
Learning and Exploiting Context in Agents
Bruce Edmonds 

Centre for Policy Modelling, 
Manchester Metropolitan University, 

Aytoun Building, Aytoun Street, Manchester, M1 3GH, UK. 
+44 161 2476479 

http://www.cpm.mmu.ac.uk/~bruce 
 

ABSTRACT 

The use of context can considerably facilitate reasoning by 
restricting the beliefs reasoned upon to those relevant and 
providing extra information specific to the context.  Despite the 
use and formalization of context being extensively studied both 
in AI and ML, context has not been much  utilized in agents.  
This may be because many agents are only applied in a single 
context, and so these aspects are implicit in their design, or it 
may be that the need to explicitly encode information about 
various contexts is onerous.  An algorithm to learn the 
appropriate context along with knowledge relevant to that 
context gets around these difficulties and opens the way for the 
exploitation of context in agent design.  The algorithm is 
described and the agents compared with agents that learn and 
apply knowledge in a generic way within an artificial stock 
market.  The potential for context as a principled manner of 
closely integrating crisp reasoning and fuzzy learning is 
discussed. 

Categories and Subject Descriptors 
I.2.11 [Distributed Artificial Intelligence]: Intelligent agents. 
I.2.6 [Learning]: Induction. I.6.8 [Model Development]: 
Modeling methodologies. I.5.3 [Clustering]: Algorithms. 

General Terms 
Algorithms, Performance, Design, Experimentation. 

Keywords 
Context, integration, learning, deduction, genetic programming, 
evolutionary computation, cognitive analogy, biological analogy. 

1. INTRODUCTION 
In 1971 in his ACM Turing Award lecture, John McCarthy 
suggested that the explicit representation and manipulation of 
context might be a solution to the effective lack of generality in 
many AI systems (these ideas were later developed and written 
up in [21]).  Since then context and context-like ideas have been 
investigated in both the AI and ML communities, culminating in 
several workshops [1-5] and a series of international conferences 
entirely devoted to the subject [8, 11]. However despite this 
attention, context-related techniques and ideas have not been 
explicitly applied to the design of autonomous agents to any 
significant extent.   

Part of the reason for this may be the difficulty in entering (or 
otherwise specifying) the information relevant to each context. 
The main part of this paper aims to show a solution to this 

problem by exhibiting a practical way in which agents can learn 
context-sensitive information about their environment.  Another 
part of the reason may be that really exploiting context involves a 
close integration of learning and inference. Thus it straddles the 
AI and ML communities which are notoriously disjoint and 
mutually suspicious.  In the last section I suggest that context can 
provide a well-motivated and coherent mechanism for the close 
integration of learning and deductive processes. 

2. ABOUT CONTEXT 
There are a great many different conceptions and uses of 
“context”.  In this section I briefly preview some of these in 
cognitive science, AI and ML, before proceeding to my analysis 
of the roots of context in Section 3.  The word “context” is used 
both for the type of circumstance that allows for knowledge to be 
applied (sometimes called the ‘external’ context) as well as the 
cognitive structures that correspond to these (the ‘cognitive’ 
context).  Since the design of agents focuses on the cognitive 
mechanisms of agents I will mean cognitive contexts, unless I say 
otherwise (see Edmonds for a discussion of the connection). 

2.1 Context in Cognition 
The use of context is a pervasive heuristic in human cognition.  It 
appears that we use context in almost every area of our thinking 
and action, including: language understanding; memory; concepts 
and categorization; affect and social cognition and (probably) 
problem solving and reasoning [20].  In the past some researchers 
perceived the context-dependency of human thought purely as a 
disadvantage or side-effect, but now it is becoming increasingly 
clear that it is an essential tool for enabling effective learning, 
reasoning and communication in a  complex world. 

Although human cognition is not a necessary starting point for 
motivating the design of agents it is a fruitful one, especially 
when looking for solutions that will scale up to cope with 
problems of real world complexity.   

2.2 Context In AI 
McCarthy's idea was to reify the context to a set of terms, i, and 
the introduces an operator, ist, which basically asserts that a 
statement, p, holds in a context labelled by i. Thus: 

),(: piistc  
read "p is true in context i" which is itself asserted in an outer 
context c. ist is similar to a modal operator but the context labels 
are terms of the language.  Reasoning within a single context 
operates in a familiar way., thus we have 

)),(),(),(( qiistqpiistpiisti →→∧∀ . 



In addition one needs to add a series of ‘lifting’ axioms, which 
specify the relation between truth in the different contexts.  For 
example if i ≥ j means that “i, is more general than context, j”, 
then we can lift a fact to one of its supercontexts using: 

),(),,(),()( jpistpjiabipistjiji →¬∧∧≥∀∀  
where ab is an abnormality predicate for lifting to supercontexts. 

This framework is written up in [22].  There are a whole series 
of formal systems which are closely related to the above 
structure, including, notably, Gabbay's fibered semantics [15] and 
the local semantics of the Mechanized Reasoning Group at 
Trento [17]. A useful survey of such formalisms is [9]. 

Trying to apply generic reasoning methods to context-dependent 
propositions and models, will be either inefficient or 
inadequate [18]. The generic approach forces a choice of the 
appropriate level of detail to be included, so that it is likely that 
either much information that is irrelevant to the appropriate 
context will be included (making the deduction less efficient) or 
much useful information that is specific to the relevant context 
may be omitted (and hence some deductions will not be 
possible).  The role context can play in solving the under/over 
determination of knowledge will be discussed in the last section. 

2.3 Context In ML 
The use of context in machine learning can be broadly 
categorized by goal, namely: to maintain learning when there is a 
hidden/unexpected change in context; to apply learning gained in 
one context to different context; and to utilise already known 
information about contexts to improve learning.  There are only a 
few papers which touch on the problem of learning the 
appropriate contexts themselves.  Widmer [30] applies a meta-
learning process to a basic incremental learning neural net; the 
meta-algorithm adjusts the window over which the basic learning 
process works.  Here it is an assumption that contexts are 
contiguous in time and so a time-window is a sufficient 
representation of context. Harries et al. [19] employ a batch 
learner as a meta-algorithm to identify stable contexts and their 
concepts; this makes the assumption that the contexts are 
contiguous in the “environmental variables” and can only be 
done off-line.  Aha describes an incremental instance based-
learning which uses a clustering algorithm to determine the 
weight of features and hence implicitly adjusts to context [6]. 

Other techniques require the explicit identification of what the 
contextual factors will be and then augment the existing machine 
learning strategy with a meta-level algorithm utilising this 
information (e.g. [27]).  Others look to augment strategies using 
implicit information about the context to adjust  features of the 
learning such as the weightings [6], or normalisation  [26].  

Turney discusses the problem in [28]. He  surveys the various 
heuristics tried to mitigate the effects of context on machine 
learning techniques in [29]. He maintains a bibliography on 
context-sensitive learning at URL: 

http://extractor.iit.nrc.ca/bibliographies/context-sensitive.html 

2.4 Context in Natural Language 
It has been recognized for a while that the external (and 
linguistic) context plays a role in the understanding of natural 

language.  However it is only recently that the importance of 
context in communication has been appreciated.  The external 
context is not merely a resource for understanding utterances that 
is accessed when all other mechanisms fail; a way of sorting out 
otherwise ambiguous sentences.  Rather it is one of the primary 
mechanisms.  As Gardenfors [16] said: 

Action is primary, pragmatics consists of the rules for 
linguistic actions, semantics is conventionalised pragmatics 
and syntax adds markers to help disambiguation (when 
context does not suffice). 

In terms of developmental stages (and surely it is right to think of 
our agents as in the earliest stages of development) it is context 
that provides the meaning of specific parts of language.  Thus 
natural language is rooted in context, allowing two individuals to 
guess at the contexts of others and hence share contexts.  Such an 
ability to mutually identify the relevant context of 
communication lessens the need for formal and fixed ontologies. 

3. THE ROOTS OF CONTEXT 
In this section I recapitulate the analysis in [12] to motivate the 
learning algorithm to be presented.  This argues that, causation is 
essentially a context-dependent abstraction. That in order to be 
able to effectively learn and reason about the world using fairly 
definite (i.e. ‘crisp’) models an agent has to separate out the 
foreground causes from the background ones (which can be 
abstracted to a context).  This is illustrated in Figure 1. 

The ‘background’ causes are those that are either so consistent 
that they can safely be ignored, or else are a messy mixture of 
factors capable of being recognized with a high probability 
afterwards but not explicitly incorporated into a reasonably 
simple “crisp” model.  This will depend somewhat upon is usual 
in any particular circumstances.  So, for example, if a man breaks 
a leg while walking down a step, the relevant foreground ‘cause’ 
would be his medical condition if he had brittle bone syndrome 
but due to his being distracted if a stripper ran by. 

The model is thus learnt in one set of circumstances that are 
implicitly encoded by some recognition machinery (e.g. neural 
net). Later when the circumstances are recognized as being 
similar, the model is judged relevant to be included in any 
explicit reasoning or formal deduction.  Thus knowledge is 
transferred from the time of learning to the time of application. 

For such a transference to be possible a number of conditions 
need to be met, namely: 

• that some of the possible factors influencing an outcome are 
separable in a practical way; 

• that a useful distinction can be made between those factors 
that can be categorized as foreground features and the 
others; 

• that the background factors are capable of being recognized 
later; 

• that the world is regular enough for such models to be 
learnable; 



• that the world is regular enough for such learnt models to be 
useful when applied in contexts that can be recognized later. 

It should be clear that such a transfer of knowledge is not 
necessarily possible, because it relies on the presence of 
commonalities in the domain that is being interacted with.  
Broadly these commonalities must be fairly constant during the 
learning and application events (otherwise they might not be 
background), and be recognisable from one to the other.  
Different commonalities result in different sorts of context.  For 
example: two agents might be inhabiting a common location in 
space and time and hence can use that as the context for 
communicative acts; or one may remember what it is like during 
a stock market crash previously and hence have some ready made 
models of how to act during another one. 

While this transference of learnt models to applicable situations 
is the basic process, analysts of this process might abstract some 
aspects of the background features as a ‘context’.  

Note that the agent might not be able to explicitly identify and 
label the contexts that it is using, even if this is clear to an 
exterior observer.  All that is necessary is for the agent to 
recognise the circumstances where models can be applied, or at 
least find the ‘closest’ candidate models in terms of their domain 
of application.  On the other hand the agent might be able to 
introspect sufficiently to analyse and abstract its own contexts.  It 
would seem that we, as humans, are so good at automatically 
flipping between different cognitive contexts that we do not 
notice this most of the time, but simply deal with reasoning 
within the chosen context.  There are exceptions of course; for 
instance when trying to generalise to a theory or when trying to 
find out what went wrong. 

Given the above conditions are possible context is: 

an abstraction of those background elements of the 
circumstances in which a model is learnt that allows the 
recognition of new circumstances where the model can be 
usefully applied. 

Due to the fact that context is characterised as an abstraction of 
an aspect of a heuristic for the learning and application of 

knowledge, the properties of such contexts can not be 
meaningfully analysed if one only considers either the learning or 
the application of such knowledge. If one did this one would not 
only be missing out on over half of the story but also 
undercutting the reasons for its very existence. If the problems of 
learning are ignored then there is no reason not to encode such 
models without context – the non-causal factors can be treated as 
either given or the same as the other features of the model, de-
contextualising them. If the problems of inference are ignored 
then there is no reason to separate the recognition of an 
appropriate context from that of recognising the correct 
prediction in that context.  Thus if one is to exploit the power of 
context, both learning and inference need to be included. 

4. LEARNING CONTEXT WITH 
CONTENT 
In order for context-dependent reasoning to occur, the context-
dependent information (or beliefs) need to be captured.  If the 
relevant contexts are already known by the designer (and there is 
some effective way of recognizing when they apply), then either 
the relevant information can be entered or a context-enhanced 
learning algorithm can be employed to learn the information with 
respect to each context.  The former case can be onerous because 
one not only has to enter the relevant facts as well as specifying 
each fact’s domain of application, but one also has to define all 
the ‘lifting-rules’ to allow the integration of the context-
dependent information.  In the later case the context-dependency 
of the learning means that one needs correspondingly more 
information within each context for the learning to be complete. 

Thus in order for the desired efficiency in terms of context-
constrained reasoning to occur (without a laborious entry of 
information) for each appropriate context, this information (that 
is both the contexts and the content in the contexts) should be 
learned by the agent, at least to some extent.  

4.1 The Context Learning Algorithm 
The basic idea is to simultaneously learn the models and the 
circumstances in which they work best.  If there is sufficient 
regularity in the environment to allow it this will allow some 

 
Figure 1. Reusing an earlier learnt model 



clusters of similar circumstances to be identified and the 
corresponding models to be induced.  However the clustering and 
induction parts of the algorithm can not work independently; i.e. 
clusters of like circumstances being identified and then models 
induced for these clusters.  The reason for this is the contexts are 
identified by those circumstances where particular models work 
best.  These may correspond to a neat (i.e. humanly identifiable) 
cluster but this is not inevitable – they may be (to the human eye) 
inextricably intertwined or overlapping. 

There is a population of candidate beliefs, each of which is 
composed of two parts: a crisp model in a formal language (the 
content) and some information that specifies the model's domain 
of application (the domain).  In the examples given here the 
designer specifies what inputs will be used for context 
recognition and which can be referred to in the model content 
(some may be in both).  Repeatedly a particular circumstance is 
chosen (for example, these are the ones that simply occur to the 
agent), and those beliefs who are recognized as most probably 
relevant (or ‘closer’) are selected.  Out of these the ones that 
work best are preferentially selected and crossed into future 
generations of the population.  Beliefs that are never anywhere 
near occurring circumstances are, over time, forgotten. 

The basic learning algorithm is as follows: 

Randomly generate candidate models and place them 
randomly about the domain, D 
for each generation 
   repeat 
      randomly pick a point in D, P 
      pick n models, C, biased towards those near P 
      evaluate all in C over a neighbourhood of P 
      pick random number x from [0,1) 
      if x < propagation probability 
         then propagate the fittest in C to new generation 
         else cross two fittest in C, put result into new  
                 generation  
   until new population is complete 
next generation 

A biological analogy makes this clear.  Imagine that each belief 
is an plant.  These plants exist in a space defined by the factors 
that allow context recognition.  They compete locally, and those 
that are better replicate themselves into a neighbourhood (by 
propagation and sexual reproduction).  Thus slowly the 
successful plants adapt and spread to fill all of the space in 
which they are relatively successful.  Different plants will occupy 
different areas in the space.  The contexts correspond to the 
ecological niches. 

This is an example of the some more general heuristics for 
learning context.   

Formation: A cluster of models with similar or closely related 
domains suggests these domains can be meaningfully abstracted 
to a context. 

Abstraction: If two (or more) contexts share a lot of models with 
the same domain, they may be abstracted (with those shared 
models) to another context.  In other words, by dropping a few 
models from each allows the creation of a super-context with a 
wider domain of application. 

Specialisation: If making the domain of a context much more 
specific allows the inclusion of many more models (and hence 
useful inferences) create a sub-context. 

Content Correction: If one (or only a few) models in the same 
context are in error whilst the others are still correct, then these 
models should either be removed from this context or their 
contents altered so that they give correct outputs (dependent on 
the extent of modifications needed to “correct” them) 

Content Addition: If a model has the same domain as an existing 
context, then add it to that context. 

Context Restriction: If all (or most) the models in a context seem 
to be simultaneously in error, then the context needs to be 
restricted to exclude the conditions under which the errors 
occurred. 

Context Expansion: If all (or most) of the models in a context 
seem to work under some new conditions, then expands the 
context to include these conditions. 

Context Removal: If a context has only a few models left (due to 
principle 2) or its domain is null (i.e. it is not applicable) forget 
that context. 

These, the above algorithm and its properties is discussed in 
much greater detail in [13]. 

4.2 Example: Agents In An Artificial Stock 
Market 
In order to demonstrate this approach to learning, I needed an 
environment that was sufficiently complex yet having emergent 
contexts (i.e. ones difficult to predict in advance).  I have chosen 
a stock market model, composed of many trading agents and one 
market maker (roughly following the form and structure of [24]).  
The traders can choose to buy or sell one of a number of shares 
(if this is possible for them) from or to the market maker.  The 
only fundamental in the market is a dividend rate for each of the 
shares which slowly change in a random walk.  There are only a 
limited amount of each stock available to the market as a whole.  
The market maker sets prices as a result of the demand - if there 
is net demand for a stock it raises the price and if there is a net 
negative demand it lowers the price.  There is a small transaction 
cost to the traders for every trader, so rapid random trading is 
unlikely to benefit it. 

The goal of the traders is to maximise the total value of their 
assets (cash plus shares at current value).  Thus the traders are in 
competition with each other – one trader tends to gain at 
another's expense.  However this is not a zero-sum game due to 
the dividends paid on stocks and the possibility of making money 
at the market maker's expense.   

Each time period the traders simultaneously buy or sell each of 
the stocks, assuming they have enough cash to fund the net price, 
the stocks to sell, and the market maker has the stocks to sell.  
Traders do not have to trade in any stock. Thus the decision that 
each of the traders has to make is how much to attempt to buy or 
sell of each stock each time period. 

Traders can observe the following:  

• the current and past prices of all stocks;  

• the past actions of all traders;  



• the current and past dividend rates.   

In addition the traders are provided with primitives for:  

• the current and past market index (average of all prices);  

• recent trend of the index;  

• recent total volume of trading;  

• recent market volatility;  

• the maximum historical price of any stock.   

The operators available to the agents to build models with are: 

• basic arithmetic (+ , − , ×, ÷ );  

• the ability to refer back in time (last and lag operators).   

They also have some constants, namely:  

• the names of the other traders,  

• the names of the stocks  

• and a selection of random constants.   

Basically the traders try to learn to predict what each of the 
stocks will be in the next time period and then buy or sell if they 
predict it will rise or fall sufficiently for this to be worthwhile. 

This sort of set-up produces a rich series of dynamics as the 
traders participate in sequences of modelling ‘arms-races’ and 
imitation ‘games’.  Any successful prediction schema will not 
last forever as the other traders will soon spot your trading 
pattern and exploit it to your disadvantage.  However, as with 
real stock markets, there are definitely patterns and market 
‘moods’ (if there are enough traders and stocks), for example 
bull markets and speculative bubbles.  There will be periods of 
relative quiet as traders sit on stock and so effectively prevent 
trading and periods of high volatility as subgroups of traders 
engage in bouts of activity trying to exploit each other.  The 
dynamics are related to those of the “minority game” [10], and 
similar [7] but are more varied and complex.  Thus, although this 
is an artificial setting, it goes way beyond a “toy” problem in 
scope and complexity. 

There are two types of traders: which I will call generic and 
context traders.  Both types maintain a population of 20 models, 
each of which is composed of a separate expression to predict the 

future price of each stock.  All models are initially randomly 
generated to a depth of 5 using the inputs, primitives, operators 
and constants already listed.  Both agents use an evolutionary 
learning algorithm which evaluates fitness by the profit the agent 
would have made over the past 3 time periods had it used these 
models to predict prices. 

The generic traders use a genetic programming learning 
algorithm to evolve their predictive models and the context 
traders have an adapted version of this algorithm to allow the 
simultaneous learning of context for its models.  The types are 
otherwise identical.   

The learning algorithm for the generic trading agent is as 
follows: 

Randomly generate initial population of candidate models 
for each generation 
   for each model 
      evaluate what the total wealth of the agent would be if 
       it had used this model in trading over the past few  
       time periods,  this is the model’s fitness 
   next model 
   repeat 
      randomly pick two models with a probability proportional  
         to their current fitnesses 
      pick random number x from [0,1) 
      if x < propagation probability 
         then propagate them to new generation 
         else cross them and put results into new generation  
   until new population is complete 
next generation 

The context trader’s algorithm differs a little from the basic 
version outlined in the last section.  This is because from an 
agent’s point of view the only relevant circumstances (in terms of 
the space of possible ones) are those that actually occur.  
Therefore instead of randomly picking a sequence of 
circumstances until the new population is generated, we use only 
the present circumstance repeatedly and we propagate the rest 
into the next population with a bias against those that are 
furthest from any circumstance that has occurred.  Also in this 
model we have associated with each model content a set of 
positions, so that its domain of application is indicated by a small 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Growth in Agents’ Assets over time (context traders in black, generic in white) 
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cloud of points. 

It is not obvious that the context trader is a better learner than 
the generic trader.  The context algorithm restricts which models 
can be crossed to produce new variants to those that are in the 
same neighbourhood of an occurring circumstance, whilst the 
generic algorithm allows a more global search for solutions.  
Thus one might expect that the context traders do better only if 
there is a context-dependency in the environment to exploit. As 
we shall see this appears to be the case in this model. 

The model was run with 7 of each type of agent (thus 15 
including the market maker) trading 5 different stocks over 500 
time periods. The model was implemented in SDML [23]. 

For the first 80 periods one of the generic traders was doing 
substantially better than the others, but after this the context 
traders clearly did better, on the whole (see Figure 2).  To make 
clear the significance of the difference between context and 
generic traders I have plotted the difference between the average 
value of context traders’ assets minus the average value of the 
generic trader’s assets, scaled by the current standard deviation 
of the spread of total asset values (Figure 3). 

It is notable that the generic traders did better if there were only 
2 or 3 of each type of trader – the context traders only reliably 
out-perform the generic traders (on the whole) with larger 
populations of traders.  The context traders do particularly well if 
they are in a minority among many generic traders.  It is 

postulated that it is only with larger numbers of the same type of 
trader that learnable contexts appear in the trading patterns for 
the context traders to learn and exploit.   

To show that the context traders are, in fact, identifying 
meaningful contexts (at least sometimes), I have taken a snapshot 
of the positions indicating the domain of the 6 of the models in 
one agent for one stock at one time (the best performing agent 
halfway through the run).  These clusters are shown in Figure 4.  
The contents of these six model are shown in Table 1. 

Table 1: The action models (for stock 3) in Figure 3. 

model-256 priceLastWeek [stock-4] 

model-274 priceLastWeek [stock-5] 

model-271 doneByLast [normTrader-5] [stock-4] 

model-273 IDidLastTime [stock-2] 

model-276 IDidLastTime [stock-5] 

model-399 

minus  
   [divide  

      [priceLastWeek [stock-2]]  
      [priceLastWeek [stock-5]]]  

   [times  
      [priceLastWeek [stock-4]]  
      [priceNow [stock-5]]] 

For this agent at this time there seem to be three contexts: one 
for lower volatility and higher volume, one for lower volatility 
and lower volume and one for higher volatility and middle 
volume.  It is notable that, even within each of these there are a 
mixture of two models that are appropriate.  Thus, even given the 
circumstances, the model selected for will be determined by 
recent predictive performance: for example, in the case of stock 3 
in the above snapshot its price may be modelled best by either 
the price of stock 4 or stock 5 last time period. 

5. DISCUSSION: PROSPECTS FOR THE 
INTEGRATION OF LEARNING AND 
DEDUCTION 
Figure 4 and Table 1 above show the way context can separate 
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Figure 3. Difference of average asset values of context 

and generic traders, scaled by current asset spread 
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Figure 4. Snapshot of clusters of positions of 6 action models for a context trader indicating three distinct contexts. 



the necessary ‘fuzziness’ of relevance decisions from the ‘crisp’ 
content models upon which deductive and planning algorithms 
could be usefully employed.  The crispness of the content, N, is 
made possible by the restriction of its applicability to a 
recognisable context.  If the domain was capturable in a crisp 
way, to a symbolic representation, X, the knowledge could be 
decontextualised: X→ N, but the point is that the domain is often 
not suitable to any compact symbolic representation but is a 
messy mixture of heuristic indicators.  In fact there is a good 
argument to say that it is only feasible to reason about the 
complex natural world within fuzzily defined but restricted 
contexts.  If the content, N, was of a similar nature to X then 
there would be no need for it because it could be subsumed into 
the recognition process.  Thus the utility of context-dependency 
derives from its two aspects, it loses much of its point if reduced 
to either just the symbolic or non-symbolic aspects.  Thus it 
straddles the ML and AI communities. 

To illustrate the power of context-dependency, I will outline how 
it could be employed to solve some classic problems in AI, 
namely the under- and over-determination of knowledge.  If an 
agent has a set of beliefs, B and is trying to decide whether to 
take a specific action, dependent on whether a predicate α is true 
or not, there are two problematic cases for it:  

(1) when neither α nor ¬ α can be proved (under-
determination);  

(2) when a contradiction is obtained, i.e. both β and ¬ β can be 
proved (destructive over-determination). 

In (1) there is not enough knowledge to specify whether α nor 
¬ α is true.  If the agent has a store of context dependent 
knowledge, it can then search for a more specific context, which 
may provide it with the extra information it requires.   

In case (2), something is wrong with the agent’s set of beliefs.  
There are two possibilities: firstly that the agents has chosen the 
wrong context and secondly that there is something wrong with 
the beliefs associated with that context. Distinguishing between 
these possibilities is done by checking other consequences of 
beliefs within that context; if other predictions relevant to that 
context are also false then it is likely that the context has been 
wrongly recognised, in which case it is sensible to search for 
another (probably more general) context that might be 
appropriate; if the other predictions in the context are correct 
then it is likely that some of the specific beliefs used to infer b 
and ¬ b need updating or rejecting from this context. 

Many non-monotonic logics can be seen as attempts to solve the 
above problems in a generic way, i.e. without reference to any 
contingent properties obtained from the particular contexts they 
are applied in. So, for example, some use ‘entrenchment’ to 
determine which extra information can be employed (e.g. oldest 
information is more reliable [14]), and others allow a variety of 
default information to be used (e.g. using extra negative 
knowledge as long as it is consistent [25]).  These may work well 
on occasion and tolerably well in others, but the only truly 
reliable way to update knowledge in a context is by utilising the 
specific properties of that context.  Combining the learning and 
deductive exploitation of context-dependent information should 
enable the effective and correct integration of learning and 
deduction.   

Thus the introduction of context into the agent architecture 
would allow us to progress beyond the ‘loose’ loop of: 

repeat 
    learn and/up update beliefs 
    deduce intentions, plans and actions 
until finished 

to a more integrated loop: 

repeat 
    repeat 
        recognise/learn/choose context 
        induce/update beliefs in that context 
        deduce predictions/conclusions in that context 
    until predictions are consistent 
            and actions/plans can be determined 
    plan & act 
until finished 

Only the recognition of a context and the final stage (plan & act) 
do not occur within the confines of  a context.  The recognition 
machinery can be parallel to the rest so that it is ready to suggest 
a context when called upon to do so. 

6. Conclusion 
Context has a huge potential for improving the performance of 
agents in multifaceted and unpredictable domains.  It combines 
symbolic and non-symbolic forms of knowledge.  It can make 
reasoning more efficient by structuring the space of knowledge 
by relevance.  It allows the close and coherent integration of 
learning and deduction. It provides a partial solution to the 
problems of the under- and over-determination of knowledge and 
it holds out the potential for better and more flexible 
communication via the possibility of mutually identifying the 
relevant communicative context.   

It is essentially a trade-off: more information is stored including 
the relevance information implicit in the contexts, so that more 
effectiveness can be obtained. It can be seen as a sort of pre-
compilation of knowledge. It hugely increases the amount of 
information that needs to be stored. However, in the case of 
agents who are learning about the environment in situ this is 
merely a case of encoding and remembering the contextual 
information that is already available to them. What was missing 
was an effective way of capturing this contextual information.  
Algorithms similar to that presented here might provide this 
missing piece. 
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