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Abstract. Agents that act as information brokers in large distributed systems (such 
as the internet) lower the cost of obtaining information.  Agents have direct access to 
only a small part of such systems at any one time.  This paper investigates the 
conditions in which agents successfully go through other agents in order to establish 
direct communication.  A sumulated, large information market enables agents to 
acquire the information they seek if and only if market shares amoung broker agents 
conform to a power law distribution.  This result, if it turns out to apply more 
generally, implies that agency theory based on utility maximisation does not provide 
any guidance to system properties.  Thus certain aspects of the agent decision making 
process are implied by the properties of the system. 

1 System structures 

The issue addressed in this paper is the relationship between properties of  multi agent 
systems and agent design.  The particular MAS considered here are large in the sense 
that no agent can directly encounter or observe all other agents.  

It has long been observed that large natural and social systems are frequently 
characterised by the power law distribution.  Vilfredo Pareto [12] first observed that 
the distribution of income among households is a power law distribution.  Industrial 
economists have long recognised that firm sizes also follow the power law 
distribution, a property that Axtell [3] has recently found to emerge from simulations 
of the emergence of trading agents representing firms.  What brings the power law 
closer to the interests of agent theory is the finding by Adamic and Huberman [1] that 
the distribution of visits to World Wide Web sites is also a power law distribution.  

It appears that real, large systems with many autonomous but interacting 
components are characterised by power law distributions.  Any investigation of the 
properties of large software systems, whether  by means of simulations or formal 
analysis, will therefore be more convincing if the systems are shown to exhibit 
appropriate power law distributions.  The power law distribution is, in effect, an 
observed statistical signature of large systems of autonomous, interacting entities such 
as software agents.  For purposes of software engineering, the point is not to replicate 
either real social systems or software systems such as the World Wide Web, but rather 
to design mechanisms and agent architectures that successfully meet user 
requirements. 



It will be demonstrated here that, for a simulated large multi agent system, user 
requirements for information exchange can be met only if there is some critical 
density of agents in the system and this critical density is also the density at which the 
distribution of activity among agents becomes a power law distribution.  This result 
suggests that the power law distribution is an indicator of the ability of large multi 
agent systems to meet user requirements. 

2 Agent architectures and statistical signatures 

The power law states that, ordering objects according to the share of values or events 
ascribed to each object, then starting with the object with the smallest share of values 
or events, the cumulative value or number of events is related to the cumulative 
number of objects by the power function 

baxy =  (1) 

or, equivalently, 

xbay logloglog +=  (2) 

In either form, the implication is that a small number of objects is associated with 
very large shares of the relevant values or events and a large number of objects with 
very small shares.  The power law distribution implies characteristics of a system with 
statistical measures.  The values of these measures represent statistical signatures of 
the system.  This notion of the statistical signature is an analogy with the statistical 
signature of wave theory as the parameters of the Fourier transform of the wave form. 

One virtue of the power law as a statistical signature for multi agent systems is that 
it can be used to identify agent architectures that are inappropriate for the system.  
The example developed here relates to software agents populating virtual markets.  If 
the distribution of market shares over supplier agents obeys the power law, then a 
small number of supplier agents will have large market shares. 

This is an important issue for agent and mechanism design if those designs rely on 
conventional economic concepts and, in particular, utility maximising agents.  This is 
because one consequence of the power law distribution is that some suppliers might 
offer such a large proportion of total supplies that their offers influence the prices they 
receive.  This result violates the Pareto conditions for a general economic equilibrium: 
that  the ratios of prices to marginal utilities are the same for all goods and all agents. 
These conditions do not hold if any agent inflences market prices. 

The problem here is that  Lipsey and Lancaster [7] proved that if any of these 
conditions are not satisfied because, for example, one or more suppliers can influence 
prices, then nothing can be said in general about the efficiency of the whole system or 
how to change the efficiency of the system.  Consequently, in such circumstances the 
specification of agents as expected utility and/or profit maximisers provides no 
information about the equilibrium properties of the multi agent system. 

In a companion paper, Moss [10] demonstrated that, in a simulation of a small 
closed system, the specification of agents as profit and utility maximisers restricted 
the scale and properties of the system and that dropping the maximisation 



assumptions enabled the agents to function successfully in a richer, more complex and 
stable (albeit still small and closed) system.  Consequently, if increasing system scale 
leads to the power law distribution of market shares, then not only does the adoption 
of utility maximising agents make large systems more difficult or impossible to 
design and maintain, but in general nothing is implied about the properties of such 
systems. 

3 Model specification 

The simulation model reported here was devised to assess conditions in which agent 
trading could take place in large systems and to demonstrate the constructive use of 
statistical signatures.  The key elements of this model are: 
1. The system is sufficiently large that each agent can see only a small part of it. 
2. Agents can communicate directly with other agents that are known to them in order 

to exchange information about the existence of other agents. 
These conditions suggest an analogy with “word of mouth” communication in 

social systems.  Each agent can “see” or know a small subset of all agents.  Just as 
people know other people who are geographically close or functionally similar to 
themselves, agents will see other agents in close proximity represented by direct links 
in a network of agents.  Moreover, they will be able to find out about the existence of 
agents to which there is at least one path defined by agents that know other agents.   

A standard representation of such a network is agents placed on a grid.  If it is 
relevant that some agents are at the periphery of the network, then the appropriate grid 
is projected onto a finite plane surface.  Those agents towards the edges of the plane 
will have direct links to fewer agents than will agents towards the centre of the plane.  
If such “edge effects” are not of interest, then the appropriate grid is projected onto a 
torus.  As a first step in developing statistical signatures for systems and using those 
statistical signatures to identify appropriate or inappropriate agent specifications for 
such systems, it seems appropriate to implement the conceptually simplest possible 
model that has the desired system properties.  For this reason, to avoid the 
complication of edge effects, the agent network is represented by a toroidal grid 
populated by agents that can “see” a limited number of cells in each of the four 
cardinal directions. 

Moss [10] demonstrated the limitations on systems populated by rational utility 
maximising agents by extending the IBM model of the information filtering economy 
[5] in an environment represented by the unit square.  Broker agents were distributed 
at random within the square with addresses represented by the x- and y-coordinates, 
information sources were distributed at random along one edge (x=0) and customer 
agents were distributed at random along the opposite edge (x=1).  The model reported 
here retains the structure and the parametric settings of the extended IBM model with 
viable brokerage and efficient trading except that the sources and all agents (both 
brokers and customers) are placed at random on the toroidal grid and the agents have 
limited horizons. 



3.1 Model structure 

Cognitive agents in the model buy and/or sell items.  These items are represented by 
the values of digits in an ordered list – a digit string.  This could be a bit string (if the 
allowable digits are 0 and 1) but, in general, the values of the digits in the string can 
be to an arbitrary base.  At each trading cycle, an abstract agent produces a digit 
string.  The values of the digits represent information.  The length of the string is 
constant over each simulation run and is determined at the start of each run by the 
model operator.   

There is a user-determined number of item sources distributed at random on the 
grid.  Each source holds the current values of digits at specified positions in the digit 
string.  These values change as the system digit string changes. 

The brokers are cognitive agents that acquire the values of digits from sources.  
These values can be acquired only as packets of all items held by a source.  However, 
the brokers can sell items individually or in any combinations available to them.  That 
is, they can “break bulk” by selling on to other agents only those items from a source 
that the other agents demand and they can combine the items acquired from several 
sources.  The number of broker agents entering the market at each time step (the 
trading cycle) is chosen at random from the [1, B] interval where B is set by the 
model operator.  Each broker begins life with no assets and builds asset reserves from 
profits on the purchase and sale of items acquired either from sources or from other 
brokers.  A broker leaves the market when its asset reserves are exhausted.  One 
consequence of this specification is that a broker’s sales revenue must exceed the cost 
of its acquisitions in the first trading cycle of its life. 

Each broker agent is initially allocated to an empty cell but can choose to move to 
some other cell if it is unoccupied and no other agent is seeking to move at the same 
time to the same cell.  The motivation to change cells is the knowledge that there is a 
profitable broker in the neighbourhood of the destination cell. 

Customers are cognitive agents that either acquire packets of digit values from 
sources in the same way as do the brokers or they buy demanded items from the 
brokers or some combination of these.  The customer agents each inhabit a given cell 
during the whole of the simulation run.  Although the number of customer agents is 
determined at the start of each run by the model operator, their locations are 
determined at random. 

At the start of each simulation run, customer agents are allocated demands for the 
values of digits at specified positions in the system digit string.  The number of items 
demanded is determined at random from the [1, C] interval where C is set by the 
model operator at the start of the simulation run.  Brokers have no demands of their 
own but only demands for items for which they have previously received enquiries 
from customers or other brokers. 

Brokers and customers are synchronous, parallel agents.  To enable them to 
communicate with one another, a series of communication cycles is nested within 
each trading cycle.  A limit of eight communication cycles was allowed within each 
trading cycle though there would have been fewer communication cycles if all 
demands were filled earlier.  In practice, this never happened in the experiments 
reported here. 



3.2 Agent cognition 

There are two principle aspects to the representation of agent cognition: the problem 
space architecture taken from Soar [6] and ACT-R [2] and the endorsements 
mechanism as adapted from Cohen [4].  The problem space architecture is described 
in Fig. 1. 
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Fig. 1. The cognitive agents’ problem space architecture. The goal was to find items in demand.  
The initial subgoals were to find sources and find intermediaries with the further subgoals to 
search over the visible cells, to ask suitable agents known to the agent and to listen for their 
requests or replies to the agent’s own requests.  Once answers had been heard, if those answers 
provided suitable information about available items from either sources or intermediaries, then 
the agent would adopt the transaction subgoal. 

The urgency of acquiring any particular item – the value of the digit at any 
particular position in the system digit string – was determined by endorsements.  
Items that changed frequently in value were valued more highly than items that 
changed infrequently.  The frequency of change was learned by experience and was in 
fact determined by a mutation probability.  The maximum mutation probability and 
the (tanh) distribution of probabilities among positions of the digit were set for the 
duration of the simulation run by the model operator. 

The choice of broker, when there was a choice, was also determined by 
endorsements.  Brokers that were known to the agent and had been reliable in the past 
or relatively inexpensive and that provided most or all of the items demanded by the 
purchasing agent were preferred to agents that lacked any of those endorsements.  A 
fuller description of the endorsements mechanism as used in the model reported here 
is to be found in several papers (e.g., [8], [9], [10],[11]). 

The goal setting and actions taken in each goal and subgoal took place within 
communication cycles.  There were two alternative specifications.  In one, all of the 
rules were fired within the communication cycle making use of the assumptions 
mechanism of SDML [8].  The SDML assumptions mechanism ensures that the rules 
firing for any agent at any time step are sound and consistent with respect to strongly 
grounded autoepistemic logic.  However, the rules implemented in the present model 
required considerable backtracking by the assumptions mechanism to ensure that no 
contradictions emerged.  Once the logical issues were resolved, a further level of time 
steps – the elaboration cycle -- was specified within the communication cycle so that 
one layer of problem spaces was handled in each of these lower level time steps.  This 



procedure effectively makes the problem space architecture more procedural and, by 
avoiding backtracking, considerably increases the speed of each simulation run. 

3.3 Communication among agents 

In order to concentrate on the effects of word of mouth communication,  agents were 
not programmed to broadcast information.  Direct communication among agents in 
SDML takes the form of the sending agent placing the desired clause on the database 
of the receiving agent.  Because agents are parallel, synchronous agents, it is not 
feasible for one agent to change the state of another agent while that other agent is 
changing its own state.  Consequently, SDML allows parallel agents to access clauses 
placed on their databases by other agents only at the following common time step – in 
the case of the present model, at the subsequent communication cycle. 

Being able to follow links from one agent to another to get or give information is 
effectively word-of-mouth communication.  One agent can communicate with another 
agent within its horizon.  If the second agent informs the first agent of the existence 
and address of a third agent beyond the first agent’s horizon, then the first agent will 
be able to communicate directly with that third agent.  If the third agent informs the 
first agent of the address of a fourth agent, then communication from the first to the 
fourth agent becomes possible.  This procedure was implemented for consumer agents 
to engage in word of mouth communication concerning the locations of both brokers 
and sources. Broker agents lacked the functionality to pass on that information since it 
would be commercially valuable to them. 

3.4 Parameter values 

All of the simulation runs employed parameter settings that were taken exactly from 
runs of Moss’ [10] unit-square model.  The system digit string contained 40 digits; 
there were 15 sources and 100 customers. Each customer could demand up to 12 
items and each source could hold up to 15 items. 

The permitted number of entrants as brokers in the market was shown in the unit-
square model to have no effect on the efficiency of intermediated exchange. The 
maximum number of broker agents that could enter the market in any trading cycle 
was therefore set at 15 which is rather higher than in the runs with the unit-square 
model.  The choice of a larger number of entrants was motivated by the intention to 
investigate the effect of word of mouth communication among agents: with more 
brokers in the market there was more information for customer agents to 
communicate by word of mouth. 

In all runs, agents could identify the existence of sources or other agents within 
eight cells of their own position in the cardinal directions (up, down, right and left). 
The only parameter setting that was changed for the different simulation runs was the 
size of the grid.  Three grid sizes were used: 50×50 (2500 cells), 30×30 (900 cells) 
and 25×25 (625 cells).A larger grid size implies a lower density of agents.   



4 Simulation results 

Experimentation confirmed that agent density is a critical factor in the viability of 
agent trading, more surprisingly that a high proportion of demands are satisfied only 
when virtually all trading is via intermediary agents and that the power law 
distribution characterises market shares among trading agents when intermediation is 
viable.  The results presented in this section bring out the relationship between agent 
density and, in turn, market effectiveness, pricing, the extent of intermediation and the 
nature and role of the statistical signature. 

4.1 Market effectiveness 

One natural measure of the effectiveness of markets is the proportion of total 
customer demands that are satisfied through transactions.  The time series of these 
proportions for three scales of grids are shown in figure 2.  The population density of 
customers and sources increases from figure 2a to 2c.  With a density of one customer 
in every 25 cells, as in the run reported in figure 2a, on average 3.2 per cent of 
demands were filled.  With one customer for every nine cells, the percentage of filled 
demands rose to 14.6 per cent but the supplies were very erratic.  The reason for the 
erratic nature of the supplies was that brokers typically found sources for items that 
potential customers wanted but the number of such items was sufficiently small that 
the revenue typically did not cover the transportation and storage costs.  The survival 
of brokers in the environment modeled here, as in the unit-square environment [10], 
requires each broker to be able to sell on to several customers the same items obtained 
from a small number of sources.  In that way, the transportation charges to a point 
close to the customer agents as well as the storage or processing charges are incurred 
once for a relatively large number of  sales.  This enables the broker to undercut the 
cost to the customer of acquiring the items directly from sources because the broker is 
able to share out the same costs among several customers. 

In figure 2c, it is apparent that the density of  one customer for every 6.25 cells 
results in a high and relatively constant percentage of satisfied demands.  The increase 
in the proportion of demands satisfied over the first 13 trading cycles is due to the 
appearance and survival of new broker agents and the spreading knowledge of their 
existence by word of mouth among customer agents. 

These results extend those of Moss [10] who found in the unit-square model that 
intermediated exchange could take place only if the number of customer agents was 
large in relation to the number of sources.  In this case, the same number of customers 
and sources were active in all simulations as were active in the best functioning 
markets in the unit square.  The difference of course is that in the unit square model 
every agent knew of the existence and location of every other agent and every source.  
Consequently, we infer that a second condition for intermediation to be viable is that 
the density of agents in the market exceeds some critical level where density is 
defined on the number of agents known on average to each individual agent. 



Fig. 2. Sales volumes in relation to demands at agent densities as determined by grid sizes 
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a) 50×50 grid (2500 cells) 
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b) 30×30 grid (900 cells) 

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

trading cycle

sa
le

s 
an

d
 d

em
an

d
 v

o
lu

m
e

 
c) 25×25 grid (625 cells) 



4.2 Prices 

When agents are distributed so densely that every agent knows every other agent 
and also knows every source, then the customer agents can compare the cost of items 
from intermediaries with the cost of acquiring them directly from sources.  Provided 
that customer agents always choose the cheaper source, broker agents will have to 
keep their prices sufficiently low that the total costs of exchange in the system are less 
than they would be in the absence of intermediation. 

Once the density is attenuated in any way, the choice for customers is no longer 
whether they engage in direct exchange with the sources or intermediated exchange 
with brokers.  The choice becomes one of trading or not since, at less than the highest 
densities, not all sources will be known to all customer agents.  In this case, unless 
some expenditure constraint is  imposed on the customer agents, there is nothing to 
limit price.  Increasing rates of price inflation were indeed encountered in the 625-cell 
simulation but these obviously had no effect on the volume or stability of trade. 

No attempt was made in these models to introduce price competition among 
brokers although the customer agents did positively endorse brokers they knew to be 
cheaper than others and, so, other things being equal,  would choose the brokers 
offering lower prices.  At the same time, they valued reliability – orders translating 
into deliveries – more highly the cheapness. 

We conclude that, while price competition and low prices generally are doubtless 
important features of some systems (for example, real societies),  price competition is 
not a core consideration for the functioning of exchange processes in large systems. 

4.2 The extent of intermediation 

Demand satisfaction in all of the modelled markets was very largely a result of 
intermediated transactions.  In Figure 2, the time series in each case represents, from 
the bottom up, acquisitions of items by customers directly from sources and the total 
of satisfied demands.  The horizontal topmost line is total demand.  Evidently, in all 
cases direct acquisition from sources was negligible.  

In the most successful (most densely populated) market, intermediary agents were 
not on average very long lived and, as indicated in Figure 3, there were always a large 
number of  broker agents. 

Because there was a stream of broker agents entering the market, each of them 
would attract demand enquires from and make supply offers first to agents within 
their visibility horizon and would communicate with increasingly distant customer 
agents as knowledge of their existence spread by word of mouth.  Consequently, their 
customers would tend to be relatively close to them.  This gives scope for a larger 
number of brokers to be active in a large system than in a small system (i.e. a system 
where every agent knows every other).  As is seen from figure 3, once the market 
became established, the effective system was marked by a gaggle of brokers.  The 
size distribution of these brokers (by sales volume) is the subject of section 4.4, 
following.  
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Fig. 3. Intermediaries’ sales volumes in a 25×25 (625 cell) grid 
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Fig. 4. Intermediaries’ sales obey the power law, in this case in the 50th cycle of a simulation 
run. 

4.4 The power law distribution 

The power law is obeyed when equation (1) describes the relationship between a 
cumulative distribution and the rank of an object when the objects are ordered by size.  
It is clear from figure 4 that the power law holds for cumulative sales volume against 



the rank of the broker (from lowest to highest sales) at the 50th  trading cycle of the 
simulation of the 625-cell market.    That the power law was obeyed consistently  
during the trading cycles is shown by table 1.  The intercepts and slopes of the trend 
lines for the 20th and 30th cycles are not distinguishable at the 95 per cent confidence 
level.  The trend lines for the 40th and 50th cycles are significantly different from each 
other and the other two.  In all cases, of course, the slopes are significant and positive 
indicating that, however many intermediaries are active in the market and despite the 
finding that none of them are long lived, there is always a substantial monopolistic 
element.  This result is not different from the results with the unit-square model. 
 

 

trading 
cycle a b R-square 

19 -0.73751 1.555198 0.953736 

29 -0.44535 1.477288 0.988578 

39 -0.90515 2.042664 0.942295 

49 0.04263 1.204543 0.983854 

Table 1. Regression estimates of power law: log y = log a + b log x demonstrate that the power 
law holds but the particular distribution changes over time in no systematic way. The exponent 
b is not significantly different in the trading cycle 29 from the value in trading cycle 19, but 
they are significantly diggerent a 90% confidence from either of the other two which are 
themselves significantly different. 

5 Implications for agent research 

The simulation model and analysis reported here has one implication for agent 
architectures and the effectiveness of large multi agent systems, one implication for 
MAS requirements analysis and one implication for agent theory. 

The implication for the effectiveness of multi agent systems that are large in the 
sense that it is not feasible for every agent to encounter every other agent in real time 
is that word of mouth communication among agents can make the system function 
effectively provided that there is some minimum density of agents in the system.  
There is no necessity for a blackboard system to support communication. 

The implication for MAS requirements analysis is that statistical properties or 
signatures of real systems is a useful guide to simulation analyses of the ability of 
full-scale systems to function as intended.  The generation of power law distributions 
is one example, another for which there is currently a vogue is the small world 
property. 

The implication for agent theory is that the specification of utility maximising 
agents will not support an analysis of the properties of large, distributed systems if 
those systems are to mimic market systems as described by equilibrium economic 
theory.  This result, based on the observation of power law distributions and a formal 



theorem of mathematical economics, indicates that it is possible and desirable to 
identify statistical signatures that inform the selection or rejection of agent theories. 

It is always important to remember that simulation experiments suggest 
possibilities.  We will obviously have more confidence in the generality of results that 
are found from a variety of simulation experiments designed and developed 
independently and run on different platforms.  The results reported here do no more 
than to identify relationships and propositions that arguably deserve further analysis 
and experimentation to determine the extent, if any, of their validity.1 
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