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In this paper I will argue that, in general, where the evidence supports two 
theories equally, the simpler theory is not more likely to be true and is not 
likely to be nearer the truth. In other words simplicity does not tell us anything 
about model bias. Our preference for simpler theories (apart from their 
obvious pragmatic advantages) can be explained by the facts that humans 
are known to elaborate unsuccessful theories rather than attempt a thorough 
revision and that a fixed set of data can only justify adjusting a certain number 
of parameters to a limited degree of precision. No extra tendency towards 
simplicity in the natural world is necessary to explain our preference for 
simpler theories.  Thus Occam's razor eliminates itself (when interpreted in 
this form). 
I will start by arguing that a tendency towards elaboration and the pragmatic 
advantages are sufficient to explain our preference for simper theories.  Then 
I will briefly look at a couple of a priori arguments justifying a bias towards 
simplicity. I follow this by reviewing some evidence as to whether simpler 
theories are likely to be true taken from the field of Machine Learning, 
followed by a section discussing some special cases where we have some 
reason to expect there to be a bias towards simplicity.  I will briefly consider 
some of the concepts that have been called "simplicity" in the literature before 
I conclude with a plea for the abandonment of the use of simplicity as 
justification. 

Elaboration 
If one has a theory whose predictions are insufficiently accurate to be 
acceptable, then it is necessary to change the theory. For human beings it is 
much easier to elaborate the theory, or otherwise tinker with it, than to 
undertake a more radical shift (for example, by scrapping the theory and 
starting again). This elaboration may take many forms, including: adding extra 
variables or parameters; adding special cases; putting in terms to represent 
random noise; complicating the model with extra equations or rules; adding 
meta-rules or models; or using more complicated functions. In Machine 
Learning terms this might be characterised as a preference for depth-first 
search over breadth-first search. 
Classic examples of the elaboration of unsatisfactory theories include 
increasing the layers of epicycles to explain the observations of the orbits of 
planets in terms of circles and increasing the number of variables and 
equations in the national economic models in the UK.  In the former case the 
elaboration did increase the accuracy because the system of epi-cycles can 
approximate the collected data as to the true orbits, but this is more 
informatively done with ellipses. Once the arbitrary bias towards circles is 
abandoned the system of epi-cycles becomes pointless.  In the later case the 



 

 

elaboration has not resulted in the improved prediction of future trends (Moss 
et al. 1994), and in particular they have failed to predict all the turning points 
in the economy using these models. 
Why humans prefer elaboration to more radical theory change is not entirley 
clear.  It may be that it is easier to understand and predict the effect of minor 
changes to the formulation of theory in terms its content, so that, if one wants 
to make a change where one is more certain of improvement, minor changes 
are a more reliable way of obtaining this.  It may be that using a certain model 
structure biases our view because we get used to framing our descriptions 
and observations in this way, using variations of the model as our 'language' 
of representation.  It may be due to simple laziness - a wish to 'fit' the current 
data quickly rather than holding out for longer-term predictive success. 
Regardless of the reasons for elaboration, we are well aware of this tendency 
in our fellows and make use of this knowledge.  In particular we know to 
distrust a theory (or a story) that shows signs of elaboration - for such 
elaboration is evidence that the theory might have needed such elaboration 
because it had a poor record with respect to the evidence.  Of course, 
elaboration is not proof of such a poor record. It may be that the theory was 
originally formulated in an elaborate form before being tested, but this would 
be an unusual way for a human to proceed. 
This knowledge, along with an understandable preference for theories that 
are easily constructable, comprehensible, testable, and communicable 
provide strong reasons for choosing the simplest adequate theory presented 
to us. 
In addition to this preference for choosing simpler theories, we also have a 
bias towards simpler theories in their construction, in that we tend to start our 
search with something fairly simple and work 'outwards' from this point. This 
process stops when we 'reach' an acceptable theory (for our purposes) - in 
the language of economics we are satisficers rather than optimisers. This 
means that it is almost certain that we will be satisfied with a theory that is 
simpler than the best theory (if one such exists, alternatively a better theory). 
This tendency to, on average and in the long  term, work from the simpler to 
the less simple is a straightforward consequence of the fact that there is a 
lower bound on the simplicity of our constructions.  This lower bound might be 
represented by single constants in algebra; the empty set in set theory; or a 
basic non-compound proposition expressed in natural language. 
This constructive bias towards simplicity is also a characteristic of other 
processes, including many inductive computer programs and biological 
evolution.  Evolution started from relatively simple organisms and evolved 
from there.  Obviously when life started the introduction of variety by mutation 
would be unlikely to result in simplification, since the organisms were about 
as simple as they could get while still being able to reproduce in its 
environment.  Thus the effective lower bound on complexity means that there 
is a passive drift towards greater complexity (as opposed to an active drive 
towards complexity, a distinction made clear by McShea, 1996).  However 
this bias is only significant at the start of the process because the space of 
possible organisms is so great that once any reasonably complex organism 
has evolved it is almost as likely to evolve to be simpler as more complex - 



 

 

the lower bound and the 'inhabited' part of the possibility space do not 
impinge upon the possibilities that much.   

A Priori Arguments 
There have been a number of a priori arguments aimed at justifying a bias 
towards simplicity - (Kemeny 1953) and (Li, M. and Vitányi, 1992) are two 
such.  The former makes an argument on the presumption that there is an 
expanding sequence of hypotheses sets of increasing complexity and a 
completely correct hypotheses - so that once one has reached the set of 
hypotheses that contains the correct one it is not necessary to search for 
more complex hypotheses.  However this does not show that this is likely to 
be a better or more efficient search method than starting with complex 
hypotheses and working from there.  The later shows that it is possible to 
code hypotheses so that the shorter codes correspond to the more probable 
ones, but in this case there is no necessary relation between the complexity 
of the hypotheses and the length of the codes that is evident before the 
probabilities are established. 
To show that such prior arguments are unlikely to be successful, consider the 
following thought experiment.  In this experiment there are two 1kg masses, A 
and B, of the same weakly radioactive material, in which atoms currently 
decay at an average rate of 1 atom per minute.  By each mass there is a 
Geiger counter which detects when an atom in the mass decays and sends a 
particle towards the counter.  The task is to predict which counter will register 
an particle first after each hour on the clock begins. Now any model which 
predicts A and B half the time will, in the long run, do equally well. In this case 
it is abundantly clear that simpler theories are not more likely to be correct - 
correctness is determined by the proportion of A and B that the theory 
predicts and nothing else. 
Now, quite reasonably, one might object that a sensible model concerning 
radioactive decay is not a directly predictive one but one which specifies the 
unpredictability of the phenomena and concentrates on 'second-order' 
properties such as the probability distribution.  However, this is beside the 
point - it is a truism to say that those phenomena where our simple theorising 
succeeds do have some simple behaviour and those where such theories do 
not hold require more complex ones. If the thesis that simplicity is truth-
indicative is restricted to only those aspects of the natural world where it 
works, it has force but then can not be invoked to justify the selection of 
theory about phenomena in general.  We rightly do not attempt to predict the 
exact position of each grain of sand with our mathematical models of sand 
piles but instead concentrate on those aspects of that are amenable to our 
modelling techniques,such as relation between the frequency and size of 
avalanches (Bak 1997).  In general we are highly selective about what we 
attempt to model - we usually concentrate upon that tip of the natural world 
iceberg which is not overly complex. 
Theoretical results in Machine learning (Schaffer 1994, Wolpert 1996) show 
that, in general, no learning or search algorithm is better than another.  In 
particular that if a bias towards simplicity is sometimes effective, there must 
be other domains in which it is counter-productive.  To gain any improvement 



 

 

in inductive ability one must apply knowledge about the particular domain one 
is concerned with.  However, these results are extremely abstract and 
dominated by search spaces that are seemingly random and discontinuous 
almost everywhere.  It may be that nature is biased towards producing data 
that is more amenable and, in particular, simple than these extreme cases.  
Thus we look to some evidence as to this. 

Some Evidence from Machine Learning 
We have two explanations for our preference for simpler theories once the 
pragmatic advantages are factored out (all evidence being equal): firstly, our 
knowledge that theories tend to be elaborated when unsuccessful and, 
secondly, an inherent bias towards simplicity in the natural world.  If we were 
to hold to Occam's razor (in the form that simplicity is truth-indicative) then we 
would choose the first because this is sufficient to explain the phenomena - 
the postulated bias in the natural world is an 'unnecessary entity'. 
Since I don't hold with this form of Occam's razor I need to look for some 
evidence to distinguish between the two explanations.  Since the tendency 
towards elaboration is a characteristic of human theory construction, we look 
to situations where theory construction is not biased towards elaboration to 
see if simplicity is truth-indicative there.  Recently there have been such 
studies in the field of Machine Learning - where a computer program (rather 
than a human) attempts the induction.  This gives one a test bed, for one can 
design the induction algorithm to use a simplicity bias or otherwise and 
compare the results. In one of these studies (Murphy and Pazzani 1994) a 
comprehensive evaluation of all possible theories in a given formal language 
(to a given depth) were analysed against some real-world data series as 
follows: firstly as to their effectiveness at fitting some initial portion of the data 
(the in-sample part of the series), secondly as to their success predicting the 
continuation of this data (the out-of-sample part), and finally, as to the 
theory's complexity (measured in this case by the size or depth of the formal 
expression representing the theory).  The theories with best success at fitting 
the in-sample data were selected.  Within this set of 'best' theories it was 
examined whether the simpler theories predicted the out-of-sample data 
better than the more complex theories.  In some cases the simpler 
hypotheses were not the best predictors of the out-of-sample data.  This is 
evidence that on real world data series and formal models simplicity is not 
necessarily truth-indicative.   
In a following study on artificial data generated by an ideal fixed 'answer', 
(Murphy 1995), it was found that a simplicity bias was useful, but only when 
the 'answer' was also simple.  If the answer was complex a bias towards 
complexity aided the search.  Webb (1996) exhibited an algorithm which 
systematically extended decision  trees so that they gave the same error rate 
on the in-sample data, and, on average, gave smaller error rates on the out-
of-sample data for several real-life time series.  This method was based upon 
a principle of similarity, which was used to restrict the set of considered 
hypotheses.  A useful survey of results in Machine Learning, that can be seen 
as a parallel paper to this one is (Domingos 2000). 



 

 

Thus, the evidence, is that when considering non-human induction, that a 
simplicity bias is not necessarily helpful or truth-indicative. Rather that it is 
often used as an ill-defined satand-in form some domain knowledge.  A bias 
towards simplicity does seem to be a particular feature of human cognition 
(Charter 1999). 

Special Cases 
Although, simplicity is not in general truth-indicative, there are special 
circumstances where it might be.  These are circumstances where we have 
some good reason to expect a bias towards simplicity.  I briefly consider 
these below. 
The first is when the phenomena are the result of deliberate human 
construction.  Deliberate human constructions are typically amenable to an 
almost complete analysis assuming a design stance, they are frequently 
modular, and the result of simple principles iterated many times.  If someone 
asks you to guess the next number is the sequence: 2 ,4, 8, 16 you will 
correctly guess 32, because the nth power of two is the simplest pattern that 
describes these five numbers, and you an rely on the fact that the human will 
have chosen a simple (albeit possibly obscure) rule for their construction.  It 
would not be sensible to guess the number 31, despite the fact that there is a 
rule that would make this the correct answer (the number of areas that n 
straight lines, each crossing the perimeter of a circle twice and such that no 
three lines intersect in a single point, cut that circle into). 
The simplicity of these kinds of phenomena is only a hallmark of deliberate, 
conscious human construction.  Products of our unconscious brain or social 
constructs such as language may be extremely complex for these were not 
the product of an intentional design process.  Thus artists may construct 
extremely complex artefacts because they do not design every detail of their 
work but work intuitively a lot of the time with parts and media that are already 
rich in complexity and meaning. 
Apart from human construction there are some circumstances where one has 
good reason to expect simplicity, namely the initial stages of processes that 
start with the simplest building blocks and work from there.  That is the 
process is known to be one of elaboration. Examples of these might include 
the construction of higher elements in the early universe, the reactions of 
bacteria to external stimuli, or, possibly, the first stages in the evolution of life. 
Another situation is where one already knows that there is some correct 
model of some minimum complexity.  In this case one heuristic for finding a 
correct model is to work outwards, searching for increasingly complex models 
until one comes upon it.  There are, of course, other heuristics - the primary 
reason for starting small are pragmatic; it is far easier and quicker to search 
through simpler models.  In more common situations it might be the case that 
increasingly complex models may approximate the correct model 
increasingly, but never completely, well or that no model (however complex) 
does better than a certain extent.  In the first case one is forced into some 
trade-off between accuracy and convenience.  In the second case maybe no 
model is acceptable, and it is the whole family of models that needs to be 
changed. 



 

 

In such circumstances as those above there is some reason to err towards 
simplicity.  However in these circumstance the principle is reducible to a 
straight forward application of our knowledge about the phenomena that 
leads us in that direction - principles of simplicity do not give us any 'extra' 
guidance.  In these circumstances instead of invoking simplicity as a 
justification the reason for the expectation can be made explicit.  Simplicity as 
a justification is redundant here. 

Versions of "Simplicity" 

In order to justify the selection of theories on the basis of simplicity, 
philosophers have produced many accounts of what simplicity is.  These have 
included almost every possible non-evidential advantage a theory might have, 
including: number of parameters (Draper 1981), extensional plurality 
(Goodman 1966, Kemeny 1953), falsifiability (Popper 1968), likelihood 
(Rosenkranz, 1976 Quine 1968), stability (Turney, P 1990), logical expressive 
power (Osherton and Weinstein 1990) and content (Good 1969). 
In some cases this has almost come full circle. Sober (1975) characterises 
simplicity as informativeness - so that instead of asking whether simplicity is 
informative he seeks to show that simplicity (as informativeness w.r.t. a 
specified question) is, in fact, simple. 
If, as I have argued, simplicity is not truth-indicative, this whole enterprise can 
be abandoned and the misleading label of 'simplicity' removed from these 
other properties. This mislabelling, far from producing insight has produced a 
fog of differing 'simplicities' and 'complexities' which do much to hinder our 
understanding of the modelling process.  Theories can posses a lot of 
different advantages that are not directly linked to its success at explaining or 
predicting the evidence, restoring the correct labels for these advantages will 
help (rather than hinder) their elucidation. 

An Example - Curve Fitting by parameterisation 
A particular case of hypothesis selection that has been discussed in the 
literature is curve fitting.  This is simply a case of deciding which of a variety 
of hypotheses (in different functional forms) one will select given a set of data 
(in the form of points).  Typically these forms include parameters that are 
adjusted to fit the data, so that each form corresponds to a family of curves. 
Curve fitting can be a misleading example as it can be difficult to rid oneself 
of one’s intuitions about what sort of curves are useful to posit in the case one 
has personally come across.  One can have strong visual intuitions about the 
suitability of certain choices which strongly relate to a set of heuristics that are 
effective in the domains one happens to have experienced.   
In particular, one might happen to know that there is likely to be some noise in 
the data, so that choosing a curve that goes through every data point is not 
likely to result in a line that reflects the case when more data is added. In this 
case one might choose a smoother curve, and a traditional method of 
smoothing is choosing a polynomial of a lower order or with fewer 
parameters.  This is not, of course, the only choice for smoothing one might 
instead use, for example, local regression (Cleveland et al. 1988) where the 



 

 

fitted curve is a smoothed combination of lines to fit segments of the data. 
Thus the choice of a curve with a simpler functional form depends on: firstly, 
that one has knowledge about the nature of the noise in the data and, 
secondly, that one chooses the simplicity of the functional form as one’s 
method of smoothing.   If, on the other hand, one knew that there was likely to 
be a sinusoid addition to the underlying data one might seek for such 
regularities and separate this out.  Here a preference for simplicity is merely 
an expression of a search bias which encodes one's domain knowledge of 
the situation. 
A recent series of papers (Forster and Sober 1994, Forster 1999) argues that 
simplicity is justified on the grounds that its use can result in greater predictive 
accuracy on unseen data. This is based on results obtained in (Akaike 1973).  
Simplicity in this case is defined as (effectively) the Vapnik-Chervonenkis 
(VC) dimension (Vapnik and Chervonenkis 1981) of the set of curves which in 
some circumstances is equivalent to the number of adjustable parameters in 
the equation form.  The advantages of 'simplicity' in this account amount to 
the prescription not to try and fit more parameters that you have data for, 
since the larger the set of hypotheses one is selecting from the more likely 
one is to select a bad hypothesis that 'fits' the known data purely by chance. 
The extent of this overfitting can sometimes be estimated.  If you have two 
models whose predictive accuracy, once adjusted for its expected overfitting, 
is equal then there would be no reason to choose the family which might be 
considered simpler to have a simpler form.  In circumstances with a fixed 
amount of data the estimation of the extent of overfitting might or might not tip 
the scales to lead one to select the simpler model.   
This account gives no support for a thesis that the simplicity of a model gives 
any indication as to its underlying model bias.  In circumstances where one 
can always collect more data, so that effectively there is an indefinite amount 
of data, these arguments provide no reason to select a simpler model.  In this 
case, the decision of when to stop seeking for a model which gives increased 
predictive accuracy is a pragmatic one: one has to balance the cost of 
collecting the additional data and using it to search for the most appropriate 
model against the utility of the parameterised model. 
Also the connection between the VC dimension and any recognisable 
characteristic of simplicity in the family of curves is contingent and tenuous.  
In the special case where the only way of restricting the VC dimension (or in 
finite cases, number of hypotheses) is through the number of adjustable 
parameters, then it is the case that an equational form with more adjustable 
parameters will require more data for accurate parameterisation.  However 
there are other ways of restricting the set of hypotheses; as discussed above 
(Webb 1996) successfully uses a similarity criterion.  Thus one can avoid 
overfitting by restricting the VC dimension of the set of hypotheses without 
using any criteria of simplicity or parsimony of adjustable parameters.  Of 
course, one can decide to define simplicity as the VC dimension, but then one 
would need to justify this transferred epithet. 
To summarise this section, there is a limit to the accuracy with which one can 
adjust a certain number of parameters given a certain amount data - one is 
only justified in specifying in a curve to the extent that one has information to 
do so.  Information in terms of a tightly parameterised curve has to come from 



 

 

somewhere. However, in the broader picture where different families of 
curves are being investigated (by competing teams of scientists continually 
searching out more data) as to which explains or predicts the data better, 
these considerations give no support to the contention that the simpler family 
has an advantage. 

Concluding plea 
It should be clear from the above that, if I am right, model selection 'for the 
sake of simplicity' is either: simply laziness; is really due to pragmatic reasons 
such as cost or the limitations of the modeller; or is really a relabelling of more 
sound reasons due to special circumstances or limited data.  Thus appeals to 
it should be recognised as either spurious, dishonest or unclear and hence be 
abandoned. 
However, there is a form of Occam's Razor which represents sound advice as 
well as perhaps being closer to its Occam's original formulation (usually 
rendered as "entities should not be multiplied beyond necessity"), namely: 
that the elaboration of theory in order to fit a known set of data should be 
resisted, i.e. that the lack of success of a theory should lead to a more 
thorough and deeper analysis than we are usually inclined to perform.  It is 
notable that this is a hallmark of genius and perhaps the reason for the 
success of genius - be strict about theory selection and don't stop looking 
until it really works. 
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