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Abstract

It is argued that due to the complexity of most economic phenomena, the chances of
deriving correct models from a priori principles are small. Instead are more descriptive
approach to modelling should be pursued. Agent-based modelling is characterised as a
step in this direction. However many agent-based models use off-the-shelf algorithms
from computer science without regard to their descriptive accuracy. This paper attempts
an agent model that describes the behaviour of subjects reported by Joep Sonnemans as
accurately as possible. It takes a structure that is compatible with current thinking
cognitive science and explores the nature of the agent processes that then match the
behaviour of the subjects. This suggests further modelling improvements and
experiments. 

1. Introduction

Complex systems are precisely those for which it is extremely difficult to deduce its

behaviour from first principles1. For example, it is extremely unlikely that one would be able
to predict the behaviour of a meercat purely from a priori principles, rather one would have to
spend a lot of time observing and describing its actions to get a hold on the intricate
contingencies of its actual behaviour. With complex systems observation and description must
come first and only much later when the detailed behavioural mechanisms are well understood
is it sometimes possible to encapsulate some of these in a predictive model. It seems likely that
much economic behaviour is complex in this way. This would not be very surprising since it
arises as the consequence of the intricate interactions between members of a species that is
characterised by the variety and contingency of its behaviour. 

But if we are to give up the chimera of numerical predictive models built from a priori
principles, doesn’t that mean we have to give up all formal models and rigour? I would say
that we do not. What it does mean, however, is that we have to use formal and computational
models that are able to reflect the detailed behaviour as it is observed. We need to constrain

1. For discussion of the definition of complexity see [2].
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our models as much as possible using observations of the relevant phenomena, both in terms of
the causal processes as well as the outcomes. Pinning down our models using only the
verification of predictive outcomes and an insistence on formal simplicity will not be enough.
We will need to capture the workings of the processes stage by stage as they are observed and
reproduce the known outcomes. 

In order to perform this feat we will need formal systems that are up to the task of
expressing the qualitative cognitive processes that economic processes are rooted in. These
more expressive systems come with a price, they are not simple and they seem to allow for
multiple representations of the same outcomes. However there is no need for them to be any
less formal or rigorous than a set of differential equations.

In this paper I will exhibit an attempt to construct a more descriptive model of the search
for an appropriate strategy by the subjects in a particular experiment. It is, of course,
impossible to lose all assumptions in the construction of any model, but the point is to move
towards using fewer and less drastic a priori assumptions and use more qualitative and
quantitative constraints derived from the processes under study. The purpose of this model is to
provide an unambiguous framework for the exploration of the possible processes within these
constraints so as to inform the direction of further observation and modelling. This is not
merely a static description, for I am not concerned with static phenomena, but a dynamic
description of a particular set of observations using the techniques of computational and
cognitive modelling. The extent to which this model is generalisable to other phenomena will
only become apparent when it is compared with other descriptive models, just as the general
characteristics and markings of a species of animal may only become clear when several
descriptions of the animals are compared.

To many readers my position will seem too pessimistic. They may be still hoping for
some brilliant ‘short-cut’ to a predictive model, that will allow them to miss out the laborious
business of observing and describing the underlying processes. However, I would point out
that the science of biology has become enormously successful using the methods I am
suggesting and, once we have accepted the amount of field work that our subject matter entails,
equal success might be achieved in economics. 

2. Computational, agent-based models

The move to agent-based models in economics can be seen as part of a transition to a
more descriptive style of modelling. An agent-based model must, by its very nature, model a
real actor with a computational agent (in some way), so there should be a one-one
correspondence between actors and agents. It is not necessary to assume that the law of large
numbers will iron out the messy details. The model can allow the global properties to emerge
(or not) without having to assume these details away. Real economic actors are (almost
always) encapsulated, i.e. they will have an inside where the decision making is done which is
largely hidden from view, and a series of ways in which they interact with the outside
environment which are observable. The agents that are used to model these actors are

encapsulated in a directly analogous way1.
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However, many agent-based modellers do not see the need for any greater descriptive
accuracy than this. Thus when inspecting the learning, inference and decision making
processes that an agent uses in such a model, one often finds something as unrealistic as a
simulated annealing algorithm or standard genetic algorithm. These are algorithms that have
been taken from the field of computer science, regardless of their descriptive appropriateness
for the actual economic actors being modelled. Now it is possible that in some circumstances
such algorithms will give acceptable results for the purposes of some models, but at the
moment we can only guess whether this is the case. It is not only that we do not know the exact
conditions of application of each algorithm, we do not know of even a single real circumstance
where we could completely rely on any of these ‘off-the-shelf’ algorithms to give a reasonable
fit. 

To be clear, I am not criticising looking to computer science for ideas, structures and
frameworks that might be used in modelling. Being a bounteous source of possible types of
process is one of the field’s great contributions to knowledge. What I am criticising is the use
of such algorithms without either any justification of their appropriateness or modification to
make them appropriate.

Thus many agent-based models fail to escape the problems of more traditional models.
They attempt to use some ensemble of interacting agents to reproduce some global outcome
without knowing if the behaviour of the individual agents is at all realistic. The wish for the
‘magic’ short-cut is still there.

Clearly what is needed is some way of modelling the behaviour of economic actors by
computational agents in a credible way. As noted above, real economic actors are probably
complex in the sense that it is unlikely that we will be able to deduce their actions from a priori
principles. What we can do is to constrain our models as much as possible from what we know.
There are several sources of such knowledge.

1. We can ensure that the global outcomes of the model match the global outcomes of real 
actors in the standard way.

This is a good start, but when one is using a more expressive formal system like a
computational one then this is unlikely to sufficiently constrain the possible models. In other
words, there are likely to be many computational model which produce the same global
outcomes.

2. We can ensure that the actions of the individual actors match those of our agents’ 
behaviour as they learn and interact.

Axtell and Epstein set out some criteria for the performance of multi-agent simulations
in [1] In this: level 0 is when a model caricatures reality at the global level through the use of
simple graphical devices (e.g. animations or pictures); level 1 is when the model in is
qualitative agreement at the global level with empirical macro-structures; level 2 is when the

1. The fact that agent-based models are typically simulated on a computer forces another descriptive 
aspect upon the modeller – the decision making processes inside an agent must be computationally 
feasible.
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model produces qualitative agreement at the agent level with empirical micro-structures; and
level 3 is when the model exhibits quantitative agreement at the agent level with empirical
microstructures. The constraint I am suggesting corresponds to their ‘level 3’ with an emphasis
on the agreement over time.

3. We can look to the emerging guidelines coming from cognitive science as to the sort of 
learning and decision processes humans might use.

Now the task of the cognitive scientist is difficult, but such scientists are able, at least, to
exclude some mechanisms for explaining behaviour and make suggestions for the mechanisms
derived from a lot of observation. It is notable that many successful sciences take their ultimate
grounding for the behaviour of their components from outside their discipline – chemistry is
grounded in physics and biology is grounded in chemistry.

4. We could simply ask the actual actors why they made the decisions they did and how 
they learnt what they learnt. This is a particular example of using the techniques of 
business history to extract information demonstrating the way institutions and 
individuals did behave.

This method has its known drawbacks, but can be successfully used, especially when
confirmed by other methods. In any case it is likely to produce more useful and accurate
information about the real behaviour of actors than is implicit in many commonly used
assumptions.

3. The target behaviour

The behaviour I am aiming to capture in my descriptive model is that specified by the
results of ‘experiment 1’ described by Sonnemans in [12]. This is an experiment where
subjects have to repeatedly sell a notional item in a bidding process. They receive a sequence
of offers for this item. Each offer costs them 2 cents and each offer is drawn randomly from the
interval [1,100] – they are paid the amount of the offer that they accept minus the costs
incurred (2 cents per offer accepted) minus a fixed fee of 50 cents per game. Thus they have
opposing incentives: to wait for a better offer and to avoid excessive cost. The ‘optimal’
strategy is to have a reserve price, that is wait for a offer of 81 or over and then accept it.

The experiment is divided into parts: 0, 1, 2, 3, and 4, each of 4, 15, 15, 15 and 20 games
respectively. Part 0 is the practice stage where the agent learns but statistics are not kept and no
earnings gained. In parts 1, 2 and 3 the agents learn and earn as they do so. In part 1 the game
starts in earnest, so that the subjects earn real money dependent upon their performance. At any
stage in the game the subjects have the option of finding out any combination of the following
information about the game so far: the number of bids; the last bid; the highest bid so far; the
cost of bids if they stopped; and the earnings if they stopped. Part 2 is the same as part 1,
except that at any stage the subjects can only access one of the above pieces of information
(this does not stop them remembering or working out this information in their head, of course).
In part 3 the first 0, 1, 2, 3 or 4 offers (determined randomly) were automatically accepted, the
subject deciding when to stop after that (these offers still had to be paid for). In the last part
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(part 4) a constant strategy (the best learnt by the end of part 3) is kept for each game, so no
learning occurs but statistics are kept and payments made.

What makes this particular experiment appropriate for this purpose is that Sonnemans
extracts the strategies that the subjects end up with in a form that is computationally
modellable. In the experiment there were several parts. In the initial parts the subjects were
able to try out their strategies. Before the last part they had to specify the strategy that would
determine offer acceptance for the final 20 games. In all but two cases these could be
formulated in terms of five predicates and two Boolean operators. This is not surprising as
Sonnemans had done a pilot study to determine the operators that most people would use.
These were: H≥x (the highest offer so far is not less than x); L≥x (the last offer was not less
than x); N≥x (there have been x offers or greater); E≥x (earnings are not less than x); O≥x (there
have been at least x offers in a row since the last highest offer or more); AND (boolean
conjunction); and OR (boolean disjunction). Thus the strategy ‘Accept the highest offer if my
earnings are at least 70 or there have been 10 offers’ could be expressed as ‘H≥70 OR N≥10’. 

Two of the strategies were of a form which would entail a non-zero probability of never
terminating (e.g. only stop if earnings are greater than 90). Two of the strategies were of the
form stop if the earnings are at least X(t), where X is a function and t is the earnings so far.

These four strategies were excluded from the results reported by Sonnemans1. The other 34
strategies are shown in Table 1.

1. It is not entirely clear why these were excluded from the listing. Presumably because their optimality 
could not be calculated since they allow for the possibility of unlimited losses.
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Table 1: Derived from Table 3 of [12], page 317. The strategies of the subjects in part 4. The characters in the
second column have the meanings as describe above. The earnings statistics and the percentage same as optimal
are based upon a simulation, N=160 000.

As has been remarked in other experimental studies (e.g. [4, 6, 11]): subjects learn better
strategies as they gain experience; overall efficiency is reasonably high, and there is a marked
tendency to stop too early. This last fact is shown by the stopping statistics for the experiment

shown in Table 2.

Table 2: Derived from Table 1 of [12], page 316. Search behaviour, 36 subjects, 15 periods per part. The earnings
are in cent per period.

Subject Strategy Earnings Stopping Decision

 Mean  SD % Same 
as actual 

part 1

% Same 
as actual 

part 2

% Same 
as 

optimal

2 L>=80 OR H>=80 OR N>=10 OR E>=30 29.7 11.8 53 67 86
4 L>=90 OR (H>=80 AND N>=10) OR E>=30 30.0 11.5 47 73 76
5 (L>=65 AND E>=6) OR H>=70 OR N>=15 OR O>=5 26.6 12.1 80 87 55
6 H>=80 30.5 10.4 47 87 95
7 L>=80 OR (H>=66 AND N>=8) OR E>=20 OR O>=5 28.5 12.1 47 67 69
8 H>=80 30.5 10.4 80 87 95
9 L>=75 29.8 10.0 67 100 77
12 L>=80 OR E>=20 29.8 9.9 53 93 81
13 L>=100 OR H>=70 OR N>=10 28.2 11.3 47 53 63
14 H>=84 OR E>=25 30.3 10.9 80 80 88
15 L>=80 OR N>=10 AND E>=0) 30.1 10.8 80 100 88
16 H>=70 OE R>=10 26.9 11.1 80 67 56
17 L>=80 OR E>=24 OR O>=8 30.0 10.9 73 87 86
18 L>=72 OR H>=75 OR N>=15 OR E>=20 29.1 10.4 47 73 68
19 (H>=80 AND E>=20) OR (N>=10 AND O>=8) 29.1 13.8 60 73 84
20 L>=70 OR H>=70 28.6 10.4 67 87 64
21 H>=76 OR E>=18 29.3 9.9 80 93 72
22 N>=21 OR E>=20 29.1 11.7 53 67 73
23 H>=70 OE R>=10 28.6 10.4 47 53 64
24 L>=82 30.5 10.9 80 80 95
25 H>=75 OR N>=10 OE E>=15 28.1 11.2 67 87 63
26 (H>=85 AND E>=18) OR N>=10 29.5 12.5 40 67 72
27 H>=70 OR N>=15 OR E>=10 26.9 11.2 47 53 55
28 (H>=75 OR N>=6) AND E>=15 29.8 10.2 47 73 76
29 (N>=6 AND H>=80) OR E>=15 28.7 10.1 67 53 68
30 H>=85 OR N>=8 OR E>=20 28.5 12.2 60 73 69
31 L>=75 OR N>=10 OR (H>=50 AND O>=5) 28.7 11.9 60 73 70
32 L>=82 OR N>=9 29.4 12.4 67 73 82
33 N>=7 OR E>=15 27.1 12.7 67 67 59
34 L>=70 OR (N>=5 AND E>=10) 28.6 10.4 60 80 64
35 N>=10 OR E>=10 26.6 11.7 80 73 55
36 H>=68 28.0 10.7 73 87 60
Av 28.9 11.2 62.6 76.0 72.8
SD 1.2 0.9 13.3 13.1 12.3

Mean number of bids Stopping Mean earnings
Optimal Actual Early Optimal Late Optimal Actual Effic iency

Part 1 4.73 4.07 40% 54% 6% 29.4 24.7 84%
Part 2 5.53 4.62 17% 74% 9% 27.3 25.8 95%
Part 3 5.67 4.55 30% 61% 9% 29.9 26.8 90%
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As Sonnemans points out, this early stopping behaviour is not explained by simple risk

aversion in many cases. Figure 1 shows a plot of the mean earnings against the spread of
earnings for the 34 strategies listed in Table 1. The line shows the orbit of optimal strategies for
various risk/expected earnings trade-offs. Many of the strategies chosen by the subjects were
under the top part of the line, so that there were other strategies they could have adopted with
the same level of risk but greater average earnings.

Figure 1: Derived from Fig. 1 of [12], page 319. The curve is the expected mean and standard deviation of the
earnings of the strategies of the ‘optimal’ form (i.e. those of form ‘H≥x’) and the black squares are the strategies

that the subjects specified for part 4 (see Table 1). The expected performance by the risk-neutral ‘optimal’
strategy (i.e. H≥81) is indicated by the O (SD=10.6, Mean=30.5).

4. Hints from cognitive science

What makes Sonnemans’ experiment particularly interesting is that it allowed the
subjects reasonable scope within which to express their strategies. Even though the scope was
still fairly restrictive (as compared with natural language), the subjects specified a range of
different kinds of strategies. Clearly, the subjects are learning the form of their strategy as well

as its parameterisation. This fits into the formal framework for learning proposed in [9]. He
also has collect some statistics about their behaviour at different stages of the experiment

(Table 2). However these are not sufficient to constrain the possible learning mechanisms

employed by the subjects (it was, of course, not designed with this in mind1). Thus I have had
to look elsewhere for additional constraints – in this case, cognitive science.

1. It is unfortunate that I have not had access to the game-by-game records of the subject’s choices.
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I am not suggesting that economics should (or could) be reduced to cognitive science,
just that we should accept constraints about the behaviour of our units from it – just as
chemistry ensures that its models are consistent with what physics tells them about the
behaviour of atoms. Nor am I suggesting that we should invade the field of cognitive science –
our job is to ensure that the behaviour of our agents matches that of real economic actors so
that we can safely explore what happens when they interact monetarily. The job of
investigating the purely internal cognitive processes is best left to cognitive scientists.
However, just as good chemists must know enough about the physics of atoms in order to
ensure that their chemical models are consistent with the laws of physics so must we inform
ourselves sufficiently about cognitive science in order to ensure that our agents are compatible
with what is known about the workings of humans.

My source is ‘Induction’ by Holland, Holyoak, Nisbett and Thagard [5]. This is a
synthesis of the relevant cognitive science and associated philosophy on how induction does
and can occur, written from a computational point of view. This attempts to cover all the
different aspects of induction (e.g. induction in science), so I will only draw on the basic
framework that it suggests. In particular, I have abstracted the following aspects:

• That induction works on a population of ‘rule-based mental models’;

• That there are operations that produce new models from the existing ones;

• That there is some ‘credit assignment’ mechanism that allows the hypotheses to be 
evaluated in response to their success.

Although [5] uses the paradigm of the ‘classifier system’ as a concrete framework to

explore and illustrate the possibilities, I will use the Genetic Programming (GP) paradigm [7]1.
This provides a flexible framework to implemented this picture of induction in an artificial
agent. It is more appropriate for this task because the form of the strategies that Sonnemans
reported can be directly implemented using GP-based techniques. The GP paradigm involves a
collection of expressions that conform to a formal grammar, which are evolved by the
operations of combination, variation, propagation and selection, in response to the tasks it is
presented with. The original GP algorithm was designed for efficient machine induction, so
there is no reason, a priori, to suppose that it is a good picture of human induction. However
the paradigm is much wider, providing a framework within which there are many possible
algorithms. This flexibility enables us to search for a descriptive fit with the observed results.
The use of this paradigm is examined in more detail elsewhere [3].

1. Strictly, since the expressions are typed (Boolean and numeric) this is an example of strongly-typed 

GP [8].
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5. The model

5.1 General simulation structure

The structure of the computational model follows that of the Sonnemans experiment as
closely as possible. Thus there are 36 experiments in parallel, each with one agent. The agents
have to decide when to stop a sequence of offers and accept the value of the highest offer so far
(minus the cost of the offers and a fixed ‘fee’ of 50 cents). Thus in each run of this simulation
each of 36 agents plays 69 games.

Thus each agent has to decide for each offer in each game whether to ask for another
offer or accept the highest offer so far and at the end of part 3 to specify a fixed strategy (of the
form discussed previously) for part 4. The material it has to work on is its experience in terms
of its earnings and costs in previous games. How the agents specify strategy and make
decisions based on this experience is the nub of the model.

5.2 Agent model

Following the hints in Section 4, each agent has a small population of strategies which

represent its current hypotheses. These are in the form of those in Table 1. As a result of the
experience of each game the agent evaluates its hypotheses, keeps some, changes some,
combines some and forgets the rest. In any particular game it uses the strategy that it has
evaluated as its best to decide when to stop the bidding process. At the start each agent is given
an initial population of these strategies generated at random, and from then on the agent works
with these to produce newer and better strategies, so the population evolves and the strategies
improve. 

There are four key questions to be explored within this framework. Each question
concerns how the agent model should be structured so that it reflects (as far as possible) the
behaviour of the subjects in Sonneman’s experiment. For each question I list some possible
answers and explain how the model can be adapted to implement these.

1. Exactly how should the agents adapt their existing hypotheses in the light of their 
experience? 

There are many possible operations that a subject could use to produce the next
population of hypotheses. I list the selection that I implemented.

election. This is the operation of keeping the best existing hypothesis, as currently evaluated.
The idea is that one holds on to one’s best hypothesis.

propagation. Select a hypothesis probabilistically according to its current evaluation and keep
it. Since selection is probabilistic this means that you keep a selection of your current
hypotheses biased towards those that are currently doing best, but you might sometimes keep
less good hypotheses as well.

new. Introduce a totally new randomly generated hypothesis. If one does not introduce any
new hypotheses there is a danger of stagnation after a while.
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generalisation. Select two existing hypotheses probabilistically according to their current
evaluations and join them into one new hypothesis using the boolean ‘OR’ function. Thus if
the selected hypotheses were ‘H≥70’ and ‘N≥7’, the new hypothesis would be ‘H≥70 OR
N≥7’. 

specialisation. Select two existing hypotheses probabilistically according to their current
evaluations and join them into one new hypothesis using the boolean ‘AND’ function. Thus if
the selected hypotheses were ‘H≥70’ and ‘N≥7’, the new hypothesis would be ‘H≥70 AND
N≥7’.

join. Select two existing hypotheses probabilistically according to their current evaluations,
randomly choose an appropriate function and join them into one new hypothesis using this
function. The ‘generalisation’ and ‘specialisation’ operations described immediately above are
special cases of this. This could be seen as a general exploratory constructive operation.

cut. Randomly choose a node in an existing hypothesis (chosen probabilistically according to
its current evaluation) and copy and keep the subexpression as a hypothesis. This might be
associated with an attempt at simplification of a more complex expression.

graft. Select two existing hypotheses probabilistically according to their current evaluations,
randomly choose a node in one of them graft the other to that node replacing any
subexpression that was there before, keep the result. This is another exploratory constructive
operation attempting to utilise the properties of simpler hypotheses to make a more effective
one. 

cut and graft. Select two existing hypotheses probabilistically according to their current
evaluations, ‘cut’ a subtree from the first (as above) and ‘graft’ it into the second (as
immediately above), keep the result. This is similar to the ‘graft’ operation immediately above,
but does not have the disadvantage of always increasing the size and depth of the expressions.

crossover. Select two existing hypotheses probabilistically according to their current
evaluations, randomly choose a subnode of each expressions and swap the subexpressions
these indicate between the two hypotheses to make two new hypotheses, keep both. This is
rather like two ‘cut and graft’ operations combined. This operation is used very effectively
techniques of automatic induction because it is exactly conserves the nodes in the expressions
while shuffling around their configurations.

hillclimb. Select an existing hypothesis probabilistically according to its current evaluation,
randomly pick a numeric parameter, increment or decrement that parameter, and keep the
result. This is a classic exploratory move allowing the incremental parameterisation of an
expression.

Thus to take some example mixes of these operations. A mix of 90% crossover and 10%
propagation would implement a classic genetic programming algorithm. A mix of 10%
election and 90% new would implement a search which merely tries out expressions at
random. A mix of 50% hillclimb, and 50% propagation would start with a randomly generated
set of expressions and then incrementally explore parameterisation of these.
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In the agent model I use here, the proportion of the operations used by agents is set by
the programmer.

2. In what way should the agents evaluate their hypotheses? 

Clearly the most obvious way in which the expressions might be evaluated is according
to the net earnings that using each hypothesis would have generated on the offer sequences that
are encountered. However that is not the only possibility. The agent could be also biased in
favour of syntactically simpler hypotheses or be in favour of those strategies that incur fewest
costs.

As with the operation of variation there are quite a number of ways of combining these
factors in the evaluation of hypotheses. It is possible that the subjects are attempting to
maximise some function of these, but it is also possible that these factors might be applied
separately, for example by eliminating all those which perform badly in any of these respects.

In this model each of these three aspects (earnings, costs and syntactic complexity) are
evaluated for each strategy. There are then several different ways of treating the evaluation for
each aspect. I chose four: a set proportion of the worst strategies with respect to each can be
discarded and the rest just kept on; the strategies would have to reach a minimum level in order
to be kept on; the strategies can be given a simple score with respect to each aspect; or they can
be ranked. 

3. How far back should the agents evaluate new hypotheses against past experience?

An optimal agent would remember the offer sequence in every single past game and use
all of them to evaluate its strategies. This would be implausible in this case as the subjects were
not allowed to keep notes and would have had to rely on their memory. Thus there is the
question of how far back subjects recall in the process of evalutating their hypotheses. Broadly,
the further back a subject recalls the more efficient and less contingent is their strategy
development.

4. What number of hypotheses should the agents hold at any one time?

It seems clear that human beings would not merely consider one strategy for each game,
starting completely afresh if this one was unsuccessful. Rather it is likely that they would recall
previous strategies they had tried or thought of as a basis for further strategies. Thus, in effect,
the subjects will have access to a variety of past strategies at any stage. However it is also clear
that the ability of human subjects to recall (or reconstruct) past strategies is limited, in other
words we forget some of our past thinking. Thus what would be a realistic number of strategies
for an agent to hold within this framework is also a parameter to explore. Broadly, large
populations implement a more exploratory search while small populations implement a more
‘path-dependent’, contingent search.

Clearly, the total number of possibilities that could be constructed by varying the above
parameters is vast. However, thanks to Sonnemans’ data, we are able to pin it down in several
different ways. What I will do is to exhibit the first steps in this modelling process. This is a
process that obviously will need to be continued.
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The model was implemented in the language SDML [10]. The code for the simulations
described here will be available at: http://www.cpm.mmu.ac.uk/~bruce/tdmass/code.html.

6. The results

Many different simulations were run. Each run was set up with a different combination
of operators, model parameters and evaluation methods. There is not room to display all of
these here but I will summarise the results and show some of the more significant simulations
in more detail. The full list of runs with their set-ups and results will be made available at:
http://www.cpm.mmu.ac.uk/~bruce/tdmass/results.html.

For ease of reference the two ‘signature’ graphs of the target behaviour are shown in

Figure 2 below. The first is a rescaled version of Figure 1 and the second is a barchart showing
the average proportion of times that subjects earlier than the optimal, at the optimal point and
after the optimal point for parts 1, 2 and 3. Please note that whereas Sonnemans’ calculated the
expected average earnings and spread of earnings using 160,000 simulations of randomly
generated games, I had only the computational resources to do relatively few (400

simulations). Thus while the diagram in [2] are accurate to one decimal place (with a
probability of 95%), mine are only accurate to the nearest 1 (in the mean earnings), and will
overestimate the expected spread of the earnings. 

Figure 2: Two ‘signature’ graphs of Sonnemans’ results [12]. The first is a plot of the standard deviation of net

earnings against the mean of those earnings over 160,000 random games for the 32 strategies shown in Table 1.
The second is the proportion of early, optimal and late stoppings for the 32 subjects for parts 1, 2 and 3, taken

from Table 2. The black are is the early stopping proportion, the shaded the optimal and the white is the late.

The first three runs mimic the original GP algorithm (i.e. as described in [7]). That is, the
proportion of operators was: 90% crossover and 10% propagation; evaluation of strategies was
done primarily on net earnings but with a significant bias against syntactically complex
strategies; the strategies were allocated a final fitness depending on their score in the
evaluation; the initial population of strategies was generated with a maximum depth of 3; and
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the strategies were evaluated over the previous two games each time. The three runs are with
10, 20 and 30 strategies respectively. The corresponding graphs are shown in below.

Figure 3: The ‘signature’ graphs of the three GP runs1. 
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As we can see from these results although the mean and spread of the earnings for the
run with 30 models is approximately right (except that it is bit too evenly spread and there are
a few stragglers with low mean) the stopping pattern is not. Unsurprisingly the GP algorithm is
not biased towards stopping early. Also the set of strategies the algorithm finished with were
not as complex as those of the experimental subject, in fact they were all of zero depth (i.e.
involved only one predicate and no Boolean operators), they were: H>=68, L>=68, H>=86,
L>=76, H>=84, L>=81, H>=78, E>=69, N>=10, L>=74, E>=74, H>=76, H>=77, E>=63,
H>=82, E>=62, L>=74, E>=71, H>=78, E>=75, L>=79, H>=80, E>=71, E>=70, E>=41,
H>=76, O>=4, E>=72, H>=74, H>=81, E>=69, H>=75, H>=88, H>=82, E>=54, and H>=75.
It seems that this version of strategy search (unlike Sonnemans’ subjects) quickly settles on
search the combinatronic variations of numbers and single predicates. This explains the few
‘stragglers’, who just happened not to have an appropriate combination in their initial
population of expressions; there is no novelty or hill climbing in this run so they could never
develop them.

I do not have enough space to describe all the runs, so I will now turn to the run that most
closely matched Sonnemans’ results. This was the best run I have achieved in terms of the
level of qualitative fit. In this run: the agents had a population of 80 models generated with an
initial depth of 1; the proportion of operators was 10% propagation, 2% election, 15%
generalisation, 30% hill climb, 4% new, 5% specialisation, 20% cut and graft; the strategies
were evaluated over the last 4 time periods in proportion to net earnings only but strategies
deeper than and those that always incurred the maximum amount of cost were always
removed.

Figure 4: The run wit the most realistic search pattern

This run was closer on the stopping pattern but not completely realistic in the pattern of
earnings and their spread – the more successful agent look realistic but there is a ‘tail’ of
unrealistically poor strategies with low average earnings. It did produce a more realistic mix of
strategies in terms of a mix of depths. 

1. Note that for the simulation results the mean and standard deviations of the earnings of the final 
strategies were only estimated over 400 random games.

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Standard Deviation

M
ea

n

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Part 1 Part 2 Part 3



page 15

The equivalent of Table 2 for this run is shown below in Table 3. The stopping pattern is
similar except for the fact that for Sonnemans’ subjects they exhibited the most optimal
stopping behaviour in part 2 rather than part 3 as below. This may have been because in the
original experiment the restricted information available to the subjects may have encouraged
them not to recall previous highest bids but concentrate on the immediate one and thus
improve their performance. This improvement in the absence of recall has been noted in

previous experiments (e.g. [4]). the efficiencies of the subjects behaviour shows a similar
pattern and can be attributed to the same reason.

Table 3: The equivalent of Table 2 above for the best simulation run.

The equivalent of Table 1 is shown below for this simulation run (Table 4). Here we do
see a variety of simple and complex strategies, and the average and standard deviation of the
earnings achieved was close to that found by Sonnemans. What we do not see is the significant
presence of strategies using primitives of the form N≥x or O≥x. It is likely that the bias against
excessive cost might have the effect of removing these at an early stage. 

Mean number of bids Stopping Mean earnings
Optimal Actual Early Optimal Late Optimal Actual Efficiency

Part 1 4.62 3.60 28% 66% 6% 29.4 27.0 92%
Part 2 4.27 3.68 21% 74% 5% 30.8 28.7 93%
Part 3 5.43 4.73 24% 72% 4% 28.0 26.0 93%
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Table 4: The equivalent of Table 1 for the best run.

To summarise; the above model succeeds in simultaneously capturing several different
aspects of the target behaviour. Of the aspects it does not capture, three stand out. I discuss
these below.

• The detailed form of the agents’ strategies was often not of a form a human would use in 
expressing their strategies. They often included expressions that a human would 
automatically simplify. My model did not include any simplification by agents.

Subject Strategy Earnings Stopping Decision

 Mean  SD
% Same 
as actual 

part 1

% Same 
as actual 

part 2

% Same 
as 

optimal
1  [AND ['E>=' [80]] ['E>=' [65]]] 28.6 12.9 53 73 72
2  ['H>=' [67]] 28.6 11.2 60 67 62
3  ['H>=' [72]] 29.1 11.2 67 80 71
4  ['H>=' [78]] 29.8 10.8 100 80 90
5  [AND ['E>=' [73]] ['E>=' [57]]] 29.5 11.6 87 73 84
6  ['H>=' [77]] 30.4 11.2 73 73 87
7  ['E>=' [70]] 29.3 11.7 73 73 79
8  ['H>=' [74]] 29.6 11.5 60 80 78
9  [OR ['H>=' [78]] ['H>=' [89]]] 29.1 11.9 67 73 88
10  [AND ['E>=' [56]] ['E>=' [66]]] 28.1 11.8 67 87 74
11  [OR ['N>=' [6]] ['H>=' [79]]] 27.3 14.5 40 60 72
12  ['H>=' [68]] 28.0 12.0 80 67 63
13  ['H>=' [78]] 29.0 11.3 73 73 87
14  ['E>=' [72]] 29.1 11.0 93 93 83
15  [AND ['H>=' [75]] ['H>=' [58]]] 29.9 11.8 67 93 79
16  ['H>=' [73]] 29.3 10.5 93 80 74
17  ['H>=' [61]] 25.2 12.6 53 73 49
18  ['H>=' [79]] 29.9 11.7 73 87 92
19  [AND ['H>=' [56]] ['H>=' [78]]] 29.8 11.9 93 80 91
20  [OR ['H>=' [52]] ['H>=' [63]]] 21.9 14.3 53 47 40
21  ['E>=' [70]] 29.3 11.2 73 67 81
22  ['H>=' [82]] 30.2 11.2 47 73 96
23  ['E>=' [55]] 24.8 12.7 73 67 51
24  [OR ['E>=' [69]] ['E>=' [70]]] 28.5 11.6 87 100 77
25  ['E>=' [73]] 30.3 12.2 53 67 86
26  ['H>=' [65]] 26.9 12.2 47 67 58
27  [AND ['H>=' [55]] ['H>=' [54]]] 23.4 14.1 40 33 47
28  ['E>=' [62]] 27.4 11.0 80 80 64
29  [AND ['H>=' [83]] ['H>=' [83]]] 29.2 12.4 80 80 92
30  [AND ['E>=' [74]] ['E>=' [74]]] 29.1 11.8 53 73 81
31  ['H>=' [77]] 28.2 12.2 20 73 83
32  [OR ['H>=' [76]] ['H>=' [67]]] 27.1 12.1 87 87 60
33  ['E>=' [74]] 29.6 10.8 73 87 82
34  ['E>=' [60]] 26.1 11.9 93 80 58
35  [OR ['H>=' [77]] ['H>=' [74]]] 29.8 10.2 87 100 74
36  [OR ['E>=' [79]] ['E>=' [66]]] 28.2 11.4 60 60 69
Av 28.3 11.8 69 75 74
SD 1.9 1.0 18 13 14
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• Unlike the subjects, the agents did not end up by positing and strategies using the O≥x 
predicate and relatively few using the N≥x predicate. I postulate that this is due to their 
early removal as unsuccessful due to the bias against strategies that cost the maximum 
amount. I would probably get more realistic results if I allowed the agents to reintroduce 
these predicates as elaborations upon their strategies at a later state.

• There is a ‘tail’ of agents with low expected earnings for their final strategy not found in 

Sonnemans’ results, in particular agents 17, 20, 23 and 27 (see Table 4 below). It is 
noticeable that three of these agents had strategies of the optimal form but had not 
parameterisation their models effectively. This probably indicates that the subjects 
performed a more directed and rapid parameterisation of their models than the agents do 
in my model. This would be consistent with what Sonnemans found in his second 

experiment in [12].

If the run with the closest match is at all realistic it suggests the following pattern of
agent strategy development:

1. Agents start small with simple, uni-predicate strategies and later elaborate them with 
extra conditions.

2. Agents start by focusing on the form of their strategies and later concentrate upon their 
parameterisation.

3. Agents judge their strategies against a moderate number of previous games with a strong 
prohibition against very deep strategies or strategies that do not terminate fairly soon.

4. Agents do a bit of model shuffling, recombining parts of old models.

5. Agents effectively consider quite a large number of hypothetical strategies, but most of 
these are closely related in form.

7. Discussion

Clearly the model exhibited represents only a step towards an accurate description of the
target behaviour observed by Sonnemans. The guidance from cognitive science as to the nature
of the learning processes involved is, at present, only suggestive. This results in there being
considerable uncertainty about the nature of the learning process, uncertainty that the current
observational data does not completely resolve. What the model does do is to point up what
information we are lacking about the target behaviour that would enable us to improve the
model. In this case one thing that is missing is any direct information about how the subjects
are developing their models as they learn. This could be approached in several ways,
including:

• Getting the subjects to specify their strategies using Sonneman’s techniques at several 
stages throughout the learning process, (including before they start);

• The subjects could be asked to specify several strategies under the condition that they 
would receive the earnings gained by the best performing strategy over a series of runs – 
this would give a picture of the variety of strategies they were considering;
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• Constraining the development of strategies by the subjects to combinations of the 
operators in the above model using the same ‘electronic information board’ techniques 
that Sonnemans uses to capture the strategies, so that some idea about the sort of 
manipulation and parameterisation of the strategies could be gained;

• Keeping and making available the choice that the subjects made over time so that the 
dynamics of the learning processes could be checked.

If these were done the process of descriptive modelling could go through another, more
accurate iteration. This might highlight more facets that would require experimental or
observational investigation. Alternatively it might reveal that some of the inevitable
assumptions we had made about the learning process were unwarranted. But in either case we
would have learnt something about the actual learning processes involved.
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