
Appendix A. Proofs of propositions in chapter 4
Notation: Since most of the proofs follow Norman (1968) we adopt his notation. 

The state of the system in iteration n, characterized in the BM model by the 

mixed-strategy profile in iteration n, is denoted Sn. The set of possible states is 

called the state space and denoted S. The realization of both players’ decisions in 

iteration n is referred to as an event and denoted En. The set of possible events is 

called the event space and denoted E. Sn and En are to be considered random 

variables. In general, s and e denote elements of the state and event spaces, 

respectively. The function of S into S that maps Sn into Sn+1 after the occurrence of 

event e is denoted fe(·). Thus, if En = e and Sn = s, then Sn+1 = fe(s). Let Tn(s) be the 

set of values that Sn+1 takes on with positive probability when S1 = s. Let us say 

that a state s is associated with an event e if s is a pure state (where all 

probabilities are either 0 or 1) and the occurrence of e pushes the system towards s 

from any other state. In any system, only one state is associated with a certain 

event, but the same state may be associated with several events. Finally, use d(A, 

B) for the minimum Euclidean distance between two subsets A and B of S.  
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Lemma 1. Assuming players’ aspiration levels are different from their respective 

payoffs, the 2-player 2-strategy BM model can be formulated as a strictly distance 

diminishing model (Norman, 1968, p.64). 

Proof. Proving that the BM model can be formulated as a strictly distance 

diminishing model involves checking that hypotheses H1 to H8 in Norman (1968) 

hold. Define the state of the system Sn in iteration n in the BM model as the 

mixed-strategy profile in iteration n. The state space is then the mixed-strategy 

space of the game, and the event space E is the space of pure-strategy profiles, or 

possible outcomes of the game; consider also the Euclidean distance d(s, s’)  in S. 

Having stated that, hypotheses H1 to H6 (which are included here for the sake of 

completeness) are immediate:  

H1. The occurrence of an event effects a change of state such that if En = e and  

Sn = s, then Sn+1 = fe(s). Thus, )( nEn SfS
n

=+1  for n ≥ 1. 

H2. E is a finite set. 
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H3. The learning situation is memory-less and temporally homogeneous, in the 

sense that the probabilities of the various possible events on trial n depend only on 

the state on trial n, and not on earlier states or events, or on the trial number. That 

is, there is a real valued function  on E × S such that .(·)φ
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H4. (S,d) is a metric space. 

H5. (S,d) is compact. 

H6. Let us use the following notations. If h and g are mappings of S into the real 

numbers and into S, respectively, their maximum “difference quotients” m(h) and 

u(g) are defined by 
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whether or not these are finite. H6 is the following regularity condition: 

Eem e ∈∞<  allfor    )(φ  

This is easily proven by defining ),()( 0sdse ≡φ  

 

H7. For strictly distance diminishing models H7 reads  
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Given that learning rates are strictly within 0 and 1 and stimuli are always non-

zero numbers between −1 and 1 (since players’ aspiration levels are different from 

their respective payoffs by assumption), it can easily be checked that H7 holds. 

The intuitive idea is that after any event e, the distance from any state s to the pure 

state se associated with event e is reduced by a fixed proportion in each of the 

components of s which is not already equal to the corresponding component in se. 

For the strict inequality in H7 to hold, it is instrumental that every state of the 

system (except at most one for each event) changes after any given event occurs 

(i.e. fe(s) ≠ s for all s ≠ se). The assumption that players’ aspiration levels are 

different from their respective payoffs guarantees such a requirement. Without 

that assumption, H7 does not necessarily hold in its strict form.  
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Finally, H8 reads: 

H8. For any  there is a positive integer k and there are k events e1 ,…, ek 

such that 
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H8 is immediate having proved H7 in its strict form, since at least one event is 

possible in any state.█ 

 

Lemma 2. Consider any 2-player 2-strategy BM system where players’ 

aspiration levels differ from all their respective payoffs. Let se be the state 

associated with event e. If e may occur when the system is in state s  

(Pr{En = e | Sn = s} > 0), then  
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Proof. The BM model specifications guarantee that if event e may occur when 

the system is in state s, then it will also have a positive probability of happening in 

any subsequent state. Mathematically, 

Pr{En = e | Sn = s} > 0     →    Pr{En+t = e | Sn = s} > 0 for any t ≥ 0 

This means that any finite sequence of events {e, e…e} has positive probability of 

happening. Note now that if the system is in state s ≠ se and event e occurs, the 

distance from s to se is reduced by a fixed proportion in each of the components of 

s which is not already equal to the corresponding component in se. This proportion 

of reduction is, for each player, the product of the player’s absolute stimulus 

magnitude generated after e and the player’s learning rate. Both proportions are 

strictly between 0 and 1 since players’ aspiration levels are different from their 

respective payoffs by assumption. Let k be the minimum of those two proportions. 

Imagine then that event e keeps occurring, and note the following bound. 
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The proof is completed taking limits in the expression above. 
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Proof of Proposition 4-1. Statement (i) is an application of Theorem 1 in 

chapter 2 of Benveniste et al. (1990, p. 43). Statement (ii) follows from Theorem 

8.1.1 in Norman (1972, p. 118). The assumptions to apply this Theorem are listed 

in Norman (1972, p. 117). Here we show that with the hypotheses in Proposition 

4-1, all these assumptions hold. In this section, following Norman (1972), the 

state of the system in iteration n is denoted Xn, and the letter θ  denotes the 

learning rate. Since the state space II =θ  is independent of θ , (a.1) is satisfied. 

 does not depend on θθθ /nn XH Δ= θ , so (a.2) and (a.3) hold. All components of 

the functions )(E)( xXHxw nn == θθ  and )))(((E)( 2 xXxwHxs nn =−= θθ  are 

polynomials, so every assumption (b) is satisfied. Finally, since  does not 

depend on 

θ
nH

θ  the supremum over θ  can be omitted in (c), and also the module of 

each of the components of  is bounded by the maximum learning rate, so (c) is 

also satisfied. Thus Theorem 8.1.1 is applicable. Finally, Statement (iii) is an 

application of Theorem 4.1 in chapter 8 of Kushner and Yin (1997).█ 
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Proof of Proposition 4-2. Proposition 4-2 follows from Theorem 2.3 in 

Norman (1968, p.67), which requires the model to be distance-diminishing and 

one extra assumption H10.  
H10. There are a finite number of absorbing states a1 ,…, aN , such that, for any 

, there is some aj(s) for which Ss∈

0=
∞→
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Given the assumptions of Proposition 4-2, Lemma 1 can be used to assert that the 

BM model is distance diminishing, with associated stochastic processes Sn and En. 

Proving that H10 prevails will then complete the proof. The proof of H10 rests on 

the following three points: 

a) If in state s there is a positive probability of an event e occurring, then, 

applying Lemma 2: 
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 where se is the state associated with the event e. 

b) The state se associated with a Mutually Satisfactory (MS) event e is 

absorbing. Note also that there are at most four absorbing states. 

 166 



c) From any state there is a positive probability of playing a MS event within 

three iterations.  

 

Points (a) and (b) are straightforward. To prove (c) we define strictly mixed 

strategies as those that assign positive probability to both actions, and mixed 

states as states where both players’ strategies are strictly mixed. Note that after an 

unsatisfactory event, every player modifies her strategy so the updated strategy is 

strictly mixed, and that strictly mixed strategies will always remain so.  

 

Since players’ aspiration levels are below their respective maximin by assumption, 

there is at least one MS event. Hence from any mixed state there is a positive 

probability for a MS event to happen. We focus then on non-mixed states where 

no MS event can occur in the first iteration. This implies that the event in the first 

iteration is unsatisfactory for at least one player, so at least one player will have a 

strictly mixed strategy in the second iteration. Without loss of generality let us say 

that player 1 has a strictly mixed strategy in the second iteration. If player 2’s 

strategy were also strictly mixed, then the state in the second iteration would be 

mixed, and a MS event could occur. Imagine then that the state in the second 

iteration is not mixed. Given that player 1’s aspiration is below its maximin, there 

is a positive probability that the event in iteration 2 will be satisfactory for player 

1. If such a possible event is also satisfactory for player 2, an MS event has 

occurred. If not, then both players will have a strictly mixed strategy in iteration 3, 

so a MS event could happen in iteration 3. This finishes the proof of point (c). 

 

The proof of the fact that every SRE can be asymptotically reached with positive 

probability if the initial state is completely mixed rests on two arguments: (a) 

there is a strictly positive probability that an infinite sequence of any given MS 

event e takes place (this can be proved using Theorem 52 in Hyslop (1965, p.94)), 

and (b) such an infinite run would imply convergence to the associated (SRE) 

state se. We also provide here a theoretical result to estimate with arbitrary 

precision the probability  that an infinite sequence of a MS event e =  

begins when the system is in mixed state p = ( ). 

∞L ),( 21 dd

21 ,2,1 , dd pp

 167



]))(1)(1(1[]))(1)(1(1[lim 222,2
0

111,1 21

t
d

n

t

t
dn

dslpdslpL −−−−−−= ∏
=

∞→∞  

The following result can be used to estimate  with arbitrary precision:  ∞L
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We are indebted to Professor Jörgen W. Weibull for discovering and providing 

the lower bound in this result (personal communication).█ 

 

Proof of Proposition 4-3. Each statement of Proposition 4-3 will be proved 

separately. Statement (i) is an immediate application of Theorem 2.3 in Norman 

(1968, p.67), which requires the model to be distance-diminishing and the extra 

assumption H10 (see proof of Proposition 4-2). Having proved in Lemma 1 that 

the model is distance-diminishing, we prove here that H10 holds. The proof of 

H10 rests on the same three points (a-c) exposed in the proof of Proposition 4-2. 

The terminology defined there is also used here. Points (a) and (b) are 

straightforward. To prove (c), remember that after an unsatisfactory event, every 

player modifies her strategy so the updated strategy is strictly mixed, and that 

strictly mixed strategies always remain so. By assumption, there is at least one 

absorbing state, which means that there must be at least one MS event. This 

implies that from any mixed state there is a positive probability for a MS event to 

happen.  

 

Since players’ aspirations are above their respective maximin, given any action for 

player i, there is always an action for her opponent such that the resulting event 

would be unsatisfactory for player i. In other words, if one of the players has a 

strictly mixed strategy, then there is a positive chance that the system will be in a 

mixed state in the next iteration. We focus then on states where no player has 

strictly mixed strategies and a MS event cannot occur in the first iteration. This 

implies that the event in the first iteration is unsatisfactory for at least one player, 

who will have a strictly mixed strategy in the second iteration and, as just shown, 

this implies a positive probability that the system will be in a mixed state in the 

third iteration. The proof of statement (i) is then finished. 
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Statement (ii) follows from Theorem 2.2 in Norman (1968, p.66), which requires 

the model to be distance-diminishing and one extra assumption H9.  

H9.   for all 0=
∞→
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Having proved in Lemma 1 that the model is distance-diminishing, we prove here 

that H9 holds. Since, by assumption, there are no absorbing states, there cannot be 

MS events. This implies that the event in the first iteration is unsatisfactory for at 

least one player, who will have a strictly mixed strategy in the second iteration. As 

argued in the proof of statement (i), this implies a positive probability that the 

system will be in a mixed state in the third iteration. Therefore at the third 

iteration any event has a positive probability of happening, so we can select any 

one of them, the state se associated with it, and then, by Lemma 2, we know that 

 for any state s, so H9 holds. █ 0=
∞→
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Proof of Proposition 4-4. The reasoning behind this proof follows Sastry et al. 

(1994). Statement (i) can be proved considering one player i who benefits by 

deviating from the SRE by increasing her probability pi,q to conduct action q. The 

expected change in probability pi,q can then be shown to be strictly positive for all 

pi,q > 0 while keeping the other player’s strategy unchanged. Statement (ii) can be 

proved considering the Jacobian of the linearization of ODE [2]. Without loss of 

generality, assume that Yi = {A, B} and the certain outcome at the SRE is ySRE = 

(A, A). Choose p1,B and p2,B as the two independent components of the system, so 

the SRE is [p1,B , p2,B] = [0, 0]. The Jacobian J at the SRE is then as follows:   

⎥
⎦

⎤
⎢
⎣

⎡
−−⋅

−⋅−
=

)),()),((()),((
)),(()),()),(((

AABAAB
BAAAAB

22222

11111

sslsl
slssl

J
δδ

δδ
   

where  
⎩
⎨
⎧

≥
<

=
0 if
0 if0

xx
x

x)(δ

It is then straightforward that if ySRE = (A,A) is a mutually satisfactory (si(A,A) > 

0) strict Nash equilibrium (s1(A,A) > s1(B,A); s2(A,A) > s2(A,B)) and at least one 

unilateral deviation leads to a satisfactory outcome for the non-deviating player 

(s1(A,B) ≥ 0 or s2(B,A) ≥ 0), then the two eigenvalues of J are negative real, so the 

SRE is asymptotically stable.█ 
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Notes to extend the theoretical results to populations of players. All 

the lemmas and propositions in chapter 4 and this appendix can be easily extended 

to finite populations from which two players are randomly drawn to play a 2×2 

game taking into account the following points: (1) the state of the system Sn in 

iteration n is the mixed-strategy profile of the whole population. (2) An event En 

in iteration n comprises an identification of the two players who have played the 

game in iteration n and their decisions. (3) Pure states are now associated (in the 

sense given in the notation of the appendix) with chains of events, rather than 

with single events. A pure state s is associated with a finite chain of events c 

(where every player must play the game at least once) if the occurrence of c 

pushes the system towards s from any other state. 

 

Proof of Proposition 4-5. Let Θ be the mixed-strategy space of the finite 

normal-form game. The proof consists in applying Brouwer’s Fixed Point 

theorem to the function )()( 1 pPPp nn =≡ + |EW  that maps the mixed-strategy 

profile p ∈ Θ to the expected mixed-strategy profile W(p) after the game has been 

played once and each player has updated her strategy pi accordingly. Since the 

mixed-strategy space Θ is a non-empty, compact, and convex set, it only remains 

to show that  is a continuous function. Let wi(p) be the ith component 

of W(p), which represents player i’s expected strategy for the following iteration. 

Therefore:   
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Since all  are continuous for every y and every i by hypothesis, W(p) is also 

continuous. Thus, applying Brouwer’s Fixed-Point theorem, we can state that 

there is at least one p* ∈ Θ such that W(p*) = p*. This means that the expected 

change in all (p i,j)* (probability of player i following her jth pure strategy) is zero. 
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