
Appendix B. Proofs of propositions in chapter 5  
Proof of Proposition 5-1. Proving the second part of proposition 5-1 –i.e. that 

the asymptotic behaviour of the N-CBR model is independent of the decision-

making algorithm employed by each player i when she has not yet explored every 

action available to her in a similar situation– is straightforward, since this is a 

transient situation. Given the definition of the set of different states of the world 

possibly perceived by any player, the trembling hands noise guarantees that 

sooner or later every possible state of the world perceived by any player will 

happen infinitely often. The trembling hands noise also guarantees that every 

player will choose every possible action available to her in any given situation. 

Thus, sooner or later, every player will have selected every action available to her 

in every possible state of the world she can perceive (i.e. every action available to 

player i will be represented in her set of cases Ci, for every state of the world 

possibly perceived by i). Therefore, sooner or later, no player will be using the 

decision-making algorithm that the second part of proposition 5-2 refers to, so the 

asymptotic behaviour of the model is independent of such algorithms. 

 

The following proves part 1 of proposition 5-1, i.e. that if every player has a 

common perception of the state of the world, then the asymptotic behaviour of the 

N-CBR process is independent of the specific structure of the perceived state of 

the world. The previous paragraph demonstrates that sooner or later the state of 

the system in the N-CBR model is fully characterised by every player’s set of 

most recent cases that occurred in every possible perceived state of the world for 

each one of the actions available to her. Thus, this second proof (which refers to 

the asymptotic behaviour of the system) assumes that every player has already 

selected every action available to her at least once in every possible state of the 

world she can perceive. Consider the following two points: 

• The assumption that players have a common perception of the state of the 

world implies that all players perceive that any particular state of the world 

has occurred in exactly the same time-steps. In other words, all players 

would unanimously agree or disagree with any statement of the form “The 

situations lived in time-steps {x, y,…,z} looked all similar to me (i.e. they 

correspond to the same perceived state of the world)”.  
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• Note also that the decision made by each player i in any particular 

situation is only affected by decisions (made by all players) that took place 

in a previous similar situation (i.e. having perceived the same state of the 

world).  

 

Thus, one can view the dynamics of the whole model (where players can perceive 

various different states of the world) as a collection of parallel dynamic processes, 

each of them corresponding to one specific state of the world (perceived by all 

players at once). The dynamics observed for each individual perceived state of the 

world are governed by the same decision-making processes and are independent 

of each other. Each of these individual threads, if observed on its own, induces the 

same dynamics that one would observe in a model where players cannot 

distinguish between different states of the world. The following table illustrates 

this interpretation with an example.  
 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

SWt sw3 sw1 sw4 sw3 sw2 sw3 sw4 sw4 sw1 sw2 sw1 sw3 sw2 sw4 sw1

THREAD 
SW = sw1

 1       2  3    4 

THREAD 
SW = sw2

    1     2   3   

THREAD 
SW = sw3

1   2  3      4    

THREAD 
SW = sw4

  1    2 3      4  

 

where SWt is the random variable that denotes the state of the world perceived by 

every player at time-step t, swi are particular values of that variable, and the 

numbers on coloured backgrounds inside the table indicate the number of times 

that the corresponding state of the world has been visited. 

 

Let  be the state of the thread {SW = sw} (where the perceived state of the 

world is sw), defined by the payoffs each player obtained the last time that she 

selected each of the actions available to her having observed state of the world sw, 

when state of the world sw has been observed n times. It is clear then that the 

sequence of random variables  (for any fixed sw) corresponds to a model 
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where players cannot distinguish between different states of the world. Following 

the reasoning presented in the first paragraph of section 5.7, it is also 

straightforward to show that  can be formulated as a uni-reducible 

Markov chain, which has a unique limiting distribution (Janssen and Manca, 

2006, Corollary 5.2, pg. 117). Finally, it should also be apparent that all threads 

have the same limiting distribution: 
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For clarity of notation, let {Tn}n≥1 denote the sequence of states corresponding to a 

model where players cannot distinguish different states of the world. Thus, 
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The fact that remains to be proven is that the overall dynamics of the model (i.e. 

the ensemble of threads) also show the same limiting distribution as the individual 

threads. To show that, let Xt denote the state of the thread corresponding to the 

state of the world observed at time t. Formally: 
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where Ni(t) denotes the number of times that the event {SWt = i} has occurred up 

until time-step t. Formally: ( ) { }{ }iSW,...,tk#tN ki =∈=   :  1    

 

With this notation, the proof of the second part of proposition 5-2 will be 

concluded once it is demonstrated that: 
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The following, which is conditioned to a set of (arbitrary) initial conditions, 

concludes the proof. 
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It has been argued previously that states of the world are visited infinitely often, 

thus:  
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(Regardless of the set of (arbitrary) initial conditions) 

and it is also clear that  tiSW
i
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Using the two results above the first part of proposition 5-1 is finally proved: 
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Proof of Proposition 5-2. As argued in the proof of proposition 5-1, sooner or 

later, every player will have selected every action available to her in every 

possible state of the world she can perceive (i.e. every action available to player i 

will be represented in her set of cases Ci, for every state of the world possibly 

perceived by i). Thus, sooner or later, the state of the system in the N-CBR model 

is fully characterised by every player’s set of most recent payoffs she obtained for 

each one of the actions available to her in every possible state of the world she can 

perceive. The model thus defined is a finite-state irreducible aperiodic discrete-

time Markov chain, which is denoted PP

ε. Let P0
P  be the Markov process PP

ε when  

ε = 0 and all players have explored all their available actions for every possible 

state of the world they can perceive. Note that P0
P  is generally reducible. 

 

The proof rests on two arguments. The first argument, which is an immediate 

application of theorem 4 in Young (1993), is that every stochastically stable state 

is a recurrent state of PP

0 (i.e. the model without noise). The second argument is 

that the outcome (i.e. the set of decisions made by players) that is induced by any 

recurrent state of P0
P  is necessarily individually rational. The following proves an 

alternative (but equivalent) formulation of the second argument: if state x in PP

0 

induces an outcome that is not individually rational, then x is a transient state of 

P0
P . We will prove this second argument by showing that if state x induces an 

outcome that is not individually rational, then x will never be revisited.  

 

Let A be one of the players who has received a payoff below her maximin 

MaximinA in the outcome induced by state x, and let swA be the state of the world 

perceived by A in state x. Let a be the action that A chose in state x, and px(A, a) 

be the payoff that A had obtained the previous time she had perceived swA and 
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selected action a; this payoff px(A, a) is part of the definition of x. Note that a 

necessary condition for x to be revisited is that player A perceives swA again, and 

also that the payoff that A has obtained the previous time she has perceived swA 

and selected action a is px(A, a). This can never be the case for the following 

argument: 

1. The fact that player A selected action a in state x implies that  

px(A, a) ≥ MaximinA. In more informal terms, the payoff player A believed 

she would obtain by selecting action a (having observed state of the world 

swA) was the maximum over all her possible actions, and therefore it was 

necessarily no less than MaximinA. 

2. Player A obtained a payoff strictly below her MaximinA when, after having 

perceived state of the world swA, she selected action a. Thus, from then 

onwards she will remember that the last time she selected action a having 

observed state of the world swA, she obtained a payoff strictly below 

MaximinA. 

3. There is at least one action that gives player A a payoff no less than 

MaximinA regardless of the actions of her counterparts. When perceiving 

state of the world swA again, player A will always select this (maximin) 

action over action a. Thus, player A will never update her belief that 

selecting action a when she perceives state of the world swA will give her a 

payoff below MaximinA.  

 

State x required player A to believe that selecting action a would give her a payoff 

no less than MaximinA. Thus, state x cannot be revisited, and this fact concludes 

the proof.   
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