Introduction to Genetic Algorithms

Guest speaker:
David Hales
www.davidhales.com
Genetic Algorithms - History

- Pioneered by John Holland in the 1970’s
- Got popular in the late 1980’s
- Based on ideas from Darwinian Evolution
- Can be used to solve a variety of problems that are not easy to solve using other techniques
Evolution in the real world

- Each cell of a living thing contains **chromosomes** - strings of **DNA**
- Each chromosome contains a set of **genes** - blocks of DNA
- Each gene determines some aspect of the organism (like eye colour)
- A collection of genes is sometimes called a **genotype**
- A collection of aspects (like eye colour) is sometimes called a **phenotype**
- Reproduction involves recombination of genes from parents and then small amounts of **mutation** (errors) in copying
- The **fitness** of an organism is how much it can reproduce before it dies
- Evolution based on “survival of the fittest”
Start with a Dream…

• Suppose you have a problem
• You don’t know how to solve it
• What can you do?
• Can you use a computer to somehow find a solution for you?
• This would be nice! Can it be done?
A dumb solution

A “blind generate and test” algorithm:

Repeat
 Generate a random possible solution
 Test the solution and see how good it is
Until solution is good enough
Can we use this dumb idea?

• Sometimes - yes:
 – if there are only a few possible solutions
 – and you have enough time
 – then such a method *could* be used

• For most problems - no:
 – many possible solutions
 – with no time to try them all
 – so this method *can not* be used
A “less-dumb” idea (GA)

Generate a set of random solutions
Repeat
 Test each solution in the set (rank them)
 Remove some bad solutions from set
 Duplicate some good solutions
 make small changes to some of them
Until best solution is good enough
How do you encode a solution?

• Obviously this depends on the problem!
• GA’s *often* encode solutions as fixed length “bitstrings” (e.g. 101110, 111111, 000101)
• Each bit represents some aspect of the proposed solution to the problem
• For GA’s to work, we need to be able to “test” any string and get a “score” indicating how “good” that solution is
Silly Example - Drilling for Oil

• Imagine you had to drill for oil somewhere along a single 1km desert road
• Problem: choose the best place on the road that produces the most oil per day
• We could represent each solution as a position on the road
• Say, a whole number between [0..1000]
Where to drill for oil?

Solution1 = 300

Solution2 = 900

Road

0 500 1000
Digging for Oil

• The set of all possible solutions [0..1000] is called the *search space* or *state space*
• In this case it’s just one number but it could be many numbers or symbols
• Often GA’s code numbers in binary producing a bitstring representing a solution
• In our example we choose 10 bits which is enough to represent 0..1000
Convert to binary string

<table>
<thead>
<tr>
<th></th>
<th>512</th>
<th>256</th>
<th>128</th>
<th>64</th>
<th>32</th>
<th>16</th>
<th>8</th>
<th>4</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>900</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>300</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1023</td>
<td>1</td>
</tr>
</tbody>
</table>

In GA’s these encoded strings are sometimes called “genotypes” or “chromosomes” and the individual bits are sometimes called “genes”
Drilling for Oil

Solution 1 = 300
(0100101100)

Solution 2 = 900
(1110000100)

Road

0 1000

Location

OIL

30 5
Summary

We have seen how to:

• represent possible solutions as a number
• encoded a number into a binary string
• generate a score for each number given a function of “how good” each solution is - this is often called a fitness function
• Our silly oil example is really optimisation over a function f(x) where we adapt the parameter x
Search Space

• For a simple function $f(x)$ the search space is one dimensional.
• But by encoding several values into the chromosome many dimensions can be searched e.g. two dimensions $f(x,y)$
• Search space an be visualised as a surface or fitness landscape in which fitness dictates height
• Each possible genotype is a point in the space
• A GA tries to move the points to better places (higher fitness) in the space
Fitness landscapes
Search Space

- Obviously, the nature of the search space dictates how a GA will perform
- A completely random space would be bad for a GA
- Also GA’s can get stuck in local maxima if search spaces contain lots of these
- Generally, spaces in which small improvements get closer to the global optimum are good
Back to the (GA) Algorithm

Generate a \textit{set} of random solutions

Repeat

\begin{itemize}
 \item Test each solution in the set (rank them)
 \item Remove some bad solutions from set
 \item Duplicate some good solutions
 \item make small changes to some of them
\end{itemize}

Until best solution is good enough
Adding Sex - Crossover

• Although it may work for simple search spaces our algorithm is still very simple
• It relies on random mutation to find a good solution
• It has been found that by introducing “sex” into the algorithm better results are obtained
• This is done by selecting two parents during reproduction and combining their genes to produce offspring
Adding Sex - Crossover

- Two high scoring “parent” bit strings (chromosomes) are selected and with some probability (crossover rate) combined
- Producing two new offspring (bit strings)
- Each offspring may then be changed randomly (mutation)
Selecting Parents

• Many schemes are possible so long as better scoring chromosomes more likely selected
• Score is often termed the *fitness*
• “Roulette Wheel” selection can be used:
 – Add up the fitness's of all chromosomes
 – Generate a random number R in that range
 – Select the first chromosome in the population that - when all previous fitness’s are added - gives you at least the value R
Example population

<table>
<thead>
<tr>
<th>No.</th>
<th>Chromosome</th>
<th>Fitness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10100110100</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>11111100001</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>10110011000</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>10100000000</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>00000100000</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>10010111111</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>01010101010</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>10111001111</td>
<td>2</td>
</tr>
</tbody>
</table>
Roulette Wheel Selection

Rnd[0..18] = 7
Rnd[0..18] = 12

Chromosome4
Chromosome6

Parent1
Parent2
Crossover - Recombination

With some high probability (crossover rate) apply crossover to the parents. (typical values are 0.8 to 0.95)
With some small probability (the mutation rate) flip each bit in the offspring (typical values between 0.1 and 0.001)
Back to the (GA) Algorithm

Generate a *population* of random chromosomes

Repeat (each generation)
 Calculate fitness of each chromosome
 Repeat
 Use roulette selection to select pairs of parents
 Generate offspring with crossover and mutation
 Until a new population has been produced

Until best solution is good enough
Many Variants of GA

- Different kinds of selection (not roulette)
 - Tournament
 - Elitism, etc.

- Different recombination
 - Multi-point crossover
 - 3 way crossover etc.

- Different kinds of encoding other than bitstring
 - Integer values
 - Ordered set of symbols

- Different kinds of mutation
Many parameters to set

- Any GA implementation needs to decide on a number of parameters: Population size (N), mutation rate (m), crossover rate (c)
- Often these have to be “tuned” based on results obtained - no general theory to deduce good values
- Typical values might be: N = 50, m = 0.05, c = 0.9
Why does crossover work?

- A lot of theory about this and some controversy
- Holland introduced “Schema” theory
- The idea is that crossover preserves “good bits” from different parents, combining them to produce better solutions
- A good encoding scheme would therefore try to preserve “good bits” during crossover and mutation
Genetic Programming

- When the chromosome encodes an entire program or function itself this is called genetic programming (GP)
- In order to make this work encoding is often done in the form of a tree representation
- Crossover entails swapping subtrees between parents
Genetic Programming

It is possible to evolve whole programs like this but only small ones. Large programs with complex functions present big problems.
Implicit fitness functions

- Most GA’s use explicit and static fitness function (as in our “oil” example)
- Some GA’s (such as in Artificial Life or Evolutionary Robotics) use dynamic and implicit fitness functions - like “how many obstacles did I avoid”
- In these latter examples other chromosomes (robots) effect the fitness function
Problem

• In the Travelling Salesman Problem (TSP) a salesman has to find the shortest distance journey that visits a set of cities
• Assume we know the distance between each city
• This is known to be a hard problem to solve because the number of possible routes is $N!$ where $N = \text{the number of cities}$
• There is no simple algorithm that gives the best answer quickly
Problem

- Design a chromosome encoding, a mutation operation and a crossover function for the Travelling Salesman Problem (TSP)
- Assume number of cities $N = 10$
- After all operations the produced chromosomes should always represent valid possible journeys (visit each city once only)
- There is no single answer to this, many different schemes have been used previously