SP 5: Biologically Inspired Techniques for “Organic IT”

Report for months 13 - 24

Participants
UniBO, UPF, Telenor, TILS

Lead partner: Bologna (UniBO)
Goals of SP5 “Biologically Inspired Techniques for Organic IT”

Long term
Identify, understand and reverse engineer techniques inspired by biological and social systems that display “self-*” properties. Deploy these in networked information systems

Short term
Consolidate and import BISON findings. Identify “nice” properties of biological and social systems. Relate found natural network “forms” to engineering “functions”

Identify desirable life-like properties - “Self-*”

- Algorithms
- Simulations / Tools
- Implementations
- Industrial Applications
SP5 Workpackage Overview

Structure of SP5 “Biologically Inspired Techniques for Organic IT”

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bio-inspired metaphors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Evolved tinkering and degeneracy as engineering concepts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bio-inspired design for dynamic solution spaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multi-scale topology evolution in natural and artificial networks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identifying and promoting industrial applications and knowledge transfer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The structure of tinkered landscapes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* = deliverable

- New partner: TILS
- Funding reallocation (>MP)
- Funding reallocation (new WP)
SP5 Deliverables Overview

Deliverables Done (by month 24)

D5.1.1: Desirable lifelike properties in large-scale information systems (month 24)
D5.2.1: Algorithms to Identify Locally Efficient Sub-graphs in Info Nets (month 12)
D5.2.2: Optimal Strategies for Construction of Efficient Info-Processing Webs (month 24)
D5.2.3: Degeneracy and Redundancy in human-constructed info. systems (month 24)
D5.4.1: Application of Motif Analysis to Artificial Evolving Networks (month 24)
D5.6.1: Classification of info.nets. - topology & functional structures & fitness landscape (month 24)

Deliverables Plan (months 25-42)

D5.2.4: Modelling open source development networks (month 36)
D5.3.1: From biological and social algorithms to engineering solutions (month 30)
D5.3.2: Applications of bio- and socio-inspired algorithms in info. Systems (month 42)
D5.4.2: Understanding and engineering ``multi-scale'' selection in evol.nets (month 36)
D5.5.1: Promising industrial applications in dynamically evolving networks (month 30)
D5.5.2: Identifying industrial applications, examples, lessons and prospects (month 42)
D5.6.2: Integrated package for evolutionary dynamics of information networks including evolved design and landscape structure (month 36)
Goals (Start Month 13)

Long term
Inform designs for algorithms and models with direct application to network engineering and design.

Short term
Identify a set of desirable, life-like properties in large-scale engineering systems. Review existing biologically inspired work.

Partners
Telenor, UniBO, UPF
Results (from D5.1.1)

- Identified and related desirable lifelike properties in info. systems
- Incorporated experience from concluding BISON project
- Both bio- and socio-related properties reviewed
- Some general organizational principles:
 - Modularity, Hierarchy, Self-Organization
- Some general properties for success:
 - Adaptation, Robustness, Scalability
- Also reviewed possible undesirable and problematic properties
- Related to possible application in large scale info. Systems
• Has relevance for all other work within SP5 and beyond
• Highly readable review and overview (D5.1.1)
• Publications:
Goals (Start Month 0)

Long term
Explore ways of applying evolutionary computational strategies to the optimisation of pre-existing information systems. Facilitate the interaction between engineers and automatic systems in the construction of efficient information processing networks.

Short term
Investigate the topological evolution of found natural networks over time. Characterise these patterns algorithmically. Relate them to desirable functional properties for artificial engineered networks.

Partners

UPF, UniBO
WP 5.2 Evolved Tinkering and degeneracy as Engineering Concepts

Results (from D5.2.2, D5.2.3)

- Analysis of open source development
 - Recovery of Affiliation Networks relating developers to code
 - View open source development as co-evolution of both:
 - Programmer social networks
 - Code network represented at various scales
 - Relate to recent work on programmer social network dynamics
 - recovered from electronic discussion logs
 - Agent based social simulation models
- Exploration, analysis of relationship between tinkering, redundancy and degeneracy in evolved electronic circuits
Optimal Strategies for the Collective Construction of Efficient Information Processing Webs

What mechanisms yield successful open source projects?

Example: MySql Virtuous Development Cycle

- Proceeds from license sales fed back into development
- MySQL staff develop new release every 4-6 weeks
- New release immediately downloaded by vast number of users
- Massively parallel testing and debugging begins
- Rapid stabilization
- Rapid removal of bugs
- Free of Charge
- Worldwide Distributed Development

(from http://www.debian.org/devel/developers.loc)
Optimal Strategies for the Collective Construction of Efficient Information Processing Webs

Affiliation Networks: What is the relationship between social networks and software networks?

"The mapping between the Social Network of people and the Small World Network of the Software. Only a part of the entire assignment of tasks is shown with an indication of graph isomorphism and one-to-one mapping."

“Social Network Perspective of Conway’s Law”
C. Amrit, J. Hillegersberg, K. Kumar,
CSCW’04 Workshop on Social Networks,
Chicago, IL, USA (2004)
Optimal Strategies for the Collective Construction of Efficient Information Processing Webs

Software tool for recovering affiliation networks from CVS logfiles

<table>
<thead>
<tr>
<th>Project</th>
<th>Revisions</th>
<th>Developers</th>
<th>Files</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apache</td>
<td>43698</td>
<td>78</td>
<td>1279</td>
</tr>
<tr>
<td>Mozilla</td>
<td>452101</td>
<td>546</td>
<td>28086</td>
</tr>
<tr>
<td>FreeBSD</td>
<td>363333</td>
<td>425</td>
<td>28056</td>
</tr>
<tr>
<td>OpenBSD</td>
<td>245470</td>
<td>195</td>
<td>33998</td>
</tr>
<tr>
<td>XFree86</td>
<td>27710</td>
<td>21</td>
<td>1788</td>
</tr>
<tr>
<td>Inkscape</td>
<td>15423</td>
<td>25</td>
<td>1648</td>
</tr>
<tr>
<td>SDCC</td>
<td>9557</td>
<td>32</td>
<td>1318</td>
</tr>
<tr>
<td>Gaim</td>
<td>20047</td>
<td>30</td>
<td>767</td>
</tr>
<tr>
<td>DCPlusPlus</td>
<td>5260</td>
<td>1</td>
<td>187</td>
</tr>
</tbody>
</table>
Degeneracy and redundancy in human-constructed Information systems

- Populations of digital circuits are evolved by single, random architectural changes
- Different fitness functions are used as selection criteria: we searched for maximal robustness under the presence of noise (reliability)
- Evolved robust circuits spontaneously display high degrees of degeneracy
WP5.2 Summary

- Initial work on dynamics Affiliation Nets in Open Source Dev.
- Tool to reconstruct Affiliation Nets from CSV logs
- Exploration of robustness, degeneracy and redundancy in evolved circuits
- Publications:
 - None at present
- Future: Modelling open source development networks, relating degeneracy in P2P systems (D5.2.3, month 36)
Goals (Start Month 19)

Long term
Develop tools and methods to translate / modify biologically and socially inspired algorithms for application in realistic information systems environments

Short term
Select a set of candidate algorithms and application domains. Use simulation and apply necessary tuning using

Partners

UniBO, UPF, Telenor, TILS
WP5.3: Biologically and socially inspired design for dynamic solution spaces

On-going (started month 19)

- Select ideas from other SP5 WPs applicable to *realistic* distributed engineering problems
- Identify the engineering constraints / requirements that differ from the existing algorithms
- Develop tools and methods to translate / modify the algorithms
- Working on Cooperative Resource Replication model with TILS

Deliverables Planned

D5.3.1: From Biological and social algorithms to engineering solutions (month 30)
D5.3.2: Applications of bio- and socio-inspired algorithms in info. Systems (month 42)
WP5.4 Multi-Scale topology evolution in natural and artificial networks

Goals (Start Month 13)

Long term
Explore processes of general network evolution in both natural and artificial systems - determine and harness both the form and function of multi-level evolution for engineering.

Short term
Apply “motif analysis” to artificial networks developed for functional properties and compare with natural systems with similar or desired properties. Relate network forms to functions.

Partners

UPF, UniBO, Telenor
Results (from D5.4.1)

• Evolution of software code networks
 • Based on the assumption that software code networks evolve by a copy and re-wire process (not related to function)
 • Model of evolution of structure of software nets
 • Produces predictions that match data from software dev. logs.

• Motif analysis of evolving P2P networks
 • Application of motif analysis to two developed P2P protocols
 • Protocol SLAC (see D5.2.1) uses simple copy and re-wire rule to emerge and sustain cooperation between nodes
 • Protocol SLACER, a probabilistic modification of SLAC producing cooperative and connected networks
Application of Motif Analysis to Artificial Evolving Networks

Growing Network with Copying (GNC) model

\[\frac{dL}{dN} = mp + mq \frac{L}{N} \quad \text{Evolution of number of links } L(t) \]

\[P_i(k_i) \approx k^{-2} \quad \text{Scale-free in-degree distribution (independent of copying parameters)} \]

\[\frac{dL}{dt} = \left(mp + mq \frac{L}{N(t)} \right) \frac{\dot{N}(t)}{N(t)} \quad \text{Time-dependent evolution} \]

"Network Growth by Copying"

Example: First prediction of number of `#include`'s in a C/C++ project

\[N(t) = N_h(t) + N_c(t) = \text{Number of project files} \]

\[L(t) = \text{Number of "#include" clauses} \]

XFree86 between 16/05/1994 and 01/06/2005.

Assume linear growth of \(N \). GNC model predicts \(L(t) \)

WP5.4 Motifs in evolved nets

Subgraph Ratio Profile

Basic SLAC node-level algorithm

(has some “nice” properties - as previously reported see D5.2.1)

- Periodically do
 - Compare “utility” with a random node
 - if that node has higher utility
 - copy that node’s strategy and links (reproduction)
 - mutate (with a small probability):
 - change strategy (behavior)
 - change neighborhood (links)
 - fi
- od
Network size $N = 500$, edges $E \approx 3500$.

SLAC1, 2, 3 taken immediately before, during and after high cooperation breaks out.
SLACER - a probabilistic form of SLAC producing small-world type topologies.
• Predictive analysis of software development - potential uses in software metrics
• Motif analysis of SLAC P2P protocol - interesting links to natural systems, potential use for monitoring performance
• Publications:
• Future: further predictive metrics, motif-based network monitoring, distributed real-time motif estimations in evolving P2P (D4.5.2, Month 36)
Goals (Start Month 13)

Long term
Bridge between academic research (in DELIS SP5) and realities of industry (telecom). Patents, spin-offs, industrial projects

Short term
Identify SP5 activities and mechanisms with possible commercial and industrial applications

Partners
Telenor, UniBO, UPF
On-going (started month 13)

- Number of promising areas that could be considered:
 - Fully distributed power method (potential for distributed document ranking) mainly in SP6 (UniBo, Telenor)
 - open source community structures - design and management. SP5 (UPF)
 - motifs in software networks - software dev. & maintenance SP5 (UPF)
 - cooperative P2P with healthly community structures SP5 (UniBo)

Deliverables Planned

D5.5.1: Promising industrial applications in dynamically evolving networks (month 30)

D5.5.2: Identifying industrial applications, examples, lessons and prospects (month 42)
Goals (Start Month 16)

Long term
Comparison of biological networks and engineered designs
Understand evolutionary mechanisms that make natural networks robust and have other differing properties. Produce simulator package.

Short term

Partners

UPF, **UniBO**
Results (from D5.6.1)

- Experiments with evolved feed-forward networks and analysis of fitness landscape properties
- Some counter-intuitive insights
- Similar properties to RNA folding
- Relate to potential in P2P systems - tentative
Information networks and their fitness landscapes

RNA molecules have neutral landscapes

GENOTYPE = STRUCTURE

5’ GUGAUGG...GGUUAC 3’

RNA sequence

RNA shape

folding

PHENOTYPE = FUNCTION

Hypothesis: the fitness landscape of networks performing information processing might help understanding how they evolve and how easily can be evolved.
What is the landscape of software systems?

```
Programmer

0110010010001 (genotype)
```

```
Function (phenotype)
```

```
0110xx001xxx1 (structural genotype)
```

```
Software Network
```

Minimization of Effort

Duplication & Rewire

"fitness evaluation"

1:n

1:1

1:1

Software Network

What is the landscape of software systems?
Information networks and their fitness landscapes

Case Study: building bio-inspired computational networks

Network of binary linear zero-threshold units - “perceptrons”
Outputs +1 if input threshold > 0
Weights on links: +1, 0 or -1
Genotype = ordered string of weights
Phenotype = implemented boolean function from inputs (I) to outputs (O)
Mutation = remove one link, add a new one with prob(1/3) of -1, prob(2/3) +1

Feed forward networks

FEED-FORWARD LANDSCAPES ARE EQUIVALENT TO RNA LANDSCAPES
Random sample of genotypes
Many genotypes => same phenotype

Frequency of different phenotypes follows a power law (like RNA folds)

Chart shows rank-frequency of genotypes by function (many functions common, some very rare)
Random sample of genotypes in space (x’s) shows high neutrality and low diversity of mutants. After hill-climbing for opposite in G-space while preserving function (phenotype) can find points in G-space (o’s) - “portals” to many different functions (phenotypes)
• Feed-forward networks demonstrate many of the properties of RNA fitness landscapes => robustness but also “portals”
• In dynamic P2P link and node failure and churn can be viewed as “mutation” of the structure. The aim is robust function under these
• The protocol is the “genotype” => self-org. structure => function
• Publications:
• Future: integrated package for exploring landscapes, potential applications to P2P design (D5.6.2, Month 36)
Cooperation with other SP’s

- SP4-SP5 Game theory and evolutionary economics models
- SP5-SP6 Cooperative distributed information sharing
- SP1-SP5 Possibility of better dynamic visualisation of P2P (planned)
- CCT2, CCT3 Meetings attended

Cooperation with other projects

- BISON As described, extensive cooperation with concluding BISON
- NANIA EPSRC (UK) 5 year project - collaborative meetings planned / already made, with Manchester group
- CATNETS On-going collaboration (FET STREP)
- ONCE-CS Complexity Network, High presence at ECCS’05

Dissemination

Thank you!