
6.   Structural Robustness of Evolutionary Models in 

Game Theory♣ 

6.1. Introduction 
Naturally, the method that scientists have traditionally followed to advance our 

formal understanding of evolutionary social interactions has been to design and 

study models that were tractable with the tools of analysis available at the time. 

Until not long ago, such tools have derived almost exclusively from the realm of 

mathematics, and they have given rise to mainstream Evolutionary Game Theory 

(EGT). Mainstream EGT has proven to be tremendously useful (Weibull, 1995), 

but it is founded on many assumptions made to ensure that the resulting models 

could be mathematically analysed (e.g. infinite and homogeneous populations, 

random encounters, infinitely repeated interactions…). The aim of this chapter is 

to assess the extent to which some of these assumptions are affecting the 

conclusions obtained in mainstream EGT.  

 

The assumptions made in EGT for the sake of mathematical tractability have had 

important implications both in terms of the classes of systems that have been 

investigated, and in terms of the kind of conclusions that have been drawn 

concerning such systems.  

 

In terms of classes of systems, in order to achieve mathematical tractability, EGT 

has traditionally analysed idealised systems, i.e. systems that cannot exist in the 

real world (e.g. a system where the population is assumed to be infinite). 

Typically, mainstream EGT has also imposed various other assumptions that 

simplify the analysis, but which do not necessarily make the system ideal in our 

terminology (i.e. unable to exist in the real world). Some examples of common 
                                                   
♣ Some parts of the material presented in this chapter have been published in Izquierdo, L. R., 

Izquierdo, S. S., & Polhill, J. G. (2006), “EVO-2x2: a modelling framework to study the evolution 

of strategies in 2x2 symmetric games under various competing assumptions”, in Proceedings of 

the First World Congress on Social Simulation, Kyoto, Japan, Vol. 2, pp. 273-280, and in 

Izquierdo, S.S. and Izquierdo, L.R. (2006). On the Structural Robustness of Evolutionary Models 

of Cooperation. Lecture Notes in Computer Science 4224, pp. 172-182. 
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assumptions in EGT are: populations are well-mixed (each individual is equally 

likely to interact with any other individual), interactions are infinitely repeated, 

strategies are deterministic and there is a finite set of them, individuals are 

selected with probabilities proportional to their fitness, and invasions are 

homogenous and arbitrarily small. Applying mainstream EGT to non-idealised 

systems can be very problematic because the validity for non-idealised systems of 

conclusions drawn from extremely similar idealised systems is not as 

straightforward as one may think. As an example, Beggs (2002) demonstrates that 

when analysing some types of evolutionary idealised systems, results can be 

widely different depending on the order in which certain limits are taken: if one 

takes the limit as population size becomes (infinitely) large and then considers the 

limit as the force of selection becomes strong, then one obtains different results 

from those attained if the order of the limits is inverted. Thus, Beggs (2002) warns 

that “care is therefore needed in the application of these approximations”. 

 

The need to achieve mathematical tractability has also influenced the kind of 

conclusions obtained in mainstream EGT. Thus, mainstream EGT has focused on 

analysing the stability of incumbent strategies to arbitrarily small mutant 

invasions, but has not paid much attention to the overall dynamics of the system 

in terms of e.g. the size of the basins of attraction of different evolutionary stable 

strategies, or the average fraction of time that the system spends in each of them. 

 

Nowadays it has just become possible to start addressing the limitations of 

mainstream EGT outlined above. The current availability of vast amounts of 

computing power through the use of computer grids is enabling us to conduct 

formal and rigorous analyses of the dynamics of non-idealised systems through an 

adequate exploration of their sensitivity both to basic parameters and to their 

structural assumptions. These analyses can complement previous studies by 

characterising dynamic aspects of (idealised and non-idealised) systems beyond 

the limits of mathematical tractability. It is this approach that we follow in this 

chapter. 

 

The structure of this chapter is as follows: section 6.2 outlines the general research 

question that EGT is mainly concerned with, and explains how our approach can 
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complement the work conducted in mainstream EGT. Section 6.3 describes EVO-

2x2, a computer simulation modelling framework designed to formally assess the 

impact of various assumptions commonly made in mainstream EGT. The 

subsequent two sections illustrate the use and the usefulness of EVO-2x2 with a 

particular example. The specific application selected here is a study of the 

structural robustness of evolutionary models of cooperation. To put our work into 

context, section 6.4 provides a brief and critical review of some of the most 

relevant work conducted on the evolutionary emergence of cooperation within the 

realms of game theory. Section 6.5 summarises some of the most interesting 

results we have obtained and the method we followed to analyse and summarise 

them. Finally, section 6.6 presents the conclusions of this investigation. 

6.2. Overall research question and approach 
In very broad terms, the question that EGT tries to answer is usually of the form: 

“In a population of individuals who repeatedly interact with each other, what sort 

of behavioural traits are likely to emerge and be sustained under evolutionary 

pressures?”. Naturally, the answer to such a question may depend on a number of 

assumptions regarding population size, population structure (i.e. how individuals 

meet to interact), the specific nature of each interaction, the mechanisms through 

which natural selection occurs, and how mutations take place. In this chapter we 

present a formal modelling framework (EVO-2x2) designed to address this 

general question from different angles, i.e. using various different assumptions. 

EVO-2x2 provides a single coherent framework within which results obtained 

from different models can be contrasted and compared with analytical approaches. 

Thus, EVO-2x2 can be used to investigate the impact of various assumptions 

which may all be valid when trying to answer the general question posed above.  

 

EVO-2x2 implements a wide range of competing plausible assumptions, all of 

which are fully consistent with the most basic principles of the theory of 

evolution. Logically, the assumptions embedded in EVO-2x2 limit its 

applicability. The most stringent assumption in EVO-2x2 is arguably the fact that 

interactions are modelled as 2-player 2-strategy (2x2) symmetric games. We will 

see in the next section, however, that individuals in EVO-2x2 are explicitly and 

individually represented, so any simulation conducted in EVO-2x2 is a non-
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idealised system (i.e. a system that could potentially exist in the real world). This 

move towards greater realism implies some loss of mathematical tractability, e.g. 

closed-form analytical solutions for the systems modelled in EVO-2x2 are not 

readily available. Nevertheless, EVO-2x2 is simple enough so many insights can 

be gained by using the theory of stochastic processes to analyse the results 

obtained by performing many simulation runs with it, as will be shown later. The 

following section explains all the assumptions embedded in EVO-2x2 in detail. 

Subsequently we illustrate the use of EVO-2x2 by studying the structural 

robustness of evolutionary models of cooperation. 

6.3. Description of EVO-2x2 
EVO-2x2 is a computer simulation modelling framework designed to formally 

investigate the evolution of strategies in 2x2 symmetric games under various 

competing assumptions. EVO-2x2 enables the user to set up and run many 

computer simulations (effectively many different models) aimed at investigating 

the same question using alternative assumptions. The specific question to be 

addressed is: “In a population of individuals who interact with each other by 

repeatedly playing a certain 2x2 symmetric game, what strategies are likely to 

emerge and be sustained under evolutionary pressures?”.  

6.3.1. The conceptual model 
In this section we explain the conceptual model that EVO-2x2 implements. The 

information provided here should suffice to re-implement the same conceptual 

model on any platform. Figure 6-1 provides a snapshot of EVO-2x2 interface, 

which is included here to clarify the explanation of the model. The reader may 

also want to consider following the explanation of the model using it at the same 

time; EVO-2x2 is included in the Supporting Material of this thesis. We use bold 

red italicised arial font to denote parameter names. 
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Figure 6-1. Snapshot of the interface in EVO-2x2. 

Overview of EVO-2x2 
In EVO-2x2, there is a population of num-players players. Events occur in discrete 

time-steps, which can be interpreted as successive generations. At the beginning 

of every generation every player’s payoff (which denotes the player’s fitness) is 

set to zero. Then, every player is paired with another player, according to some 

customisable procedure (pairing-settings), to play a 2-player match.  

 

Each match consists of a number of sequential rounds (rounds-per-match). In each 

round, the two members of the pair play a symmetric 2x2 game once, where each 

of them can undertake one of two possible actions. These two possible actions are 

called cooperate (C) and defect (D). The action selected by each of the players 

determines the magnitude of the payoff that each of them receives in that round 

(CC-payoff, CD-payoff, DC-payoff, DD-payoff). The total payoff that a player obtains in 

a match is the sum of the payoffs obtained in each of the rounds.  

 

Players differ in the way they play the match, i.e. they generally have different 

strategies. The strategy of a player is determined by three numbers in the interval  

[0 , 1]:  

• PC: Probability to cooperate in the first round.  
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• PC/C: Probability to cooperate in round n (n > 1) given that the other player 

has cooperated in round (n – 1).  

• PC/D: Probability to cooperate in round n (n > 1) given that the other player 

has defected in round (n – 1).  

 

Once every player has played one –and only one– match (except when the pairing 

mechanism is round robin, as explained below), two evolutionary processes (i.e. 

natural selection (selection-mechanism) and mutation (mutation-rate)) come into play 

to replace the old generation with a brand new one. Successful players (those with 

higher payoffs) tend to have more offspring than unsuccessful ones. This marks 

the end of a generation and the beginning of a new one, and thus the cycle is 

completed.  

Parameters 
The value of every parameter in EVO-2x2 can be modified at run-time, with 

immediate effect on the model. This enables the user to interact closely with the 

model by observing the impact of changing various assumptions during the course 

of one single run.  

Population parameters 

num-players: Number of players in the population. This number is necessarily even 

for pairing purposes. 

set-initial-players: This is a binary variable that is either on or off. If on, every 

player in the initial population will have the same strategy, which is determined 

using the following parameters: initial-PC, initial-PC/C, and initial-PC/D. If off, the 

initial population of strategies will be created at random using a uniform 

distribution. 

Rounds and Payoffs 

rounds-per-match: Number of rounds in a match. 

CC-payoff: Payoff obtained by a player who cooperates when the other player 

cooperates too.  

CD-payoff: Payoff obtained by a player who cooperates when the other player 

defects.  
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DC-payoff: Payoff obtained by a player who defects when the other player 

cooperates.  

DD-payoff: Payoff obtained by a player who defects when the other player also 

defects. 

Pairing settings 

This parameter (pairing-settings) determines the algorithm that should be used to 

form pairs of players. There are three options: 

• random pairings: Pairs are made at random, without any bias. Every 

player plays one and only one match in a generation.  

• round robin: Every player is paired with every other player once, so every 

player plays exactly (num-players – 1) matches per generation.  

• children together: Players are paired preferentially with their siblings (and 

at random among siblings). Once all the possible pairs between siblings 

have been made, the rest of the players are paired at random. Every player 

plays one and only one match in a generation. This procedure was 

implemented because it seems plausible in many biological contexts that 

individuals belonging to the same family tend to interact more often 

among them than with individuals from other families. The algorithm is 

formally equivalent to simple applications of tags (Holland, 1993) in 

evolutionary models (see Hales, 2000). 

Evolutionary forces 

selection-mechanism: This parameter determines the algorithm used to create the 

new generation. There are four options: 

• roulette wheel: This procedure involves conducting num-players 

replications, which form the new generation. In each replication, players 

from the old generation are given a probability of being chosen to be 

replicated that is proportional to their total payoff (which denotes their 

fitness).  

• Moran process: In each time-step (i.e. generation), one player is chosen 

for replication with a probability proportional to its fitness. The offspring 

replaces a randomly chosen player (possibly its parent). Payoff totals are 

set to zero at the beginning of every time-step.  
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• winners take all: This method selects the player(s) with the highest total 

payoff (i.e. the “winners”). Then, for num-players times, a random player 

within this “winners set” is chosen to be replicated. The num-players 

replications constitute the new generation. Note that this mechanism 

(which is sometimes called “cultural imitation”, e.g. see Traulsen et al., 

2006) violates the proportional fitness rule. 

• tournament: This method involves selecting two agents from the 

population at random and replicating the one with the higher payoff for the 

next generation. In case of tie, one of them is selected at random. This 

process is repeated num-players times. The num-players replications form the 

new generation.  

mutation-rate: This is the probability that any newly created player is a mutant. A 

mutant is a player whose strategy (the 3-tuple formed by PC, PC/C, and PC/D) 

has been determined at random.  

6.3.2. Displays 
EVO-2x2 provides various displays which are shown in Figure 6-1. Some of these 

displays are time-series plots showing the historical evolution of the value of a 

particular variable throughout generations (e.g. frequency of outcomes and 

population average values of fitness, PC, PC/C, and PC/D), whereas others refer 

only to the last generation (e.g. population distributions of fitness, PC, PC/C, and 

PC/D). 

 

The large square in the middle of the interface is the representation in the strategy 

space of every individual player in a generation. This representation is  

2-dimensional in EVO-2x2 due to constraints in the modelling platform (NetLogo 

3.0.2), but we also provide in the Supporting Material a 3D version of EVO-2x2, 

called EVO-2x2-3D (implemented in NetLogo 3-D Preview 1), where the three 

dimensions of the strategy space (PC, PC/C, and PC/D) are explicitly represented. 

This is the only difference between EVO-2x2-3D and EVO-2x2: EVO-2x2-3D 

represents players in the PC–PC/C–PC/D 3-dimensional strategy space, while 

EVO-2x2 displays the projection of such a space on the PC/C–PC/D plane 

(Figure 6-2). In Figure 6-2, the sphere (in the left-hand image) and its circular 

projection (in the right-hand image) indicate population averages.  
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Figure 6-2. Representation of players in the strategy space using EVO-2x2-3D (left) and EVO-2x2 

(right). The image on the right shows the top-down projection of the representation on the left. 

 

The cells in the background of the 2-dimensional projections of the strategy space 

are coloured in shades of blue according to the number of players that have spent 

some time on them. Each player that has visited a certain part of the strategy space 

leaves a mark that is used to create the density plots shown in Figure 6-2. The 

more players who have stayed for longer in a certain area, the darker its shade of 

blue. 

6.3.3. Exploration of the parameter space 
The rationale behind EVO-2x2 was to conduct a systematic exploration of the 

impact of various competing assumptions. An exploration of the parameter space 

is something that can be easily conducted within NetLogo using a tool called 

BehaviorSpace. This tool allows the user to set up and run experiments. Running 

an experiment consists in running a model many times, systematically varying the 

model’s settings and recording the results of each model run.  

 

The problem when undertaking experiments that involve large parameter sweeps 

is to organise, analyse, and summarise the vast amount of information obtained 

from them so the results can be meaningfully interpreted. To do that, we have 

created a set of supporting scripts (written in Perl and Mathematica, and available 

in the supporting Material) that are able to read in the definition of the experiment 

setup and all its results in the format used by NetLogo. The output of these scripts 

is: 
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• an automatically generated directory structure that reflects all the 

combinations of parameter values explored in the experiment (e.g. 

/100/random-pairings/roulette-wheel/0.001/…/), and  

• a customisable summary of the results of each model run, which is placed 

in the appropriate folder. 

 

An example of a useful summary of the results produced in a simulation run is the 

accumulated frequency of different types of strategies throughout the course of a 

simulation run. This is something that can be plotted in a 3D contour plot, and in 

complementary 2D density plots, as shown in Figure 6-3. The relationship 

between the 3D contour plot and the accompanying 2D density plots is sketched 

in Figure 6-4. 

 

Figure 6-3. Example of a graphical summary of the results obtained with EVO-2x2. This figure is 

automatically created and placed in the appropriate folder by the supporting scripts. 
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6.3.4. Implementation details 
EVO-2x2 has been implemented in NetLogo 3.0.2 (Wilensky, 1999). We also 

provide a 3-D version of EVO-2x2, called EVO-2x2-3D, which has been 

implemented in NetLogo 3-D Preview 1 (Wilensky, 1999). The two programs are 

available in the Supporting Material together with a user guide under the GNU 

General Public Licence. 

 

 

Figure 6-4. Sketch showing the relationship between the 3D contour plot and the accompanying 

2D density plots created by the supporting scripts. 

 

6.4. Evolutionary emergence of cooperation 
The fundamental challenge of understanding the evolutionary emergence and 

stability of cooperation can be illuminated, at the most elementary level, by 

identifying the conditions under which a finite number of units that interact by 

playing the Prisoner’s Dilemma (PD) may cooperate. These units might be able to 

adapt their individual behaviour (i.e. learn), or the population of units as a whole 
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may adapt through an evolutionary process (or both). While formalizing the 

problem of cooperation in this way significantly decreases its complexity (and 

generality), the question still remains largely unspecified: how many units form 

the population? How do they interact? What strategies can they use? What is the 

value of each of the payoffs in the game? and, crucially, what are the processes 

governing the dynamics of the system? 

 

It has been well known since the early years of the study of the evolution of 

cooperation that, in general, the question of how –if at all– cooperation emerges in 

a particular system significantly depends on all of the above defining 

characteristics of the system (see e.g. Axelrod, 1984; Bendor and Swistak, 1995, 

1997, 1998; Gotts et al., 2003b). Here we report previous work that has shed light 

on the robustness of evolutionary models of cooperation. We find it useful to 

place these models in a fuzzy spectrum that goes from mathematically tractable 

models with strict assumptions that limit their applicability (e.g. work on idealised 

systems), to models with the opposite characteristics. The rationale behind the 

construction and use of such a spectrum is that when creating a formal model to 

investigate a certain question (e.g. the evolution of cooperation), there is often a 

trade-off between the applicability of the model (determined by how constraining 

the assumptions embedded in the model are) and the mathematical tractability of 

its analysis (i.e. how deeply the functioning of the model can be understood given 

a certain set of available tools of analysis).  

 

The former end is mostly populated by models designed to ensure mathematical 

tractability. Near this end we find papers that study the impact of some structural 

assumptions, whilst still keeping others which ensure the model remains tractable 

and which, unfortunately, also tend to make the model retain its idealised nature. 

Gotts et al. (2003b) review many such papers in sections 2 and 4. Some of these 

investigations have considered finite vs. infinite populations (Nowak et al., 2004; 

Taylor et al., 2004; Imhof et al., 2005), different pairing settings or population 

structures (see section 6 in Gotts et al. (2003b) for a review, and Santos et al. 

(2006) for the most recent advances in this field), deterministic vs. stochastic 

strategies (Nowak, 1990; Nowak and Sigmund, 1990; Nowak and Sigmund, 

1992), finite vs. infinitely repeated games (Nowak and Sigmund, 1995), and 
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arbitrary intensities of selection (Traulsen et al., 2006). While illuminating, the 

applicability of most of these studies is somewhat limited since, as mentioned 

before, the models investigated there tend to retain their idealised nature. 

 

Near the opposite end, we find models that tend to be slightly more applicable 

(e.g. they consider non-idealised systems), but they are often mathematically 

intractable. It is from this end that we start in our investigation. To our 

knowledge, the first relevant study with these characteristics was conducted by 

Axelrod (1987). As explained in section 3.1, Axelrod had previously organized 

two open tournaments in which the participant strategies played an iterated PD in 

a round robin fashion (Axelrod, 1984). Tit for Tat (TFT) was the winner in both 

tournaments, and also in an ecological analysis that Axelrod (1984) conducted 

after the tournaments. Encouraged by these results, Axelrod (1987) investigated 

the generality of TFT’s success by studying the evolution of a randomly generated 

population of strategies (as opposed to the arguably arbitrary set of strategies 

submitted to the tournament) using a particular genetic algorithm. The set of 

possible strategies in this study consisted of all deterministic strategies able to 

consider the 3 preceding actions by both players. From this study, Axelrod (1987) 

concluded that in the long-term, “reciprocators […] spread in the population, 

resulting in more and more cooperation and greater and greater effectiveness”. 

However, the generality of Axelrod’s study (1987) is doubtful for two reasons: (1) 

he used a very specific set of assumptions, the impact of which was not tested, 

and (2) even if we constrain the scope of his conclusions to his particular model, 

the results should not be trusted since Axelrod only conducted 10 runs of 50 

generations each. As a matter of fact, Binmore (1994, p. 202; 1998) cites 

unpublished work by Probst (1996) that contradicts Axelrod’s results.  

 

In a more comprehensive fashion, Linster (1992) studied the evolution of 

strategies that can be implemented by two-state Moore machines in the infinitely 

repeated PD. He found a strategy called GRIM remarkably successful. In 

particular, GRIM was significantly more successful than TFT. GRIM always 

cooperates until the opponent defects, in which case it switches to defection 

forever. Linster (1992) attributed the success of GRIM over TFT to the fact that 

GRIM is able to exploit poor strategies while TFT is not. Linster’s investigation 
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was truly remarkable at its time, but technology has advanced considerably since 

then, and we are now in a position to expand his work significantly by conducting 

parameter explorations beyond what was possible before. As an example, note 

that Linster (1992) could only consider deterministic strategies and one specific 

value for the mutation rate; furthermore, in the cases he studied where the 

dynamics were not deterministic, there is no guarantee that his simulations had 

reached their asymptotic behaviour. 

 

Another important part of the literature on the study of the evolutionary 

emergence of cooperation using computer simulation comes from the use of tags. 

Tags are socially recognisable marks or signals that, in principle, are not 

necessarily linked to any particular form of behaviour (Holland, 1993). Tags do, 

however, influence the way individuals interact: individuals with similar tags have 

a preference to interact with each other (see e.g. Riolo (1997), Hales (2000), Riolo 

et al. (2001), Edmonds and Hales (2003)). Tags, like strategies, are also assumed 

to be passed from parents to their kin. Thus, tags and strategies follow a very 

similar evolutionary process. The resulting correlation between tags and strategies 

leads to a tendency for individuals with similar strategies to interact with each 

other. In the context of social dilemmas this correlation clearly favours 

cooperative behaviours, as it effectively diminishes the chances of exploitation.   

 

Riolo (1997) developed the first tag model in the study of the evolutionary 

emergence of cooperation in the PD. He showed that real-valued tags can promote 

high levels of cooperation in the iterated PD. Hales (2000) developed Riolo’s 

work and studied discrete tags, with preferential pairings occurring only if tags 

matched exactly. With this exact tag matching constraint, cooperation can emerge 

even when players interact for only one round. Hales’ pairing mechanism is 

formally equivalent to “children-together” in EVO-2x2 (see section 6.3.1). Tags 

as a useful mechanism to promote cooperation were further explored by Riolo et 

al. (2001). This piece of work, however, turned out to be flawed, as it relied upon 

the fact that individuals were forced to donate to others with an identical tag (see 

Roberts and Sherratt (2002) and Edmonds and Hales (2003) for a much more in-

depth investigation). Since then research using tags has worked towards making 
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this cooperation mechanism more robust, so it can be usefully applied in real-

world contexts (see e.g.  Hales and Edmonds (2005), and Edmonds (2006)). 

 

In the following section we use EVO-2x2 to conduct a consistent and systematic 

exploration of the impact of competing assumptions in non-idealised evolutionary 

models of cooperation. 

6.5. Robustness of evolutionary models of cooperation 
In this section we illustrate the usefulness of EVO-2x2 by applying it to advance 

our formal understanding of the structural robustness of evolutionary models of 

cooperation. To do this, we analyse simple non-idealised models of cooperation 

and we study their sensitivity to small structural changes (e.g. slight modifications 

in the way players are paired to interact, or in how a generation is created from the 

preceding one). Specifically, we aim to determine what behavioural traits are 

likely to emerge and be sustained under evolutionary pressures in the Prisoner’s 

Dilemma (PD). To do this rigorously, we have run many computer simulations 

(effectively many different models) aimed at addressing the same question: “In a 

population of individuals who interact with each other by repeatedly playing the 

PD, what strategies are likely to emerge and be sustained under evolutionary 

pressures?”. Given the amount of computing power required to conduct this 

research, all the simulations have been run on computer grids. 

6.5.1. Method followed to analyse the simulation results 
Defining a state of the system as a certain particularisation of every player’s 

strategy, it can be shown that all simulations in EVO-2x2 with positive mutation 

rates can be formulated as irreducible positive recurrent and aperiodic discrete-

time finite Markov chains. Thus, ergodicity is guaranteed. This observation 

enables us to say that there is a unique long-run distribution over the possible 

states of the system, i.e. initial conditions are immaterial in the long-run (Theorem 

3.15 in Kulkarni (1995)). Although calculating such (dynamic) distributions 

analytically is infeasible, we can estimate them using the computer simulations. 

The problem is to make sure that a certain simulation has run for long enough, so 

the limiting distribution has been satisfactorily approximated. To make sure that 

this is the case, for each possible combination of parameters considered, we ran 8 
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different simulations starting from widely different initial conditions. These are 

the 8 possible initial populations where every individual has the same pure 

strategy (the 8 corners of the strategy space). Then, every simulation run is 

conducted for 1,000,000 generations. Thus, in those cases where the 8 

distributions are similar, we have great confidence that they are showing a 

distribution close to the limiting distribution37. As an example, consider Figure 

6-5, where distributions starting from the 8 different initial conditions are 

compared. 

 

 

Figure 6-5. Accumulated frequency of different types of strategies in 8 simulation runs starting 

from different initial conditions. Axes are as in Figure 6-3. 

6.5.2. Results and discussion 
In this section we report several cases where it can be clearly seen that some of 

the assumptions in EGT that are sometimes thought to have little significance (e.g. 

mutation-rate, number of players, or population structure) can have a major 
                                                   
37 The appropriateness of the inductive method used here (which is not formal proof) to infer the 

asymptotic distribution of the system can be qualitatively checked by thinking what would happen 

if this method were to be applied to study the system characterised in chapter 4. In that case, the 

method would consist in running 4 simulations starting from the corners of the strategy space. 

Clearly, simulations starting in an SRE would stay there forever. Thus, only in those cases where 

there is really a unique asymptotic distribution, would the 4 simulations eventually look similar, 

and only when very close to the limiting distribution. In other words, the method used here would 

work perfectly well for the system characterised in chapter 4: the 4 cumulative distributions would 

look similar if and only if they were close to the limiting distribution. 
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impact on the type of strategies that emerge and are sustained throughout 

generations. The following are parameter values that are common to all the 

simulations reported here38: 

CC-payoff = 3; CD-payoff = 0; DC-payoff = 5; DD-payoff = 1;  

selection-mechanism = roulette wheel; 

 

Consider first the two distributions in Figure 6-6, which only differ in the value of 

the mutation rate used (0.01 on the left, and 0.05 on the right). The distribution on 

the left shows the evolutionary emergence and (dynamic) permanence of 

strategies similar to TFT (PC ≈ 1, PC/C ≈ 1, and PC/D ≈ 0; average time ≈ 3.3%). 

Such strategies are observed one order of magnitude less frequently for slightly 

higher mutation rates (distribution on the right; average time ≈ 0.3%). The other 

parameter values used were num-players = 100; pairing-settings = random pairings; 

rounds-per-match = 50. 

 

 

Figure 6-6. Influence of the mutation rate on the dynamics of the system. TFT measures the 

average time that strategies with PC ≥ (13/15), PC/C ≥ (13/15) and PC/D ≤ (2/15) were observed. 

 

The two distributions in Figure 6-7 only differ in the number of players in the 

population (100 on the left, and 10 on the right). The distribution on the left shows 

                                                   
38 The payoffs used in this chapter are those employed by Axelrod (1984), and consequently those 

used in most simulation papers on the evolution of cooperation. They are used here too to facilitate 

comparisons with previous research. 
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the evolutionary emergence and (dynamic) permanence of strategies similar to 

TFT (average time ≈ 3.3%), whereas –again– such strategies are observed one 

order of magnitude less frequently in smaller populations (average time ≈ 0.4%). 

The other parameter values are: pairing-settings = random pairings; rounds-per-

match = 50; mutation-rate = 0.01. 

 

 

Figure 6-7. Influence of the number of players in the population. TFT measures the average time 

that strategies with PC ≥ (13/15), PC/C ≥ (13/15) and PC/D ≤ (2/15) were observed. 

 

The two distributions in Figure 6-8 only differ in the algorithm used to form the 

pairs of players (random pairings on the left, and children together on the right). 

On the left, strategies tend to be very similar to ALLD (PC ≈ 0, PC/C ≈ 0, and 

PC/D ≈ 0), i.e. strongly uncooperative (average time ALLD ≈ 72%). In stark 

contrast, the distribution on the right is concentrated around strategies similar to 

TFT (average time TFT ≈ 23%; average time ALLD ≈ 1%). The other parameter 

values used were: num-players = 100; rounds-per-match = 5; mutation-rate = 0.05. 

The underlying reason behind the dramatic increase in cooperation when using the 

pairing algorithm “children together” (which is formally equivalent to simple 

applications of tags, see e.g. Hales, 2000) is that this mechanism promotes 

mimicry. Children, who have inherited the same strategy from their parents, tend 

to be paired together. This confers a great evolutionary advantage to cooperation, 

since it effectively rules out the possibility of exploitation: cooperators (and 

defectors) play only with each other. 
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Figure 6-8. Influence of different pairing mechanisms. TFT measures the average time that 

strategies with PC ≥ (10/15), PC/C ≥ (10/15) and PC/D ≤ (5/15) were observed; ALLD measures 

the average time that strategies with PC ≤ (5/15), PC/C ≤ (5/15) and PC/D ≤ (5/15) were observed. 

 

Figure 6-9 shows a very interesting result. The two distributions in Figure 6-9 

only differ in the set of possible values that PC, PC/C or PC/D can take. For the 

distribution on the left the set of possible values is any (floating-point) number 

between 0 and 1, and the strategies are mainly uncooperative, similar to ALLD 

(average time ALLD ≈ 60%). For the distribution on the right, the set of possible 

values is only {0, 1}, and the distribution is concentrated in TFT (average time 

TFT ≈ 58%). The other parameter values used were: num-players = 100; mutation-

rate = 0.05; rounds-per-match = 10;  

pairing-settings = random pairings. 
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Figure 6-9. Stochastic (mixed) strategies vs. deterministic (pure) strategies: influence in the system 

dynamics. TFT measures the average time that strategies with PC ≥ (10/15), PC/C ≥ (10/15) and 

PC/D ≤ (5/15) were observed; ALLD measures the average time that strategies with  

PC ≤ (5/15), PC/C ≤ (5/15) and PC/D ≤ (5/15) were observed.  

 

Given the clarity and importance of the results presented in Figure 6-9 we 

investigated this issue further. In Figure 6-10 and Figure 6-11 we show the effect 

of gradually increasing the set of possible values for PC, PC/C and PC/D (i.e. 

num-strategies). Figure 6-10 shows the (average) number of each possible outcome 

of the game (CC, CD/DC or DD) in observed series of 106 matches (this number 

of matches is selected so the effect of changing the initial state is negligible, i.e. 

results are close to the stationary limiting distribution).  
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Figure 6-10. Influence in the distribution of outcomes (CC, CD/DC or DD) of augmenting the set 

of possible values for PC, PC/C and PC/D.  

 

Figure 6-11 shows the average values of PC, PC/C and PC/D observed in the 

same series. Augmenting the set of possible values for PC, PC/C and PC/D 
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undermines cooperation and favors the emergence of ALLD-like strategies. The 

other parameter values used were: num-players = 100; mutation-rate = 0.01;  

rounds-per-match = 10; pairing-settings = random pairings. 
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Figure 6-11. Influence of augmenting the set of possible values for PC, PC/C and PC/D in the 

average values of these variables in the population.  

 

Thus, it is clear that the number of possible strategies has a tremendous effect on 

the evolutionary stability of cooperation. This is mainly due to the fact that the 

emergence of TFT-like behaviour crucially relies on perfect reciprocation. A 

single defection in a contest between two TFT-like strategies with high –but lower 

than 1– values of PC/C will result in a chain of uncoordinated outcomes CD-DC, 

thus losing much of their evolutionary advantage over ALLD. 

6.6. Conclusions of this chapter 
In this chapter we have shown by example that some of the assumptions made in 

mainstream evolutionary game theory for the sake of mathematical tractability can 

have a greater effect than what has been traditionally thought. In particular, the 

granularity of the strategy space and the assumption of well-mixed populations 

have proved to be critical in determining the type of strategies that are likely to 

emerge and be sustained in evolutionary contexts. 

 

More specifically, this chapter has studied the structural robustness of 

evolutionary models of cooperation, i.e. their sensitivity to small structural 

changes. To do this, we have focused on the Prisoner’s Dilemma game and on the 
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set of stochastic strategies that are conditioned on the last action of the player’s 

counterpart. Strategies such as Tit-For-Tat (TFT) and Always-Defect (ALLD) are 

particular and classical cases within this framework; here we have studied their 

potential appearance and their evolutionary robustness, as well as the impact of 

small changes in the model parameters on their evolutionary dynamics. Our 

results show that strategies similar to ALLD tend to be the most successful in 

most environments, whereas strategies similar to TFT tend to spread best in large 

populations, where individuals with similar strategies tend to interact more 

frequently, when only deterministic strategies are allowed, with low mutation 

rates, and when interactions consist of many rounds. 
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