
7.   Discussion 
In broad terms, most of the results presented in the previous 3 chapters can be 

seen as logical deductive inferences of the form:  

 

“Set of assumptions A”  IMPLIES  “Set of (deduced) statements B”   [7-1]

 

As a matter of fact, any computer simulation and any mathematical derivation can 

be seen as a logical inference that establishes the truth of a set of statements B 

(e.g. the output of a model, or a derived mathematical result) given the assumption 

that a set of statements A (expressed in e.g. computer code, or as a set of 

equations) are true.  

 

Deductive logical inferences are more useful the greater the generality of the set 

of assumptions A, and the greater the scope and level of detail of the set of 

deduced statements B. As an example, consider the results presented in chapter 4 

on the dynamics of the Bush-Mosteller reinforcement model. These results 

advance previous work by Cross (1973) and by Börgers and Sarin (1997) because 

the results derived in this thesis are valid not only for positive stimuli, but also for 

negative ones; thus, the generality of the set of assumptions investigated in this 

thesis is greater. Similarly, the results presented in that same chapter are an 

advancement of (parts of) the work conducted by Macy and Flache (2002) and 

Flache and Macy (2002) on the Bush-Mosteller model because the level of detail 

of the characterisation of this model’s dynamics is significantly greater in this 

thesis.  

 

The logical inferences derived in this thesis can be applied in a number of useful 

ways. This chapter outlines 5 ways in which the research conducted in the 

previous chapters can be usefully applied to contribute to the advancement of 

human knowledge. 
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7.1. Direct application of the derived inferences 
The simplest application of the logical statement “A implies B” relates to the case 

where A is thought, postulated, or demonstrated to be true. If a set of individuals 

are playing a certain game using one of the decision-making algorithms 

investigated in this thesis (e.g. the Bush-Mosteller reinforcement learning 

algorithm), then the results obtained in the previous chapters can be used to 

predict the (dynamic) outcome of the game, and also how this outcome may 

change when certain conditions (e.g. the magnitude of the payoffs or the speed at 

which players learn) are modified. Similarly, since “A implies B” is logically 

equivalent to “Not B implies Not A”, if the observed results are deemed 

significantly different from B, then logical statement [7-1] can be used to infer 

that A cannot be true.  

7.2. Assessment of the importance of assumptions in similar 
models 
Another way in which logical statement [7-1] can be meaningfully used concerns 

the identification of crucial assumptions in inferences of the type “Set of 

assumptions A2 implies set of statements B2”. Consider the case where sets A and 

A2 contain a large number of identical assumptions. An example of this would be 

two models of the same game: one of the models (A2) assumes common 

knowledge of rationality among the players, whereas the other model (A) assumes 

that players make decisions following the Bush-Mosteller reinforcement learning 

approach. Comparing the set of deduced results B and B2 will be illuminating: 

any difference between B and B2 can be attributed to the differences between A 

and A2. Thus, inference [7-1] can be used to assess the impact of various 

assumptions in models that are similar to the one defined by the set of 

assumptions A, but not the same. A clear illustration of this type of inference in 

the literature is given by Flache and Hegselmann (1999), who compare two 

models that differ only in the decision-making algorithm used by a set of players 

confronting the same spatial social dilemma setting: in one of the models, players 

use (partially) rational strategies that cooperate whenever reciprocal cooperation 

can be sustained as a rational equilibrium in the 2-player game they play (i.e. 

whenever the “shadow of the future” (Axelrod, 1984) is powerful enough); in the 

other model, players use a reinforcement learning rule based on Bush and 
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Mosteller’s (1955) principles. In particular, Flache and Hegselmann (1999) show 

that under a wide range of conditions, the reinforcement learners need more time 

than the (partially) rational players to form stable cooperative relationships. This 

line of work was further developed by Hegselmann and Flache (2000), who 

compared rational behaviour and the Bush-Mosteller reinforcement learning rule 

over all possible symmetric 2x2 prisoner’s dilemma games.   

7.3. Selection, parameterisation, and validation of models 
A third way in which the research conducted in this thesis contributes to the 

advancement of human knowledge concerns the interdependent processes of 

selecting, parameterising, and validating a model. A model is an abstraction of a 

real-world system that allows us to establish inferences about how the real-world 

system or certain aspects of it operate. Any model represents a compromise 

between realism and manageability (Intriligator et al., 1996, p. 13). Ideally, one 

would like to have a model that captures the essence of the target system (i.e. the 

model is realistic) and, at the same time, enables us to draw insights and 

conclusions that could not be derived from direct observation of the target system 

(i.e. the model is manageable). A perfectly manageable model that is not realistic 

is not useful; similarly, a realistic model that is not manageable (i.e. it does not 

yield new insights) is useless. This thesis has increased the manageability of 

several models that have received empirical support, thus improving their 

applicability. In this way, the work reported in this thesis enhances game 

theorists’ toolkit of models that can be usefully employed to study real-world 

systems.  

 

The task of selecting one particular model often includes considering various 

different alternatives. Naturally, the choice of criteria for the comparison of 

models depends on the purpose of the modelling exercise. Models in game theory 

are often compared with the aim of understanding what decision-making 

processes may be generating an observed pattern of play (see e.g. Feltovich 

(2000) and Camerer (2003)). For that purpose, one is often interested in studying 

the models’ ability to reproduce observed statistical signatures and to predict 

patterns of play to a satisfactory extent. To conduct this assessment, the models to 

 143



be compared need to be parameterised first. The following section outlines how to 

do this. 

7.3.1. Parameterisation of models 
As explained in section 3.2.2, the models investigated in this thesis can all be 

meaningfully formalised as Markov processes. The implicit assumption when 

parameterising a model with a set of observed data is that such data have been 

generated by the (appropriately parameterised) model. The challenge when 

parameterising the models studied in this thesis is that they represent systems 

where the state is not a variable that can be observed, i.e. the Markov chain is 

hidden. What is available to an observer is the pattern of play (i.e. the decisions 

made by the players), which is a stochastic process governed by the underlying 

Markov chain, but different from it. As an example, consider the Bush-Mosteller 

model of reinforcement learning. As explained in chapter 4, the model can be 

formalised as a Markov chain {Xk}k≥0 whose state is fully specified by a two-

dimensional vector [ p1,C , p2,C ], where pi,C is player i’s probability to cooperate. 

The sequence of actual decisions made by the players is another stochastic process 

{Yk}k≥0 which is linked to the hidden Markov chain {Xk}k≥0 in the sense that Xk 

governs the distribution of the corresponding Yk. Since only {Yk} is observed, any 

statistical inference about the unknown parameters of the Markov chain {Xk} must 

be done in terms of {Yk}. Fortunately, methods to parameterise hidden Markov 

chains have been developed remarkably in the last few years. An excellent 

introduction to conduct this type of parameterisation is given by Cappé et al. 

(2005). In addition to the analysis of the pattern of play, it could well be the case 

that the value of certain parameters can be inferred using various other methods, 

like purpose-designed experiments, questionnaires or interviews with the players. 

These methods may be more reliable, simpler and, in any case, constitute a source 

of potentially very useful information that does not decrease the validity of the 

quantitative methods described above; thus, it seems most advisable to conduct 

them, if at all feasible. 

7.3.2. Selection, validation, and applicability of models 
Once the models to be compared have been parameterised, the process of 

selecting one can proceed. This is an activity that is strongly linked with the 
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process of model validation. In broad terms, models are compared with the aim of 

selecting the best one of them according to some set of criteria, whereas validating 

the selected model is studying whether this (best) model is “good enough” for the 

intended purpose. Thus, it seems natural that the same techniques used to pick out 

the best model are appropriate to assess its validity too.  

 

A model is valid to the extent that it provides a satisfactory range of accuracy 

consistent with the intended application of the model (Kleijnen, 1995)39. As 

mentioned above, models in game theory are often constructed with the aim of 

understanding what decision-making processes may be generating an observed 

pattern of play. In that context, validation often refers to the process of assessing 

how well a model is capturing the essence of its empirical referent. As mentioned 

above, one should not forget that a simple approach to validate a model about how 

certain individuals played a game is actually asking that same question to the 

individuals themselves40. Unfortunately, this does not seem to be a common 

approach in the literature of experimental game theory, even though it seems clear 

that it has the potential to contribute significantly to the design of more realistic 

models. The long tradition of introspective theoretical work in classical game 

theory may be at the root of this apparent lack of interaction with experimental 

subjects.    

 

One common technique to quantify the extent to which a model is capturing the 

essence of a pattern of play consists in studying the models’ ability to reproduce 

observed statistical signatures and to predict patterns of play to a satisfactory 

extent. This is an issue extensively studied in the systems identification literature 

(Söderström and Stoica, 1989; Ljung, 1999). The general approach to validate a 

model is based on an in-depth analysis of its prediction error, which is a measure 

of the disparity between the observed data and the model’s predicted output. If 

possible, the preferred option is to evaluate the model performance using a set of 
                                                   
39 See a complete epistemic review of the validation problem in Kleindorfer et al. (1998).  
40 Work outside the literature in experimental game theory suggests that players’ responses may 

vary depending on when they are asked to describe their reasoning processes (Ericsson and Simon, 

1980). People tend to verbalise what they are doing more accurately when asked while they solve a 

problem rather than when asked some time after having tackled the problem. 
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data different from the data employed to parameterise the model (i.e. the 

estimation data). If, on the other hand, the prediction error has to be calculated 

using the estimation data, there are a number of model selection criteria (e.g. 

Akaike’s information criterion (Akaike, 1969) and minimum description length 

(Rissanen, 1978)) designed to avoid biases and pitfalls (e.g. overparameterisation 

and overfitting) by adding certain correcting terms to the computed prediction 

error (Ljung, 1999, p. 507). These correcting approaches are especially relevant 

when comparing models that have different number of parameters. An important 

part of the validation exercise is then the analysis of residuals (i.e. the part of the 

validation data that the model could not reproduce). This analysis minimally 

consists in plotting the residuals, computing basic statistics on them, analysing 

their structure, and conducting tests of independence. The precise purpose of the 

modelling exercise will dictate what other tests will be useful. 

 

At this point it is worth addressing a criticism that the Bush-Mosteller model 

investigated in chapter 4 of this thesis has recently received, and which relates to 

its applicability. Bendor et al. (2007) argue that the BM model (and many others) 

have “little empirical content” because “such models imply that virtually anything 

can happen” (see reply by Macy and Flache (2007)). They prove their point 

showing that any outcome of the game can be sustained as a stable outcome by 

some pure SRE. Their proof of this result consists in setting an aspiration 

threshold below the lowest payoff of the game. As shown in chapter 4, once a 

certain value for the aspiration threshold is chosen, it is not generally true that any 

outcome can be sustained by an SRE. In fact, it is straightforward to see that any 

value for the aspiration threshold above the minimum payoff will preclude at least 

one outcome from being sustained by an SRE. Thus, their criticism refers to a 

Bush-Mosteller model where players have aspiration thresholds below the 

minimum payoff they can receive. In our view, the aspiration threshold is a 

parameter whose value can be estimated using empirical methods by e.g. using the 

theory of inference in hidden Markov chains mentioned in the previous section. 

The fact that it is possible to find a specific value for the aspiration threshold such 

that any outcome can be supported by an SRE is not a drawback of the model, 

since the value of the aspiration threshold can be inferred from empirical 

observation, and most of the values this parameter can take induce a process 
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where not every outcome can be sustained by an SRE. An analogy that comes to 

mind is Newton’s theory of gravitation: this theory provides (in particular) a 

mapping between the height at which an object is released and the time that the 

object takes to hit the ground (time = f(height)). Similarly, this thesis has 

characterised the (non-trivial) mapping between the parameters of the Bush-

Mosteller model (in particular, the aspiration threshold) and the dynamics of the 

resulting process (in particular, the characterisation of the set of SREs): 

 

Set_of_SREs = function(Aspiration_Threshold). 

 

It is indeed true that for any given outcome, one can always find an aspiration 

threshold so the outcome is supported by an SRE. Similarly, in Newton’s theory 

of gravitation, for any time t0 one can always find a height h0 such that f(h0) = t0, 

but this does not seem to be a drawback of the theory. 

 

Bendor et al.’s (2007) criticism seems to be unjustified even in the case where 

aspiration thresholds are so low that any outcome can be sustained by an SRE. As 

explained in chapter 4, even in the case where there is a positive probability that 

any outcome will be played indefinitely, this probability is generally different for 

different outcomes and depends on a number of factors (e.g. initial conditions, 

aspiration thresholds, and learning rates). The exact probability of approaching 

each possible SRE can be estimated to any degree of accuracy using the methods 

explained in chapter 4. Thus, the Bush-Mosteller model yields predictions that can 

be falsified, even when aspiration thresholds are below the minimum payoff. 

7.4. Modelling frameworks 
As explained in chapter 2, there is nowadays a whole universe of models that 

abandon the demanding assumptions of classical game theory on players’ 

rationality and beliefs. These models make different assumptions regarding the 

meaning of payoffs, the amount of information that players can access, players’ 

computational capabilities, and the level at which the dynamics are described (i.e. 

population adaptation vs. individual learning), to mention a few. The formal 

analysis of these models is often quite challenging, and consequently most of the 

research conducted until now has focused on characterising the dynamics of each 
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of these non-trivial models in relative isolation. There is obviously a lot to be 

gained from comparing different models, but our lack of in-depth knowledge of 

their dynamics has meant that this comparison has had to be postponed. 

Fortunately, nowadays the number of models that have been thoroughly analysed 

seems to be sufficient to justify initiating the process of creating frameworks –i.e. 

meta-models– where alternative models would arise as particular cases.  

 

An example of a useful framework that has been proposed within the field of 

learning game theory is Flache and Macy’s (2002) general reinforcement learning 

(GRL) framework. Flache and Macy’s (2002) framework integrates a smoothed 

version of the Erev-Roth model (see section 4.1) and the Bush-Mosteller model as 

particular cases. The GRL framework has a parameter that measures the level of 

fixation in the decision-making algorithm. When this fixation parameter equals 0, 

the framework reduces to the Bush-Mosteller model, whereas if the parameter 

equals 1, the obtained model is Erev and Roth’s. The use of the GRL framework 

enabled Flache and Macy to conduct a transparent and fruitful comparison of the 

two models and also to uncover hidden assumptions in both models.  

 

An example of a framework within the field of evolutionary game theory is EVO-

2x2. As explained in chapter 6, EVO-2x2 is a computer simulation modelling 

framework designed to formally investigate the evolution of strategies in 2x2 

symmetric games under various competing assumptions. EVO-2x2 enables the 

user to set up and run many computer simulations (effectively many different 

models) aimed at investigating the same question using alternative assumptions. 

Thus, EVO-2x2 provides a single coherent framework within which results 

obtained from different stochastic finite models can be contrasted and compared, 

as illustrated in section 6.5.2. 

 

The development of frameworks is useful not only to assess the impact of various 

assumptions in theoretical terms, but also to inform experimental research. By 

making differences between models explicit, frameworks can facilitate the design 

of experiments targeted at identifying the type of models that may be most 

adequate in a certain situation. Frameworks can also help to identify the factors 

(i.e. types of assumption) that may have the greatest impact in the outcome of a 
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social interaction. Thus, the use of frameworks may facilitate the interaction 

between game theorists and empirically-driven social scientists, from which game 

theory would benefit so much. The ideal result of this interaction would be a 

framework encompassing various models as particular cases, where the 

differences between the models were made explicit, and where each model were 

annotated with indications about the type of context for which the model may be 

most adequate.  

 

A discussion about frameworks raises the question of whether evolutionary and 

learning game theory could be integrated into a single discipline. The derivation 

of a significant number of theoretical results relating various learning models with 

different versions of the replicator dynamics (e.g. Börgers and Sarin, 1997; Posch, 

1997; Hopkins, 2002; Hopkins and Posch, 2005) would seem to suggest that the 

integration of these two fields may be within reach (Weibull, 1998). However, the 

integrative theoretical results tend to establish analogies at a very high level of 

abstraction. A representative example is given by Börgers and Sarin (1997), who 

demonstrate that the continuous time limit approximation of the dynamics of the 

Bush-Mosteller learning model (which cannot be used to characterise its 

asymptotic behaviour, as demonstrated in chapter 4) converges to the replicator 

dynamics of evolutionary game theory. These types of result are certainly useful, 

as they provide non-biological interpretations of evolutionary models, and 

evolutionary interpretations of learning models. However, the number of 

assumptions that are needed to align models from the two disciplines tend to 

decrease the applicability of the obtained inferences significantly. Thus, it seems 

that there are many frameworks that can be usefully developed at lower level of 

abstractions before the integration of learning and evolutionary game theory can 

take place. 

7.5. Models as ‘tools to think with’ 
The formal models developed in this thesis have also been useful as ‘tools to think 

with’. The clearest example of this use of a model is illustrated in section 5.5, 

where the concept of iterative elimination of dominated outcomes was put 

forward. Iterative elimination of dominated outcomes is a logical process through 

which players can arrive at sensible (i.e. Pareto optimal) outcomes in games. 
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Dominated outcomes are outcomes which are not individually rational – i.e. there 

is at least one player who is obtaining a payoff below her Maximin. The idea 

behind the process of iterative elimination of dominated outcomes is that players 

cannot rationally accept outcomes where they are not obtaining at least their 

Maximin (rational players are not exploitable). When players who do not accept 

outcomes where they get a payoff lower than Maximin meet, they might learn by 

playing the game the fact that their opponent is not exploitable either. If this 

occurs, it will be mutual belief that dominated outcomes cannot be sustained 

because at least one of the players will not accept them. That inference (and the 

consequent disregard of dominated outcomes by every player) can make an 

outcome that was not previously dominated in effect be dominated. In other 

words, the concept of dominance can be applied to outcomes iteratively just as it 

is applied iteratively to strategies. 

 

In this section we expand the philosophical basis of this process of reasoning by 

outcomes a bit further. As mentioned several times in this thesis, the history of 

classical game theory has been marked by the assumption that agents are 

instrumentally rational. However, except in strictly competitive games, defining 

rational behaviour in games is by no means straightforward (Colman, 1995). The 

challenge in game theory is that, in general, the definition of rational behaviour 

for any one player depends on the behaviour of potentially every other player in 

the game. As an example, in an iterated Prisoner’s Dilemma game, the rational 

strategy against a player who always defects is to defect, but the rational strategy 

against a player who is known to play Tit for Tat may be to cooperate, if the 

number of rounds is sufficiently large. 

 

Thus, in order to identify the rational course of action in a game, one is bound to 

partition the infinite set of possible behaviours that the other players may take 

according to some criterion, and then try to compute the best reply to each type of 

behaviour identified. Classical game theory partitions this universe of possible 

behaviours according to strategies. In this way, classical game theory defines 

rationality in terms of beliefs about the strategy that the other players may use: 

rational players do not choose dominated strategies because there is no belief 

about the other players’ strategies such that selecting the dominated strategy is 
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optimal. The partition of the “behaviour space” according to strategies is quite 

natural since, after all, it is strategies that players can choose. 

 

On the other hand, players’ measure of success –i.e. the obtained payoff– is not 

determined solely by their strategy, but by every player’s strategy, i.e. by the 

resulting outcome of the interaction. Thus, it may also seem natural to assume that 

players do not think in terms of strategies, but in terms of outcomes. In other 

words, players may be willing to accept certain outcomes but not others. The 

models developed in chapter 5 triggered the idea of defining rationality 

partitioning the universe of possible behaviours according to outcomes, instead of 

strategies. This leads to the definition of the so-called outcome-based rationality. 

According to this definition, rational players do not accept dominated outcomes. 

Note that this definition is somewhat problematic, since the words “do not accept” 

already imply the existence of some dynamics. Remember, however, that the 

definition of rationality based on strategies also led to similarly worrying 

problems (e.g. the existence of many possible Nash equilibria).  

 

Once outcome-based rationality is defined, one can develop the same concepts 

that were explained in section 2.2.2 using the new definition of rationality. Thus, 

one can define the process of iterative elimination of dominated outcomes, and 

also the concept of rationalisable outcomes.  

 

The definition of outcome-based rationality has a certain intuitive appeal which 

becomes apparent when studying the Prisoner’s Dilemma. The process of iterative 

elimination of dominated outcomes leaves mutual cooperation as the unique 

surviving outcome. The reasoning behind this logical process goes as follows: 

players are rational and therefore they will not accept the outcome where they 

receive the sucker’s payoff. They also know that the other player is rational, so 

they acknowledge the fact that their counterpart is not going to be exploitable 

either. Once this is recognised by the two players, the rational course of action is 

to try to achieve mutual cooperation rather than mutual defection. 

 

It seems clear that even though there is a clear causal link between strategies and 

outcomes, defining rationality in terms of outcomes rather than in terms of 
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strategies leads to completely different results even in the simplest games. Section 

5.2 explained how rational strategies may lead to outcomes that are not rational, 

whereas rational outcomes may be generated by strategies that are not rational. A 

more thorough account of the implications of outcome-based rationality is left for 

future work.  
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