Tag Based Co-operation in Artificial Societies

by

David Hales

A Thesis submitted for the degree of Doctor of Philosophy

Department of Computer Science
University of Essex
Wivenhoe Park
Colchester CO4 3SQ
Essex, U.K.

2001
Abstract

In human society behaviour is often shaped within and directed towards groups. What role can groups play in the evolution and maintenance of co-operation between simple boundedly rational agents? Such questions can now be addressed using artificial societies of agents on computers.

Three computational simulations of artificial societies have been constructed and experimentation performed. In the first society (the SwapShop) a cellular automata model demonstrates, for the first time, that simple cultural learning rules produce high levels of altruism. This is compared with more traditional genetic modes of evolution. In the second society (the StereoLab) a more complex cultural learning scenario, based on culturally learned stereotypes, is explored. Key parameters of the society were searched in order to locate those regions giving high co-operation between agents. Several regions were located. Finally a third society was constructed (TagWorld II) which abstracted the process found in one of the more interesting regions located in the StereoLab. In the TagWorld II society, pairs of agents play the one-shot Prisoner's Dilemma. Agents bias their game interactions towards those with identical tags (observable markers). This turns out to be sufficient to sustain high levels of co-operation. The underlying process involves the formation and dissolution of groups of agents sharing identical tags. It is concluded that the cultural group formation process demonstrated can play a major role in the emergence and maintenance of co-operation and altruism when agents are boundedly rational cultural learners. Such processes have potential applications in multi-agent systems engineering and may aid understanding of human societies.
For my mother, Irene Hales.
Contents

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Overview .. 1
1.1.1 Agents and MAS 1
1.1.2 DAI and MAS 3
1.1.3 Social Science and Artificial Societies 4
1.1.4 Artificial Life 5
1.1.5 Emergence - What Does it Mean? 6
1.2 Thesis Plan .. 8

2 Altruism and Co-operation 11
2.1 The Problem With Altruism 11
2.1.1 The Prisoner’s Dilemma 13
2.2 Social Rationality 15
2.3 Evolutionary Optimisers 16
2.3.1 Rational Action is Complex 16
2.3.2 Cultural Evolution 17
2.3.3 Memes ... 18
2.4 Survival of the Nicest? 19
2.4.1 Kin Altruism 20
2.4.2 Group Selection 21
2.4.3 Reciprocal Co-operation 21
2.4.4 Summary ... 23
2.5 The Unjustified Optimising Assumption 23
2.6 Behaviours and Tags 25
2.6.1 Memetic Kin 26
2.6.2 Surface and Hidden Memes 26
2.6.3 Cultural Packaging 27
2.7 Summary .. 29
3 Artificial Society Methodology

3.1 The Need for Methodological Clarity ... 30
3.2 Artificial Societies ... 31
3.3 A Special Methodology for Artificial Societies? 32
3.4 Artificial Society Experimentation .. 33
3.5 Pick & Mix Methodologies ... 33
3.6 Conclusion .. 37

4 Experimental Overview and Progression .. 39

4.1 Overview ... 39
4.2 The SwapShop .. 40
4.3 The StereoLab ... 41
4.4 TagWorldII .. 43
4.5 Summary ... 43

5 Group Formation and Agent Altruism .. 45

5.1 The SwapShop Artificial Society ... 46
5.1.1 Cells And Memes ... 49
5.1.2 Events And Behaviours .. 49
5.1.3 The System Cycle ... 51
5.2 Four Experimental Scenarios in the SwapShop 51
5.2.1 Scenario A - "Cultural" Evolution ... 52
5.2.2 Scenario B - "Genetic" Evolution ... 52
5.2.3 Scenario C - "Cultural" Evolution With Sparse Rewards 52
5.2.4 Scenario D - "Genetic" Evolution With Sparse Rewards 53
5.3 Results ... 53
5.3.1 Results of Experiment A - Single Region with Total Sharing 56
5.3.2 Results of Experiment B - Multiple Regions with In-Group Sharing 56
5.3.3 Results of Experiment C - The Productive Minority Share All 59
5.3.4 Results of Experiment D - Altruism Hampered By Cultural Boundaries 59
5.4 Observations .. 62
5.4.1 Cultural Groups and In-Group Bias ... 62
5.4.2 Reciprocal or Real Altruism? ... 62
5.4.3 Tags and Group Conflict .. 63
5.4.4 "Genetic" v. Cultural Evolution ... 63
5.5 Conclusions ... 63

6 Social Cues and Trust ... 66

6.1 Social Construction of Social Categories ... 66
6.1.1 Never Trust a Hippy ... 67
6.1.2 Social Cues and Stereotypes ... 68
6.1.3 Social Cues and Social Distance .. 69
6.2 Salient Features ... 70
6.3 Modelling Trust as a Game .. 71
6.4 Modelling Social Cues as Tags ... 72
6.5 The StereoLab Artificial Society ... 72
6.5.1 Agents ... 73
6.5.2 Cultural and Game Interaction ... 78
6.5.3 The Time Unit .. 86
6.5.4 Summary of the Parameters 86
6.5.5 What Kind of Society Has Been Proposed? 87
6.6 Summary .. 88

7 Parameter Space Exploration 90
7.1 The Necessity of Exploration 90
7.2 Sampling the Space ... 92
7.2.1 Systematic Sweep ... 92
7.2.2 Random Sampling ... 93
7.2.3 Heuristic Search .. 94
7.3 Characterising Regions in the Space 95
7.3.1 The C4.5 Classification Algorithm 96
7.3.2 Cluster Analysis .. 97
7.4 The Weaver System .. 99
7.5 The StampTool Software 102
7.6 Summary .. 103

8 Co-operation in the Stereolab 106
8.1 Inducing Regions Using C4.5 108
8.1.1 Coping With Stochasticity 110
8.1.2 Regions of High and Low Co-operation 119
8.1.3 Low Co-operation When Mutation is Zero 120
8.1.4 Low Co-operation When Confidence Reduction is Zero . 125
8.1.5 High Co-operation When Game Interaction Limited to a Single Territory .. 130
8.1.6 High Co-operation When Cultural Interaction is High, Relative to Game Interaction 139
8.1.7 Summary of Results of C45 Induced Regions 145
8.2 Locating Co-operative Regions Using Hill-Climbing and Cluster Analysis 146
8.2.1 Clustering the Points 147
8.2.2 Summary of Results from Hill-Climbing and Clustering ... 150
8.2.3 Clustering the Points in an Extended Parameter Space .. 151
8.2.4 Summary of Results from Hill-Climbing and Clustering in the Extended Space 154
8.2.5 Cultural Group Selection? 155
8.3 Conclusion .. 157

9 Groups in Tag Space .. 158
9.1 The TagWorld II Artificial Society 159
9.2 Results - High Co-operation 161
9.3 Group Formation and Dissolution 163
9.4 Co-operation From Complete Defection 168
9.5 Discussion .. 170
9.5.1 Interpretations .. 172
9.5.2 Future Directions .. 173
10 Conclusions and Future Work 174
 10.1 Conclusions / Deliverables .. 174
 10.2 Discussion ... 175
 10.2.1 General Contribution ... 176
 10.2.2 Cultural Group Selection ... 177
 10.2.3 Group Selection in DAI .. 179
 10.2.4 Critical Review .. 180
 10.3 Future Work ... 182
 10.3.1 Short Term Future Work ... 182
 10.3.2 Long Term Future Work ... 183

Bibliography 185

A Glossary 205

A Implementation and Technical Issues 215
 A.1 Random Numbers ... 215
 A.2 The SwapShop ... 215
 A.3 The Stereolab ... 216
 A.4 TagWorldII ... 216
 A.5 SampTool .. 217
 A.5.1 Implementation ... 218
 A.5.2 SampTool Mini-Guide .. 218
List of Figures

3.1 Existence Proof. .. 34
3.2 Behaviour Modelling or Reverse Engineering. 34
3.3 Theory Testing. ... 35
3.4 Theory Building. ... 36
3.5 Explanation Finding. .. 37
5.1 Bar graph of Zng and Mng measures over the four experiments. . 55
5.2 Bar graph of Tng and C'Zng measures over the four experiments. . 55
5.3 Experiment A - example of a typical run. 57
5.4 Experiment B - example of a typical run. 58
5.5 Experiment C - example of a typical run. 60
5.6 Experiment D - example of a typical run. 61
5.7 Experiment A. The initial random starting values for each cell of the grid. 64
5.8 Experiment A. The values for each cell of the grid by cycle 1500. . 64

6.1 An agent in the StereoLab. ... 74
6.2 The StereoLab interaction environment. 79
6.3 Cultural interaction in the StereoLab. 81
6.4 Some of the possible interactions that two agents can be involved in over time. 82
6.5 The steps involved in the propagation of a meme from one agent to another. 83
6.6 Game interaction in the StereoLab. 84

7.1 Systematic (or sweep scan) sampling of the parameter space. 93
7.2 Points sampled randomly from the parameter space can be processed by the C4.5 algorithm. 97
7.3 Cluster analysis applied to a sample of points found via hill-climbing. 98
7.4 Theory development in the Weaver system. 100
7.5 A schematic of the Samp/Tool system. 103
7.6 An example simulation parameter specification for the StereoLab. 104

8.1 Frequency of co-operation over the whole parameter space (sample 1). . 109
8.2 Frequency of co-operation over the whole parameter space (sample 2). . 110
8.3 The C4.5 induced decision tree generated from the initial sample. 112
8.4 The C4.5 induced tree produced from a second independent sample. ... 113
8.5 The effect of the weight parameter on tree accuracy for the initial sample. . 114
8.6 The effect the weight parameter on tree size for the initial sample. 115
8.7 The effect of the weight parameter on tree accuracy for the second sample. 116
8.8 The effect of the weight parameter on tree size for the second sample. . . . 117
8.9 The regions of high and low cooperation induced from both samples. . . . 118
8.10 The best three regions found for the highest and lowest co-operative classes. 119
8.11 Frequency of co-operation in the region where MT = 0. 121
8.12 A set of runs from a point in region MT=0 producing minimum co-operation. 123
8.13 A set of runs from a point in region MT=0 producing modal co-operation. 124
8.14 A set of runs from a point in region MT=0 producing maximum co-operation. 126
8.15 Frequency of co-operation within the region where CR=0. 128
8.16 A set of runs from a point in region CR=0 producing minimum co-operation. 129
8.17 A set of runs from a point in region CR=0 producing modal co-operation. 131
8.18 A set of runs from a point in region CR=0 producing maximum co-operation. 132
8.19 Frequency of co-operation within the region 1c. 134
8.20 A set of runs from a point in region 1c producing minimum co-operation. 136
8.21 A set of runs from a point in region 1c producing modal co-operation. . . . 137
8.22 A set of runs from a point in region 1c producing maximum co-operation. . 138
8.23 Frequency of co-operation within region 1c. 140
8.24 A set of runs from a point in region 1c producing minimum co-operation. . 142
8.25 A set of runs from a point in region 1c producing modal co-operation. . . . 143
8.26 A set of runs from a point in region 1c producing maximum co-operation. . 144
8.27 Final sum of squared distances produced from k-means analysis. 148
8.28 Final sum of squared distances produced from k-means analysis. 153
9.1 The evolutionary algorithm applied to agents within TagWorldIII. 159
9.2 Co-operation for various values of L and T (initial run). 162
9.3 Co-operation for various values of L and T (initial run) 163
9.4 Co-operation for various values of L and T (enforcing T>R>P>S). 164
9.5 Co-operation for various values of L and T (enforcing T>R>P>S). 164
9.6 For a tag length L = 4, label space can be visualised as a 4D hypercube. . . 165
9.7 Visualisation of 500 cycles from a single simulation run. 166
9.8 An expanded view of an individual simulation run. 167
9.9 Number of generations before mutual co-operation emerges. 170

A.1 Output produce by the SampTool software in response to the "-help" option. 219
A.2 Example output produced by SampTool with the "-view" option. 225
A.3 An example of a hosts.txt file . 230
List of Tables

2.1 The payoff grid for the one-shot Prisoner’s Dilemma. 14

5.1 Energy levels and optimality measures for four experiments in the SwapShop. See section 5.3 for an explanation of the measures. 54

5.2 Meme value distributions for four experiments in the SwapShop. See section 5.3 for an explanation of the values given. 54

6.1 The parameters which characterise the StereoLab artificial society. 89

8.1 The percentile ranges over the level of co-operation measure for sample 1. 111

8.2 Cluster centres and sizes for four clusters identified by the k-means clustering method. .. 149

8.3 Cluster centres and sizes for five clusters identified by the k-means clustering method in the extended parameter space. 154
Acknowledgements

I would like to thank Jim Doran, my supervisor, for his patience, advice and encouragement, and, above all, for his tenacity in trying to help me tease out strands of clear thought from the confusing tangles in which I often found myself. I would also like to thank all those in the wider SimSoc community who have always encouraged, supported, and suggested ways I could expand and improve on, my work. This encouragement was invaluable. On a personal note, I would like to thank Jan Neil and Nigel Taylor for encouragement and suggestions throughout the period of this work and also for proof reading of earlier drafts of this thesis. I would also like to thank Andrew Tams for his proof reading, suggestions and encouragement despite the pressure of his own thesis deadline.