Cooperation with Strangers

David Hales
www.davidhales.com

Department of Computer Science
University of Bologna
Italy

Project funded by the Future and Emerging Technologies arm of the IST Programme
First a confession.....

- Although my background is CompSci / A.I.
- I have spent time with.....
- Sociologists!
- I have *even* spent time working with....
- Economists!
- It was a dirty job but someone had to do it
Sociological and “new” economics approaches and theories

- Agent Based Social Simulation (ABSS) - much new and existing social, economic and biological theories presented as simulations
- A lot of work on Cooperation (using PD-type game theory abstractions)
- Can we apply these to realistic task domains to solve our problems?
Yes - it's already happening!

- Concept of incentives (endogenous grounding - not external)
- Even deployed (well kind of) Axelrod et al. (TFT in BitTorrent) - reciprocity
- The incentives work of Ngan et al presented on Wednesday (the chain of credit idea) indirect reciprocity
Problem - How to deal with strangers

- Evidenced in the gossip protocol presentations yesterday
- Without stable on-going interactions how can we make incentives work
- We can’t use reciprocity
- We want scalable solutions with minimal overheads
Solution - dynamically rewire in a random overlay network

- Adapting “tag” / “social cue” based ABSS results from Riolo, Cohen, Axelrod (2001) and Hales (2000) - try to preserve desirable properties (no proofs)
- Apply in unstructured P2P overlay sim.
- Basic idea is this: *if you’re not happy with your neighbours then go elsewhere*
- Applied to file-sharing scenario of Qixiang Sun & Hector Garcia-Molina 2004, and suppresses free-riding
Nodes copy to optimise (greedy and stupid) - replication

Before

\[F_u > A_u \]

Where \(A_u \) = average utility of node A

After

A copies F neighbours & strategy
Nodes occasionally randomly move and change behaviour - \textit{mutation}

\textbf{Before}

\textbf{After}

Mutation applied to F’s neighbourhood and behaviour

F is wired to a randomly selected node (B)

F changes behaviour
Get high altruism and cooperation

- Because bad guys end-up isolated and/or surrounded by bad guys
- Good guys keep moving
- Bad guys do so well they attract emulators who then are all bad
- There are crucial parameters (fiddle factors) that need to be sorted out of course
Results........

Great!
But its early days....

- **assumption** can copy behaviours and links of other nodes (does this make sense?)
- **assumption** of boundedly rational nodes (but what about whitewashers, non-boundedly rational coordinated attacks)
- **assumption** can read others utilities
- what about under various churn
- get disconnected network - but highly dynamic
Am I forgiven?

- Upcoming papers: ESOA2004 & MABS2004 both @ AAMAS2004 in NY July, IEEE-P2P2004 Zurich August
- Soon all on www.davidhales.com for your enjoyment and convenience
- Next step - build on top of Newscast
- The end of my 5 mins