied to the current data set implies some policy.

A particular policy is implied by a forecasting model whenever that model is the best

available and, at least, is no worse than any previous or alternative current forecasting

model. Let us suppose that there is some set of conditionsC which gives us confidence

that the conditions of application of a forecasting model are satisfied (and, therefore, we

have confidence in the policies supported by that model). Let there ben such conditions.

Each condition is tagged with the variable . Thus,C implies that

(i=1...n).

2The arguments of this section closely follows the argument in Moss (1993).

Ci true false{ , }∈

Ci true=
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Let B be the image of the mapping , the value of the benefits expected

from the set of policy actionsP.

The “observation tag” for theith condition is  which takes the value

true if it is intended to observe theith condition andfalse otherwise. The intention of the

fo recas te r  to  observe  cond i t ions  o f  app l i ca t ion  i s  cap tu red  by  the  se t

. In addition, we denote byC(Φ) the cost of observing all

of the conditions .

To complete our notation we require some means of representing degrees of prior

belief in the satisfaction of the conditions of application which it is intended to observe.

The standard representation is in terms of subjective probabilities. For this reason, we

adopt the mapping  which we interpret as the subjective probability that

all conditions of application which it is intended to observe will be satisfied.

By hypothesis, if all of the conditions of application of the theory are true, then the

acts inP will imply some expected benefit, . Otherwise some different benefit,

, will result. Thus, the prior expected benefit ofP when the set of conditions to

be observed is empty is

(1)

More generally, the expected benefit given any arbitrary set of conditions to be

observed will be

(2)

where c(Φ) is the cost of observing the conditions of application inΦ. Expanding and sim-

plifying equation (2), we get

(3)

Since  and, from the definition ofC,

, equation (3) can be written

(4)

Substituting into equation (4) from equation (1), we have

P C ℜ→[ ]

φi true false{ , }∈

Φ φi i 1…n=( ){ } true∩=

φi Φ∈

Φ( )Ψ 0 1[ , ]→

B C( )E

B C¬( )E

B Φ ∅=( )E B C( )E C( ) B C¬( )E 1 C¬( )E–( )⋅+E⋅=

B Φ( )E Φ( )Ψ C Φ( )Ψ( )E B C( )
1 C Φ( )Ψ( )E–[ ] B C¬( ) Φ( )c–E⋅+

E⋅{
}

1 Φ( )Ψ–( ) Φ( )c⋅[ ]–

⋅=

B Φ( )E C Φ( )Ψ( )E Φ( )Ψ B C( )E⋅ ⋅
1 C Φ( )Ψ( )E–[ ] B C¬( )E⋅

Φ( )c–
+

=

C Φ( )Ψ( )E Φ( )Ψ⋅ Φ( )Ψ C( )E C( )E⋅=

Φ( )Ψ C( )E 1=

B Φ( )E B C( )E C( )E⋅ 1 C( )E–( ) B C¬( )E⋅
1 Φ( )Ψ–( ) B C¬( )E⋅ Φ( )c––

+=
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(5)

For the regime in which no conditions of application are observed to entail rationality,

it must be the case that the negative term on the right side of equation (5) is non-negative.

That is, to adopt a policy based on some forecasting model without a prior assessment of

the extent to which the conditions of application of that model are satisfied is efficient if

and only if

(6)

for every possible setΦ - i.e. for every possible combination of conditions of application

of the model.

For example, presuming that there is some cost to observing conditions of application,

equation (6) will always be satisfied if (1-Ψ(Φ))=0. This would be the case if the policy

analyst were convinced that all of the conditions of application of the forecasting model

were always satisfied. As a result, any subset of those conditions will also always be satis-

fied.

Another forecaster might believe that the policies implied by the model and forecast

yield substantial and positive benefits even when the conditions of application are vio-

lated. Formally, E(B|¬C) is so high that allowing for the probability of ¬C, the benefit

when conditions of application are known not to be fulfilled swamp the cost of observa-

tion. Presumably, some theory supports that belief.

The more general possibility is that, even if conditions of application might be violated

and, if they are, negative benefits might result from the implied policies, the cost of

observing the conditions of application could in principle be so great that they exceed the

expected opportunity costs associated with the inapplicability of the forecast. This possi-

bility seems reasonable when observation requires detailed and expensive investigations

which themselves yield no collateral benefits. But is it never sufficiently cheap and error

never sufficiently costly and is the world never sufficiently risky as to make it worthwhile

a priori to investigate the validity of anyconditions of application of any forecasting

model? If it is possible that equation (6) will not be satisfied in non-trivial cases, then the-

conditions of application of forecasting models become a serious and important issue..3

3Compare this position with that in Friedman’s (1953) classic essay on methodology
where conditions of application are never the descriptive accuracy of the theory though,
implicitly, different models would apply to different problems. The particular model to be
used for a particular problem “will doubtless be recognized before the event.” (p. 36)

B Φ( )E B Φ 0=( )E 1 Φ( )Ψ–( )– B C¬( )E⋅ Φ( )c+=

1 Φ( )Ψ–( ) B C¬( )E⋅ Φ( )c+ 0>
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3 Arbitrary Models and Computability Theory

The argument of the previous section suggests that elementary welfare considerations

require forecasters to define and assess the conditions of alternative forecasting models

before choosing any of them for policy prescription. In this section we show that such

comparisons are not in general computablea priori. Obviously, we can makea postiori

comparisons of finite forecasts and reject models that fail the test. This is not sufficient

either to justify the use of particular forecasting models in policy analysis or to sustain the

general proposition that econometric forecasting is or can be a progressive science. We

can either try to identify the conditions in which particular models yield relatively accu-

rate forecasts or we can adopt an approach to policy formation which does not rely on the

accuracy of any particular forecasting model or set of models.

We begin with some definitions.

Computable model: a model for which all of its variable values can be computed given

unlimited computational resources.

Switch: an endogenous means of selecting variable values or equations which is not itself

an equation. Rules, dummy variables and programming code are examples of switches.

Standard model: a computable, linear econometric model over discrete time with switches

and at least one time lag.

Correct model: a standard model that generates empirically correct values of observable

variables to within some predetermined accuracy. Since any finite sequence of numbers

can be generated by some algorithmic process, there must always be at least one correct

model.

The basic result of this section is the proof that there is no general algorithmic means of

knowing if an arbitrarystandard trial model will ultimately converge to acorrect model

We first show that the class of economic models is identical to that of the well known

class of computable functions. As a corollary of this we deduce that it is undecidable

whether such standard models will actually converge. This has further consequences for

the possibility that sequences of such models will converge on the correct model.

There are many ways to characterize the class of processes that can be mechanically

computed. The first such characterisation was by Turing (1936). This was followed by a

host of other such formalisations (e.g. Gödel-Kleene (1936), Church (1941), Post (1943),

Markov(1951)). All of these turned out to be equivalent. Since then many processes have

turned out to be equivalent, some of them quite surprising like solving diophantine equa-
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tions and tiling the plane. This has lead to the Church’s famous thesis thatall mechanical

processes are thus equivalent. It should not, therefore, surprise us that the class of econo-

metric forecasts should also be equivalent.4

The field of Computability (also know as Recursive Function) Theory has now become

a well-established field of mathematics. Some of its most important results show that

many important questionsabout computable functions are themselves not computable. In

particular, there is no computable means of settling the question of whether a computable

process will ever halt and come to an answer.

While there has been substantial and important work on the implications of computa-

bility for economic games5 and choice functions6, we are not aware of any applications to

econometric forecasting.

We will use here a formalisation of computable functions called an Unlimited Register

Machine (URM) formulated by Sheperdson and Sturgis (1963). This is a much easier for-

malism to deal with than Turing’s original machine. Like other such formalisations it is

functionally equivalent to that of Turing’s.

A URM is a computer with an unlimited number of memory locations, called “regis-

ters”, available to it. Each of these registers can hold a natural number (0, 1, 2,...). Call

these registersr 1, r2, r3,....

Each URM also has a program consisting of a sequence of four kinds of instruction:

Z(n) - Make register numbern zero.
S(n) - Increase register number n by one.
M(n,m) - Copy the contents of register numbern to register numberm, erasing

its previous contents.
J(n,m,q) - If the contents of register numbern are the same as register numberm,

then jump to instruction numberq.
The URM executes the program starting at instruction1 and progressing to the next

unless it meets an instruction of type J(n,m,q) where the condition holds, in which case it

continues execution at stepq.

The starting state of the registers represents the input to this machine. The program ter-

minates whenq becomes zero. In this case the output is the end state of the registers.

4A good but mathematical introductory text is Cutland (1980) where all of the standard
computability results on which we rely are found. An introduction to applications of com-
putability theory to economics is Anderlini (1992).
5e.g. Prasad, (1991).
6 Binmore (1987); Rustem & Velupillai, (1990).
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An Alternative Version of the URM (AURM)

We will be using an altered version of this standard type that is equivalent to the stand-

ard version in that any program for the standard URM can be simulated on the altered ver-

sion and vice-versa.

This version is identical to the standard URM, except that it has only two types of

instruction available:

S(n) - Increase register numbern by one.
DJZ(n,q) - Decrease the contents of register numbern if it is greater than zero. If

the result is zero continue execution of the program from stepq.

Assumptions

Assume that there is a correct but unknown model of some economic process. We will

consider the case where we are trying to construct trial models that will converge to the

correct model after an initial “settling-down” period. We will restrict ourselves tostandard

models of the above type.

It should be noted that most questions about processes with known bounds upon their

computation timeare computable. Trivially you can run the process and see. Similarly any

finite sequence of numbers can be generated by some algorithmic process by copying the

output from an internal table as required. Thus there must always be at least one correct

model for such finite sequences. This does not mean that this model is known (or even

knowable) by us. For the sake of the arguments below we are assuming that there is a cor-

rect model which isuniversally valid7.

Lemma 1: AURM machines can simulate any URM Machine

For any URM there is a AURM machine that is equivalent to it, such that it always

gives the same output for every input and it only terminates if the URM terminates (see

Appendix A for a detailed proof).

Lemma 2: URM machines can simulate any AURM Machine

Likewise for any AURM there is a URM machine that is similarly equivalent to it, such

that it always gives the same output for every input and it only terminates if the URM ter-

minates (see Appendix A for a detailed proof).

7Note that if you have a series of models and known criteria for swapping between them
(e.g. at certain times) then this can be combined to form a single universal model.
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Lemma 3: AURM machines can be simulated by a“Standard”Model

We now show that an arbitrary AURM machine can be simulated by an linear switched

model on a number with one time lag.

Proof:

Let the maximum register referred to by the AURM bemax.

Consider a AURM machine with registers:r 1, r2, r3,...,rmaxwith initial values:a1, a2,

a3,..., amax. and a program with instructions:i1, i2, i3,...,imax.

Each registerr 1, r2, r3,...,rmax will be simulated by the variables:X1, X2, X3,..., Xmax.

The starting value of the model (X1(0), X2(0),... Xmax(0)) will be the input values of the

AURM registersr 1, r2, r3,...,rmaxbefore the program starts.Pc will start at1 as doesRt.

Let the model have three sections (as above).

Let the first and third sections be initially empty and the second section as follows:

Inc := 0
If Pc(T-1)>0 Then Inc := 1
Pc(T) := Pc(T-1) + Inc
Rt := Rt + Inc

For each instruction in the program add equations to the model as follows (considering

the j th instruction):

If the j th instruction is a S(n) instruction add a block of equations of the form:

Ps := 0
If Pc(T) = j Then Ps = 1
Xn(T) := Xn(T-1) + Ps

to the first section of the model.

If the j th instruction is a DJZ(n,q) instruction add a block of equations of the form:

Ps := 0
If Pc = j And Xn(T-1)>0 Then Ps = 1
Xn(T) := Xn(T-1) - Ps

to the first section and a switch of the form:

If Pc(T)=j and Xn(T)=0 Then Pc :=q
to the third section.

Now we have a model which simulates the AURM. Each time step simulates one

instruction of the AURM being executed. The variablePc keeps track of which instruction

is to be executed next.

The model will converge to settled values for all the variables (includingPc andRt) if

Pc is set to zero (i.e. the AURM terminates).
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This model simulates the arbitrary AURM (see Appendix A for detailed proof).

Lemma 4: An AURM can simulate anystandard model

As we have shown above that the AURM is equivalent to the URM as a definition of

computability, it can compute anycomputablefunction. We thus appeal to the Church-

Turing Thesis to show this.

Main Theorem: The class of functions that are computable by a standard model are identi-
cal to those computable by a Turing Machine.

Proof

As the class of functions computable by a standard model and those computable by an

AURM is identical and that class is identical to those computable by an URM, that class

must be the commonly recognised class ofcomputable functions.This URM is a well-

known equivalent of a Turing Machine8.

Corollary 1: There Is No Algorithmic Means Of Knowing If An Arbitrary Standard Model
Converges

If there were an algorithm to predict whether all linear models with switches and at

least one time lag would converge to fixed values then that algorithm would predict

whether a model of the above type would converge. We would thus have an algorithm to

decide if the AURM it simulated terminated; this would give us a general algorithm for

determining whenever the corresponding URM halted - this is impossible.

Hence there is no such algorithm.

Corollary 2: Convergence by an arbitrary such linear switched model to a computable
“correct” model is undecidable.

The question of whether an arbitrary linear switched model converges to the “correct”

model is equivalent to the question of whether the difference between the two models on

any important variable is sufficiently small after a certain time.

The difference of such models is just another linear switched model with at least one

time lag as the two sets of equations and switches could be collected together (renaming

any variables which occur in both) and adding an extra series of equations calculating the

differences as new variables. Thus the problem of convergence of the trial model to the

correct one is equivalent to the convergence of another standard model to the zero func-

tion (we will call this functionψ).

8 See Cutland (1980)
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We will now use Rice’s Theorem. This states that ifφ1, φ2, φ3,... is any (effective) enu-

meration of computable functions andℑ is any non-trivial class of computable functions

(i.e. ℑ≠∅ and∃φ∉ℑ) then the problem ‘φx∈ℑ’ is undecidable.

If we call the correct modelψ and the trial modelφe then the problem can be expressed

as∃T∀t>T(|φe(t)-ψ(t)|<ε), i.e. is there a time after which the trial model and the correct

model differ by less thanε. Let ℜ={φ | ∃T∀t>T(|φ(t)-ψ(t)|<ε)}. Then the problem can be

expressed as ‘φx∈ℜ’. Now, by definitionΧ∈ℜ and(ψ+x)∉ℜ, thus the problem ‘φx∈ℜ’ is

undecidable by Rice’s Theorem.

Thus you can not, in general tell whether such an arbitrary standard model converges to

a similarcorrect model.

Corollary 3: There is no general algorithm for determining the existence of a method for
improving arbitrary models so that it will converge to the “correct” one.

Cal l  the  arb i t ra ry  t r ia l  mode lφ e and the  cor rec t  mode lψ.  Le t  I= { f  |

∃N∀n>N∃T∀t>T(|φfn(e)(t)-ψ(t)|<ε)}, i.e. this is the set of computable functions such that

after a certain number of them to this arbitrary trial model, it is suitably close to the correct

model (in the same sense as above). Now, sinceψ∈C then there is a natural number k such

thatψ=φk in an enumeration ofC, then the constant functionk(x)=k is in I (so I≠∅) and if

t is the index of the function(ψ+x) (i.e.φt=(ψ+x)) then the constant functiont(x)=t is not

in I (so t∉I) . Thus by Rice’s Theorem the problem ‘φx∈Ι’ is undecidable. In other words

there is no effective means of decidinga priori whether an algorithmic process will

improve a model so that it converges to a correct model.

This does not stop any improvements of a trial model as, at least, some trivial methods

of improvement are possible: e.g. taking one point at a time in the series and fixing them to

the desired values. It does show that you can not assume that there is a method for uni-

formly improving forecasts.

Corollary 4: There is no general algorithm for determining which of several alternative
standard models will converge most closely to a “correct” model.

If there were a general algorithm for determining which of several model converges

most closely to a “correct” model then this algorithm would also determine whether a

given algorithm improved a trial model as much as the perfect constant function (k in the

above). Thus we would have a positive procedure for deciding whether an algorithm

improved the trial model perfectly. This we showed was impossible in the last corollary.
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Thus we have shown that there is no general algorithmic means for determining

whether a standard model converges to a solution or which of the solutions of several

models converges most closely to the solution of the correct model.

4 Conditions of Application of Forecasting Models

That there are some conditions in which the applicability of different forecasting mod-

els can be compared is without doubt. We have proved in section 3 and Appendix A that,

in general, there is no systematic means of knowing whether one forecasting model is

more appropriate than another. There must be a separate proof of the preferability of one

over another in each instance.

There is, however, substantial evidence that the accuracy of forecasting models can be

improved systematically by intervention based on the judgement of the model operators.

In these cases, forecasters set residual values of individual equations in order to reflect

their judgements about the values which the LHS variables should take. Moreover, Moss,

Artis and Ormerod (1994) have exhibited a forecasting model of the UK economy in

which some aspects of judgement-based interventions were implemented by expert-sys-

tem-type rules. The rules described the actual intervention behaviour of the operator of the

London Business School Quarterly Model of the United Kingdom Economy.

Rules, we have seen, are switches as defined in section 3. The evidence on the effects

of judgement together with the work of Moss,et. al. imply that some switches do system-

atically improve forecasts. In other words, forecasting models which include a particular

type of switch are known systematically to generate more accurate forecasts than models

which do not include those switches. It therefore seems likely and is certainly possible that

there are some (possibly weak) conditions in which a particular kind of switch is associ-

ated with closer convergence to the output of a correct model than is achieved without

such switches.

We have also seen that, provided we are considering discrete-time forecasts over finite

forecasting periods, there are always standard models which will generate correct fore-

casts. Consequently, the analysis of section 3 must always apply to finite forecasting peri-

ods. It is therefore certainly correct to suggest, as does the ESRC, that “there is no single

‘correct’ model.”9 There are in principle many correct standard models which could cor-

9cf. the ESRC’s specification of itsRound 4 Macroeconomic Modelling Program (ESRC,
1994).
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rectly forecast the variables of concern in the large macroeconometric forecasting models

as well as the variables of concern in smaller more specialized models. The problem iden-

tified here is the importance on welfare grounds of knowing the conditions in which any

model’s forecasts converge more closely to the forecasts of a correct model than do the

forecasts of any other model combined with the impossibility of any general means of

determining what are those conditions.

The alternative to forecasting is scenario modelling. Certainly the consortium manag-

ing the ESRC’s Macroeconomic Modelling Programme now emphasize their support for

“increasing the use of the models in carrying out policy simulations and in the analysis of

policy recommendation.” In any event, using macroeconometric forecasting models for

simulating policy has a long and honourable history. Nonetheless, simulations are not less

subject to the strictures we have identified than are forecasts. The argument in section 2,

for example, was developed first in relation to the general use of models to support policy

recommendations. The certain existence of standard models which would generate correct

simulations of the effects of policy measures implies that our computability theoretic argu-

ments apply to policy simulation without change. Finally, the applicability of our argu-

ments apply equally whether we consider a temporal sequence of models or a cross-

section of alternative models. A “horses-for-courses” approach to modelling does not

escape the need to identify the conditions of application of the individual models when

they are to be used to inform policy.

What might be useful is to conduct a wide range of policy simulations under a variety

of simulated conditions in order to gain some feel for the conditions in which one policy

or another will be successful. The purpose of such an extended simulation exercise is to

identify conditions in which particular classes of forecasting model are more accurate than

the alternatives or particular classes of policy strategy yield greater benefits. Perhaps, as

with judgement-based interventions, we will find a set of modelling procedures which

yields unambiguously more accurate results than the alternatives.

5 Conclusion

The purpose of this paper has been to argue (i) that economic forecasters should in gen-

eral identify conditions in which one forecasting model or another is applicable to a given

policy analysis and (ii) that there are no general algorithmic means of determining which

of several models best satisfies its conditions of application. The first point follows from

conventional economic welfare theory and the second from computability theory.
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We do not see this result as a dilemma. We do infer from it that the use of a single fore-

caseting model to generate policy prescriptions has no scientific basis in either economics

or logic. It may also have substantial costs as, for example, when UK interest-rate policy

was predicated in the early 1990s on Treasure Model forecasts of an early upturn in macr-

oeconomic activity which was not, in the event, realized until much later.

We propose more flexible use of models to generate a variety of scenarios which will

help policy analysts formulate an appreciation of policy opportunities and pitfalls. Perhaps

this approach will lead in time to the identificaion of conditions in which the relative accu-

racies of well specified classes of forecasting models can be compareda priori.
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Appendix A

For any URM there is a AURM machine that is equivalent to it, such that it always gives
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the same output for every input and it only terminates if the URM terminates.

We construct an AURM program which simulates an arbitrary URM program. We need

to also refer to two registers not used by the URM program, we call these d, e and f., f

always has the value 0 in it. This is possible as the URM will use only a limited number of

registers.

We show that each instruction in the URM program there is an equivalent set of

instructions in an AURM that has the same effect. Of course, some renumbering of the

jump addresses is needed to accommodate the substituted block of AURM instructions.

Consider an arbitrary instruction in this program at positions. This instruction can one

of the forms S(n), Z(n), M(n,m) or J(n,m,q).

Case S(n)

Trivial, this is simulated by an identical instruction in the AURM program. No

renumbering is necessary.

Case Z(n)

Replaced by the code

s DJZ(n,s+2); decrementn and goto end if reached zero
DJZ(f,s) ; gotos

s+2
All jump addresses subsequent to the Z(n) instruction now need incrementing by 2.

Case M(n,m)

s DJZ(e,s+2) ;
DJZ(f,s) ; makee zero

s+2 DJZ(m,s+4) ;
DJZ(f,s) ; makem zero

s+4 S(n) ;
DJZ(n,s+9) ; ifn is zero gotos+9
S(m) ; incrementm
S(e) ; incremente
DJZ(f,s+4) ; gotos+4

s+9 S(e) ;
DJZ(e,s+14) ; ife is zero gotos+14
DJZ(e,s+12) ; decremente

s+12 S(n) ;
DJZ(f,s+9) ; gotos+9

s+14
All jump addresses subsequent to the M(n,m) instruction now need incrementing by

14.

Case J(n,m,q)
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s M(n,d) ; copyn to d
s+14 M(m,e) ; copym to e
s+28 S(d) ;

DJZ(d,s+35) ; ifd is zero gotos+35
S(e) ;
DJZ(e,s+37) ; ife is zero gotos+37
DJZ(d,s+33) ; decrementd

s+33 DJZ(e,s+34) ; decremente
s+34 DJZ(f,s+28) ; gotos+28
s+35 S(e) ;

DJZ(e,q') ; ife is zero gotoq
s+37
All jump addresses subsequent to the J(n,m,q) instruction now need incrementing by

37. Here where it saysM(n,d) or M(m,e) then all of the instructions listed under the

previous case should be inserted with the appropriate numbers substituted. q' is

equal to the q if q is before s and is equal to q+37 if after it.

For any AURM there is a URM machine that is similarly equivalent to it, such that it
always gives the same output for every input and it only terminates if the URM terminates.

Similar to the above proof but easier. For each instruction at position q there are two

cases.

Case S(n)

Is trivial.

Case DJZ(n,q)

is replaced by the URM code:

s J(n,f,s+9) ; ifn is already zero gotos+9
Z(d) ; setd as 0
Z(e) ;
S(e) ; sete as 1

s+4 J(n,e,s+8) ; ifn = e gotos+8
S(d) ;d := d + 1
S(e) ;e := e + 1
J(n,n,s+4) ; gotos+4

s+8 M(d,n) ; copyd to n
s+9 J(n,f,q) ; ifn is zero gotoq
s+10
All jump addresses subsequent to the DJZ(n,q) instruction now need incrementing

by 10.

There is a standard model that simulates an arbitrary AURM.

We will show that there is a model of the form shown above, such that for each AURM

instruction and each possible state of the registers in the AURM that one time iteration of

the model has the identical effect as that AURM instruction.
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Consider an arbitrary AURM instruction at positionq in the program. The variablePc

keeps track of the number of the instruction being executed. ThusPc(T) will have valueq

when instruction q is to be simulated. There are two cases:

Case S(n)

This instruction adds one to the registerrn, and then execution passes on to the next

instruction - numberq+1.

In this case a block of the form:

Ps := 0
If Pc(T) = q Then Ps = 1
Xn(T) := Xn(T-1) + Ps

exists in the model.

As Pc(T) has valueq thenPs will be set to 1 and this will have the effect of incre-

menting variableXn.

The block of form:

Inc := 0
If Pc(T)>0 Then Inc := 1
Pc(T+1) := Pc(T) + Inc

will cause the value ofPc to be incremented by one as q>0, as the AURM program

has not terminated (otherwise instruction S(n) would not be being executed).

None of the other blocks in the first section of form:

Ps := 0
If Pc = <No> And Xn(T-1)>0 Then Ps = 1
Xn(T) := Xn(T-1) - Ps
will have effect as<No> will not beq in these cases. Similarly for the switches in

the third section of form:

If Pc(T)=<No> Then Pc:=<No>
Thus the sole effect of the model in this iteration is to increment theXn andPc vari-

ables.

Case DJZ(n,p)

This instruction subtracts one from the registerrn if this is non-zero, then if the

value of rn is now zero execution continues at instruction numberp, otherwise exe-

cution passes on to the next instruction - numberq+1.

In this case a block of the form:

Ps := 0
If Pc(T) = q Then Ps = 1
Xn(T) := Xn(T-1) - Ps

exists in the model as well as a switch in the third section of the form:
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If Pc(T)=0 and Xn(T)=0 Then Pc:=p
As Pc(T) has valueq thenPs will be set to 1 and this will have the effect of decre-

menting the variableXn.

The block of form:

Inc := 0
If Pc(T)>0 Then Inc := 1
Pc(T+1) := Pc(T) + Inc

will cause the value ofPc to be incremented by one as q>0, as the AURM program

has not terminated (otherwise the instruction would not be being executed) but now

the value ofPc will be reset top if, in additionXn is now 0.

None of the other blocks in the first section of form:

Ps := 0
If Pc = <No> And Xn(T-1)>0 Then Ps = 1
Xn(T) := Xn(T-1) - Ps

will have effect as<No> will not beq in these cases. Similarly for the other switches

in the third section of form:

If Pc(T)=<No> Then Pc:=<No>.
Thus the sole effect of the model in this iteration is to decrement theXn if it is

greater than zero and set thePc variable top if the result is zero andQ+1 otherwise.

Halting

The AURM halts only ifq is ever set to zero. The model only ever settles down into

a steady state ifPc is set to zero, for in this case none of the first or third sections

will have any effect and the second section is of form:

Inc := 0
If Pc(T)>0 Then Inc := 1
Pc(T+1) := Pc(T) + Inc
Rt := Rt + Inc

Which will only have effect ifPc>0.


