
5.   The Implications of Case-Based Reasoning in 

Strategic Contexts♣ 

 

Though analogy is often misleading, it is the least misleading thing we have. 

−SAMUEL BUTLER 

5.1. Introduction 
Case-Based Reasoning (CBR) is a form of reasoning by analogy within a 

particular domain (Aamodt and Plaza, 1994; Nicolov, 1997). In the context of 

problem solving, analogy can be defined as the process of reasoning from a solved 

problem which seems similar to the problem to be solved (Doran, 1997). Thus, 

CBR basically consists of “solving a problem by remembering a previous similar 

situation and by reusing information and knowledge of that situation” (Aamodt 

and Plaza, 1994). The rationale is that if a solution turned out to be satisfactory 

when applied to a certain problem it might work in a similar situation too.  

 

Case-based reasoners do not employ abstract rules as the basis to make their 

decisions, but instead use similar experiences they have had in the past. Such 

experiences are stored in the form of cases. A case is “a contextualised piece of 

knowledge representing an experience that teaches a lesson fundamental to 

achieving the goals of the reasoner” (Kolodner, 1993, p. 13). Thus, when a case-

based reasoner has to solve a problem, she is reminded of a similar situation that 

she encountered in the past, of what she did then, and of the outcome that resulted 

in the recalled situation. She then uses that ‘similar past case’ as a basis to solve 

the problem in the present. Case-based reasoning generally consists of four main 

tasks (Aamodt and Plaza, 1994):  

                                                   
♣ Some parts of the material presented in this chapter have been published in Izquierdo L.R., 

Gotts, N.M. and Polhill, J.G. (2004) “Case-based reasoning, social dilemmas, and a new 

equilibrium concept”, Journal of Artificial Societies and Social Simulation, 7(3), and in Izquierdo, 

L.R. and Gotts, N.M. (2005) “The implications of case-based reasoning in strategic contexts”, 

Lecture Notes in Economics and Mathematical Systems 564, pp. 163-174. 
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1. Retrieve the most similar case or cases. Generally a case in CBR is rich in 

information and quite complex. Thus, performing similarity judgements is 

often an integral part of CBR. Admittedly, the representation of cases used 

in this chapter is particularly simple and, consequently, similarity 

judgements are straightforward; this is so because the primary objective of 

this research is to study the strategic implications of processes of 

reasoning based on one single distinctive past experience (in contrast with 

rule-based systems), and issues relating case representation are not so 

crucial for our purposes. The simple representation of cases used here may 

mean that certain researchers find the reasoning processes investigated in 

this chapter too unsophisticated to be called CBR; Aamodt and Plaza 

(1994) say: “a feature vector holding some values and a corresponding 

class is not what we would call a typical case description” (because it is 

too trivial). Thus, it is worth noting that the term CBR is used in this 

chapter –in a wider sense than Aamodt and Plaza’s– to denote a process of 

reasoning based on one single distinctive past experience, selected for its 

similarity to the current situation.   

2. Reuse the information and knowledge in the retrieved case to solve the 

current problem. The retrieved knowledge cannot always be directly 

applied, so some adaptation is sometimes required. 

3. Revise the proposed solution. This involves the evaluation of the proposed 

solution.  

4. Retain the relevant information for the future – i.e. learn. 

Case-based reasoning is often used as a problem-solving technique in domains 

where the distinction between success and failure is either fairly easy to make or 

is made externally. However, in decision-making contexts in general, the 

distinction between what is satisfactory and what is not can be far from trivial, 

and thus, the question of whether a particular decision used in the past should be 

repeated, or a new decision should be explored is crucial. This dilemma naturally 

gives rise to Simon’s (1957) notions of satisficing, as noted by Gilboa and 

Schmeidler (2001).  
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An alternative to CBR would be a rule-based system. One could induce the 

appropriate generalisations (rules) from the cases, and, in this view, CBR can be 

seen as a postponement of induction (Loui, 1999). However, when dealing with 

systems that are adaptive themselves (in the sense that they are constituted by 

adaptive agents), the ‘rules’ of the system vary as the system evolves and 

therefore agents must frequently revise their perceptions about the system. This 

could be done by constantly updating the set of induced rules or by using CBR. 

Agents who use CBR store the original cases without building rules that 

summarise them. In that way, cases can suggest solutions even to ill-defined 

problems, such as those arising in social dilemmas, for which there may not be an 

adequate set of general rules. 

Origins and use of case-based reasoning 
CBR arose out of cognitive science research in the late 1970s (Schank and 

Abelson, 1977; Schank, 1982). Schank and Abelson (1977) proposed that the 

general knowledge that we gain from experience is encoded in episodic memory 

as “scripts” that allow us to set up expectations and inferences. New episodes are 

processed by using dynamic memory structures which contain the episodes that 

are most closely related to the new episode; this process is called “reminding”. 

Schank (1982) develops the idea that, far from being an irrelevant artefact of 

memory, reminding is at the root of how we understand and how we learn. 

Reminding occurs during the normal course of understanding, or processing some 

new information, as a natural consequence of the processing of that information. 

He argues that “we understand in terms of what we already understood”.  

 

There are several psychological studies that provide support for the importance of 

CBR as problem-solving process in human reasoning, especially for novel or 

difficult tasks (see Ross (1989) for a summary). Klein and Calderwood (1988) 

studied over 400 decisions made by experienced decision makers performing a 

variety of tasks in operational environments and concluded that “processes 

involved in retrieving and comparing prior cases are far more important in 

naturalistic decision making than are the application of abstract principles, rules, 

or conscious deliberation between alternatives”. Drawing on their empirical 
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studies, they also developed a descriptive model of decision making in which the 

attempt is to satisfice rather than optimise.  

 

More recently, Gayer et al. (2007) have empirically examined the relative 

importance of rule-based versus case-based reasoning in housing asking prices. 

They hypothesise on theoretical grounds that case-based reasoning has relatively 

more explanatory power in the rental apartment market, whilst rule-based 

reasoning is relatively more prevalent in the sales market, and they find empirical 

support for this hypothesis when tested with two databases (rentals and sales) of 

asking prices on apartments in the greater Tel-Aviv area. However, their 

interpretation of case-based reasoning is significantly different from that 

explained above. In their model, case-based reasoning is modelled using a 

similarity-weighted average that makes use of all cases available at the time of 

making a decision. In general terms, they conjecture that, in comparison to rule-

based reasoning, case-based reasoning will be more prevalent in non-speculative 

markets than in speculative ones. They also state their belief that both modes of 

reasoning are likely to play a role in almost any decision-making process, and that 

a variety of factors may affect their relative importance. 

 

It seems therefore that CBR is plausible as at least a partial representation of how 

people make use of past experience: that they recall circumstances similar to those 

they now face and remember what they did and with what outcome (see for 

example Kahneman et al., 1982).  

 

There are also a number of industrial applications of CBR (Watson, 1997), 

particularly in domains where there is a need to solve ill-defined problems in 

complex situations; in such situations, it is difficult or impossible to completely 

specify all the rules (if they exist at all) but there are cases available.  

 

Within the domain of theoretical economics, a Case-Based Decision Theory 

(CBDT) has been proposed by Gilboa and Schmeidler (1995; 2001). CBDT is a 

formal theory of decision based on past experiences which was initially inspired 

by case-based reasoning. Having said that, as noted by the authors, CBDT has not 

much in common with CBR beyond Hume’s basic argument that “from causes 
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which appear similar we expect similar effects”. As pointed out when describing 

the empirical study conducted by Gayer et al. (2007), the main difference between 

CBR and CBDT is that while a defining feature of CBR is that “thought and 

action in a given situation are guided by a single distinctive prior case” (Loui 

1999), in CBDT decision-makers rank available acts according to the similarity-

weighted sum of utilities that resulted in all available cases. For the formalisation 

of an assessment rule based on such a similarity-weighted function see Gilboa et 

al. (2006). In any case, Gilboa and Schmeidler (1995; 2001) do not see case-based 

decision theory (CBDT) as a substitute for expected utility theory (EUT), but as a 

complement. They argue that CBDT may be more plausible than EUT when 

dealing with novel decision problems, or in situations where probabilities cannot 

easily be assigned to different states of the world (uncertainty, as opposed to risk), 

or if such states of the world cannot be easily constructed (ignorance). They also 

highlight that CBDT naturally gives rise to the notions of satisficing decisions and 

aspiration levels. 

 

Pazgal (1997) and Kim (1999) apply CBDT in strategic contexts. Pazgal (1997) 

analyses general games of mutual interest (i.e. games where there exists a unique 

pure strategy profile that gives the highest possible payoff to every player), and 

Kim (1999) focuses on symmetric 2x2 games of mutual interest to study the 

aspiration updating mechanism in greater depth18. The decision-making algorithm 

employed by players in these two studies bears very little resemblance to CBR as 

interpreted above: players in Pazgal’s and Kim’s models do not consider different 

cases or experiences, they choose the action that has given them the highest 

cumulative past payoff (relative to their current aspiration) throughout the whole 

history of the game, and their aspiration thresholds are updated using a weighted 

average of its previous value and an average function of received payoffs. This 

                                                   
18 Kim (1999) studies 2x2 games with an outcome (i.e. a pure strategy profile) which every player 

strictly prefers, and refers to these as “common interest” games. Following Aumann and Sorin 

(1989), I use the term “common interest game” to denote the wider class of games where there is a 

unique payoff profile that strongly Pareto dominates all other payoff profiles (and this payoff 

profile may be achieved via several strategy profiles), and I use the more specific term “mutual 

interest game” to denote games where there exists a unique pure strategy profile that gives the 

highest possible payoff to every player.  
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decision-making algorithm (identified by the authors as a form of case-based 

maximisation) is significantly different from that consisting in maximising 

average payoffs (as nicely illustrated by Kim (1999)), but it is also fundamentally 

different from CBR as interpreted in this chapter. As a matter of fact, it seems to 

us that the essence of these two models is closer to reinforcement learning than to 

case-based reasoning, as also noted by Bendor et al. (2001a; 2001b). 

 

To our knowledge, the implications of CBR interpreted as explained above in 

strategic contexts had never been formally explored up until now. In this chapter 

we develop and analyse a game theoretical model where individuals use a very 

simple form of CBR. 

Structure of this chapter 
In this chapter we use social dilemma games to illustrate the strategic implications 

of case-based reasoning. The following section is devoted to explaining why 

social dilemmas in particular are especially revealing to understand the 

differences between reasoning by cases and reasoning by rules. Section 5.3  

presents a simple model that is used to shed light on the conditions under which 

CBR as individual decision mechanism may entail cooperation in social 

dilemmas. The results obtained with this model are presented and discussed in 

sections 5.4 and 5.5 respectively. Section 5.6 presents a generalisation of the 

model analysed in sections 5.4 and 5.5.  In particular, players in the more general 

model may make occasional mistakes in their decisions. The dynamics of this 

second model are explained and discussed in 5.7. Finally, section 5.8 presents the 

conclusions of this chapter.  

5.2. Case-based reasoning and social dilemmas 
This chapter provides various results on the asymptotic dynamics of a rather 

general form of CBR for any finite normal-form game (see section 5.7). The 

transient dynamics of CBR models, however, strongly depend on the definition of 

the particular CBR algorithm employed by players and also on the specific game 

they play. Thus, to explore the whole dynamics of games played by agents who 

use a simple form of CBR, the scope of study has had to be limited to some 
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extent. In particular, whenever it has been found that the specific parameterisation 

of the game has made a difference I have focused on analysing social dilemmas.  

 

Social dilemmas offer a promising arena to distinguish the differences between 

reasoning by cases (or outcomes19) and reasoning by rules (or strategies). The 

following illustrates why this is the case using the Prisoner’s Dilemma. Although 

defining rational strategies in interdependent decision-making problems is by no 

means trivial, it seems sensible to assume that a) rational players choose dominant 

strategies20, and b) rational players do not choose dominated strategies21. 

Similarly, even though defining rational outcomes cannot be done without 

controversy, it also seems sensible to agree that rational outcomes must be Pareto 

optimal22. Assuming only those necessary conditions for the rationality of 

strategies and outcomes, we can state that in the one-shot Prisoner’s Dilemma and 

other social dilemmas, even though there is a clear causal link between strategies 

and outcomes, rational strategies (understood as those chosen by rational players) 

lead to outcomes that are not rational, whereas rational outcomes are generated by 

strategies that are not rational (i.e. those strategies that a rational player would 

never select).  

 

In this chapter we explore two social dilemma games:  a 2-player and an n-player 

version of the Prisoner’s Dilemma (PD). Because of the players’ decision making 

algorithms (explained in sections 5.3 and 5.7), the actual values of the payoffs are 

not relevant as long as they satisfy:  

Temptation > Reward > Punishment > Sucker 

                                                   
19 An outcome is a particular combination of decisions, each of them made by one player. 
20 Recall that, for a player A, strategy SA is (strictly) dominant if for each combination of the other 

players’ strategies, A’s payoff from playing SA is (strictly) more than A’s payoff from playing any 

other strategy (Gibbons, 1992, p. 5). 
21 For a player A, strategy SA is (strictly) dominated by strategy S*A if for each combination of the 

other players’ strategies, A’s payoff from playing SA is (strictly) less than A’s payoff from playing 

S*A (Gibbons, 1992, p. 5). 
22 An outcome is Pareto optimal if there is no other outcome where at least one player is better off  

and no player is worse off. 

 89



In the n-player social dilemma every player gets a reward as long as there are no 

more than M defectors (M < n). The payoff that defectors get is always higher 

than the payoff obtained by those who cooperate (Def-P > Coop-P). However, 

every player is better off if they all cooperate than if they all defect (Coop-P + 

Reward-P > Def-P). Figure 5-1 shows the payoff matrix for a particular player:  

 

 Fewer than M 
others defect M others defect More than M 

others defect 
Player cooperates Coop-P + Reward-P Coop-P + Reward-P Coop-P 
Player defects Def-P + Reward-P Def-P Def-P 

Figure 5-1. Payoff matrix of the “Tragedy of the Commons game” for a particular agent. 

 

This game has been called in the literature the “Tragedy of the Commons game” 

(Kuhn, 2001) after the influential paper written by Hardin (1968). Henceforth we 

will refer to this game as the TC game. When the maximum number of defectors 

M for which the reward is given is high, it represents a version of the “volunteer’s 

dilemma” (Brenan and Lomasky, 1984; Diekmann, 1985): a group needs a few 

volunteers, but each member is better off if others volunteer. If the number of 

players is large enough, the case when exactly M others defect is sufficiently 

unlikely that for all intents and purposes it can be ignored. Assuming the latter, we 

have a “social dilemma” as defined by Dawes (1980): “all players have 

dominating strategies that result in a deficient equilibrium”23. In any case, we 

have a “problematic social situation” (Diekmann, 1986; Raub and Voss, 1986), or 

social dilemma in a broader sense, which can be defined in game theory terms as a 

game with Pareto inefficient24 Nash equilibria. The TC game differs from the 

two-player PD in three important ways: 

1. In the TC game, for a small number of players, the state of “minimally 

effective cooperation” (exactly M defectors) is not negligible, so there is not a 

dominant strategy. 

                                                   
23 An equilibrium is deficient if there exists another outcome which is preferred by every player. 
24 An outcome is Pareto inefficient if there is an alternative in which at least one player is better off 

and no player is worse off. 
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2. In the TC game, using pure strategies, there are two Nash equilibria: everyone 

defecting (universal defection25) and exactly M defectors (minimally effective 

cooperation). 

3. In the two-player PD, universal cooperation is a Pareto optimal outcome since 

no player can be better off without making the other player worse off. 

However, in the TC game the only Pareto optimal outcome is the state of 

minimally effective cooperation. 

5.3. The CBR model 
In this section we present a simple CBR decision-making algorithm that players 

will use to decide whether to cooperate or not when confronted with one of the 

two social dilemma games described in the previous section. This model will be 

named “the CBR model”. Individuals play repeatedly the game – once per time-

step – and every time they do so, each player retains a case (representing the 

experience they lived in time-step t) which comprises: 

1. The time-step t when the case occurred. 

2. The perceived state of the world at the beginning of time-step t, characterised 

by the value of the following descriptors in the preceding ml (for memory 

length) time-steps:  

• Descriptor 1 (D1): the number of other defectors. 

• Descriptor 2 (D2): the decision that the player holding the case made.  

As an example, if ml = 2 then the perceived state of the world for the case-

holder will be determined by the number of other defectors and the decision 

she made, both in time-step t – 1 and in time-step t – 2).  

3. The decision the case-holder made in that situation, i.e. whether she 

cooperated or defected in time-step t, having observed the state of the world 

in that same time-step. 

4. The payoff that the case-holder obtained after having decided in time-step t.  

 

Thus the case representing the experience lived by player A in time-step t has the 

following structure: 

                                                   
25 Universal defection is a Nash equilibrium as long as M < n-1. 
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dft-ml … dft-2   dft-1
t 

dt-ml … dt-2   dt-1

dt pt

where  

dft  is the number of defectors (excluding player A) in time-step t, 

dt  is the decision made by player A in time-step t, and 

pt  is the payoff obtained by player A in time-step t. 

 

The number of cases that players can keep in memory is unlimited. It is also worth 

noting that no cases are available for any player until (ml + 1) time-steps have 

gone by in the simulation. Players make their decision whether to cooperate or not 

by retrieving two cases: the most recent case which occurred in a similar situation 

for each of the two possible decisions (i.e. each of the two possible values of dt). 

A case is perceived by the player to have occurred in a similar situation if and 

only if its state of the world is a perfect match with the current state of the world 

observed by the player holding the case. The only function of the perceived state 

of the world is to determine whether two situations look similar to the player or 

not. In a particular situation (i.e. for a given perceived state of the world) a player 

must face one of the following three possibilities: 

1. The player cannot recall any previous situations that match the current 

perceived state of the world. In CBR terms, the Agent does not hold any 

appropriate cases for the current perceived state of the world. In this 

situation the player will decide at random.  

2. The player does not remember a previous similar situation when she made a 

certain decision, but she does recall at least one similar situation when she 

made the other decision. In CBR terms, all the appropriate cases the player 

recalls have the same value for dt. In this situation, the player will explore 

the non-applied decision if the payoff she obtained in the last previous 

similar situation was below her Aspiration Threshold AT; otherwise she will 

keep the same decision she previously applied in similar situations. 

3. The player remembers at least one previous similar situation when she made 

each of the two possible decisions. In this situation, the player will focus on 

the most recent case for each of the two decisions and choose the decision 
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that provided her with the higher payoff26. In this way, players adapt their 

behaviour according to the most recent feedback they got in a similar 

situation. 
 

This completes the specifications of “the CBR model”. The UML activity diagram 

of the players’ decision making algorithm is outlined in Figure 5-2. In the 

simulation experiments reported in this chapter, all the players share the same 

aspiration threshold AT and the same memory length ml. These are the two crucial 

parameters in the CBR model, determining when an outcome is satisfactory and 

when two situations are similar, respectively. The behaviour of a slightly more 

advanced socioeconomic Agent which also uses CBR in their decision-making 

algorithm but takes into account social approval is explored in Izquierdo et al. 

(2003).   

 

Figure 5-2. UML activity diagram of the CBR decision making algorithm. 

                                                   
26 A tie is impossible in either of the two games analysed in this chapter. 
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5.4. Results with the CBR model 
The software used to conduct the experiments reported in this section was written 

in Objective-C using the Swarm libraries (http://www.swarm.org) and is available 

in the Supporting Material together with a user guide under the GNU General 

Public Licence. The program is known to work on a PC using Swarm 2.1.1 and on 

a Sun Sparc using Swarm 2001-12-18.  
 

As might be expected, the CBR model is very sensitive to the decisions that 

players make at random. Since the model has stochastic components, the results 

for a given set of parameters cannot be given in terms of assured outcomes but 

only as a range of possible outcomes, each with a certain probability of 

happening. The probability of each outcome can be either estimated by running 

the model several times with different random seeds or, under certain 

circumstances, exactly computed.  
 

Players in the CBR model make decisions at random only when they perceive a 

novel state of the world. Since the number of different states of the world that a 

player can perceive is finite, so is the number of random decisions the player can 

make. Therefore, simulations must end up in a cycle. To study how often players 

cooperate in the PD we define the ‘cooperation rate’ as the number of times 

bilateral cooperation is observed in a cycle divided by the length of the cycle. 

Similarly, we define the ‘reward rate’ in the TC game as the number of times the 

reward is given in a cycle divided by the length of the cycle. 

5.4.1. Prisoner’s Dilemma 
Aspiration  Thresholds 
It is important to realise that when players play the PD, they share the same 

perception of the state of the world (defined by the last ml moves of the two 

Players) in the sense that any two situations that look the same to one player will 

also look the same to the other player and any two situations that look different to 

one player will also look different to the other player. Therefore, at any given time 

in the simulation our players will have visited any given state of the world the 

same number of times. This shared perception of the state of the world means that, 

for a certain state of the world, the only relevant factor is the random decision that 

they make when they first experience that situation. 
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The decision dynamics for a certain state of the world are summarised in Table 

5-1. Consider for now the first four rows of the table (T < AT). These represent the 

case where the aspiration threshold AT (for both players) exceeds T. The first time 

any particular state of the world occurs, both players will choose C (Cooperate) or 

D (Defect) at random (column headed “1st visit”). When the same perceived state 

occurs a second time, the responses will be as shown in the “2nd visit” column, 

and so on. The table shows that by the third visit to that state, either both players 

are cooperating or both players are defecting, and both will then continue to make 

the same response. The other four sets of rows in the table show what happens 

when the AT is in each of four lower ranges of values.  
 

Aspiration 
Thresholds (AT) 

1st visit 
(random) 2nd visit 3rd visit 4th visit and 

onwards x y 

CC DD CC CC 1 - 
CD DC DD DD - 2 
DC CD DD DD - 2 

T < AT 

DD CC CC CC 1 - 

CC DD CC CC 1 - 
CD DD DC DD - 2 
DC DD CD DD - 2 

R < AT ≤ T 

DD CC CC CC 1 - 

CC CC CC CC 0 - 
CD DD DC DD - 2 
DC DD CD DD - 2 

P < AT ≤ R 

DD CC CC CC 1 - 

CC CC CC CC 0 - 
CD DD DD DD - 1 
DC DD DD DD - 1 

S < AT ≤ P 

DD DD DD DD - 0 

CC CC CC CC 0 - 
CD CD CD CD - - 
DC DC DC DC - - 

AT ≤ S 

DD DD DD DD - 0 

Table 5-1. Decisions made by each of the two players in the PD when visiting a certain state of the 

world for the i-th time. In the first column, payoffs are denoted by their initial letter. In columns 2 

to 5, the first letter in each pair corresponds to the decisions of one player, the second letter to 

those of the other. C is cooperation and D is defection. The first imbalance between CC and DD 

for every value of AT has been shadowed. The meaning of x and y is explained in the text. The 

results shown in this table are independent of the memory length.  
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There are two states of the world that appear to be particularly important in the 

dynamics of the game. One is that where there have been ml successive bilateral 

cooperations (let us call it mlBC); the other is where there have been ml 

successive bilateral defections (let us call it mlBD). Whenever bilateral 

cooperation follows a visit to mlBC, then mlBC is immediately revisited (since 

players observe again that they both cooperated in the last ml time-steps). 

Similarly, whenever bilateral defection follows a visit to mlBD, then mlBD is 

immediately revisited (since players observe again that they both defected in the 

last ml time-steps). We can then define x as the number of times that mlBC has to 

be revisited after it has been abandoned before stable cooperation is reached, and 

y as the number of times that mlBD has to be revisited after it has been abandoned 

before stable defection is reached. As an example, when AT > T, if both players 

happen to cooperate when they observe mlBC for the first time, then they will 

both experience mlBC for the second time in the following time-step. Both of 

them will then defect (2nd visit to mlBC), and in doing so will abandon mlBC. If 

mlBC is then revisited (3rd visit), it will never be left again. In this hypothetical 

example, the number of times x that mlBC had to be revisited after it was 

abandoned before stable cooperation was reached was 1. This information is 

included in Table 5-1 and its significance will be explained later. 

 

When the simulation locks in to a cycle (and it necessarily does), the states that 

make up the cycle are repeatedly visited, leading to outcomes shown in the “4th 

visit and onwards” column in Table 5-1. Looking at that column, we can identify 

two values for the aspiration threshold AT that make a particularly important 

difference: Sucker and Punishment.  

• When AT > Sucker, simulations lock in to cycles which are necessarily 

made up of bilateral decisions (both players cooperate or defect at the same 

time), since if a player receives the Sucker payoff in any situation, they will 

never cooperate again in that situation. In this sense our players are 

particularly unforgiving. Players with aspiration thresholds greater than 

Sucker cannot be systemically exploited. The importance of this will be 

discussed later.  

• When AT > Punishment, there is a qualitative jump in terms of average 

cooperation rates. This is because if AT > Punishment, when both Players 
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defect the first time they experience a certain state of the world, they will 

end up cooperating in that state, but they will end up defecting if AT ≤ 

Punishment. 

 

Taking into account the two previous points and looking at the “4th visit and 

onwards” column in Table 5-1, one could then think that average cooperation 

rates should be 25% if AT ≤ Punishment and 50% if AT > Punishment regardless 

of the Memory Length, but one would be wrong. Figure 5-3 shows the importance 

of aspiration thresholds and how they can modify the effect of the memory length. 

  

Cooperation Rates vs Memory Length
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Figure 5-3. Average cooperation rates when modelling two players with Memory Length ml and 

Aspiration Threshold AT, playing the PD. The average cooperation rate shows the probability of 

finding both Players cooperating once they have finished the learning period (i.e. when the run 

locks in to a cycle). The values represented for ml = 1 have been computed exactly. The rest of the 

values have been estimated by running the model 10,000 times with different random seeds. All 

standard errors are less than 0.5 %.  

 

The interactions between the aspiration threshold and the memory length can be 

explained by taking into account two factors. Both factors are related to the fact 

that, as the memory length increases, the number of possible perceived states of 

the world grows exponentially and it becomes less likely for any given state of the 

world to be revisited. From now on let us refer to each payoff by its initial letter. 
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1. The first factor concerns only the relative frequency of stable bilateral 

cooperation and stable universal defection27. This factor is present for any AT > S 

and represents a bias towards cooperation. Looking at Table 5-1, one could expect 

stable bilateral defection to be three times more likely than stable bilateral 

cooperation if S < AT ≤ P, and as likely as stable bilateral cooperation if AT > P. 

However, as the memory length increases, there is a certain bias towards stable 

bilateral cooperation. For the simulation to lock in to stable bilateral cooperation, 

it is required that a bilateral decision (a bilateral cooperation if  

S < AT ≤ P) follows the first visit to the state of the world formed by ml bilateral 

cooperations (mlBC) and that the same state of the world mlBC is revisited x more 

times after it is abandoned; similarly, stable bilateral defection requires a 

unilateral decision (or bilateral defection if S < AT ≤ P) following the first visit to 

the state of the world formed by ml bilateral defections (mlBD) and y more visits 

to that state of the world mlBD after it is abandoned. As we can see in Table 5-1, 

except for the trivial case28 where AT ≤ S, the average x is always less than the 

average y for any given aspiration threshold. For high values of the memory 

length, revisiting a state can take a very long time and the fact that stable bilateral 

cooperation needs fewer visits (x) to settle down than stable bilateral defection 

does (y) is an important bias towards the frequency of stable bilateral cooperation. 
 

2. The second factor explains why average cooperation rates not only fail to 

increase, but actually decrease with memory length for S < AT ≤ P and R < AT ≤ 

T. This factor is present for S < AT ≤ T and it represents a bias towards 

cooperation if P < AT ≤ R, and a bias towards defection if S < AT ≤ P or R < AT ≤ 

T. For any AT > S, the simulation ends up in a cycle of bilateral decisions. 

Therefore, it is crucial to study whether there is a bias towards cooperative 

bilateral decisions (CC) or towards defective bilateral decisions (DD) in the 

players’ learning process. Table 5-1 shows the history of decisions made by the 

players having observed any particular state of the world for different aspiration 

thresholds. The first imbalance between CC and DD for every value of AT has 
                                                   
27 This effect is explained in detail by Izquierdo et al. (2003). 
28 If the Aspiration Threshold does not exceed Sucker, Agents repeat the same decision that they 

made at random the first time they visited a certain state of the world whenever they visit the same 

state again. 
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been shadowed (e.g. if S < AT ≤ P the first imbalance occurs in the second visit, 

where DD is three times more likely to happen than CC). Imbalances in the earlier 

visits to a state of the world are more important because those in later stages 

might never materialise if a cycle is reached before they can occur. Imbalances in 

the component parts of the state of the world (CC and DD) make certain states of 

the world more likely to occur than others, hence leading to biases in the 

cooperation rate. What is not obvious is why the importance of such imbalances 

(in terms of reward rates) increases with the value of memory length. This is so 

because, even ignoring the fact that some states of the world are more likely to 

occur than others, not all states of the world are equally likely to form part of a 

cycle; some states can form cycles more easily than others29, and their relative 

frequency depends on the memory length. This is certainly the case for mlBC and 

mlBD. Not only are they the only states of the world that can form cycles just by 

themselves (assuming AT > S), but they also need fewer revisits to settle than the 

rest of the possible states of the world (see previous paragraph). Roughly half of 

the simulation runs reported in this paper with AT > S ended up in cycles made up 

by either mlBC or mlBD. This means that an imbalance between the frequency of 

mlBC and mlBD can affect the reward rate substantially. The imbalance between 

mlBC and mlBD given an imbalance between CC and DD does depend on the 

memory length. To clarify this, assume that DD is always z times more likely than 

CC; then mlBD will be zml times more likely than mlBC. This analysis is not a 

proof since successive states of the world are not independent, but it clarifies why 

imbalances gain importance as the value of the memory length increases. As we 

can see in Table 5-1, if S < AT ≤ P or R < AT ≤ T, the imbalance is towards the 

defective bilateral decision, making mlBD more likely to occur relative to mlBC 

as memory length increases, and thus reducing the average cooperation rate. On 

the other hand, if P < AT ≤ R, the imbalance is towards cooperation. 

 

The summary of the effect of each of the two factors depending on the AT 

outlined above is shown in Table 5-2, together with the total effect found in the 

simulations. We have not yet proved that the two effects explained here are the 

only operating factors. 

                                                   
29 Or, conversely, some cycles comprise fewer different states of the world than others. 
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 AT ≤ S S < AT ≤ P P < AT ≤ R R < AT ≤ T T < AT 
Effect of 
factor 1 No bias Bias towards 

cooperation 
Bias towards 
cooperation 

Bias towards 
cooperation 

Bias towards 
cooperation 

Effect of 
factor 2 No bias Bias towards 

defection 
Bias towards 
cooperation 

Bias towards 
defection No bias 

… … … … … … 

Total effect No bias Bias towards 
defection 

Bias towards 
cooperation 

Bias towards 
defection 

Bias towards 
cooperation 

Table 5-2. Effect on average cooperation rates of each of the two factors outlined in the text above 

depending on the value of AT, and results from the simulation runs. 

 

It is clear that in CBR, not only what is learnt, but the actual process of learning 

can be of major importance, and aspiration thresholds play a crucial role in that 

process. Consider, for example, the difference between the cases where P < AT ≤ 

R and where R < AT ≤ T. In both cases, players will learn to cooperate in any 

given state of the world if they happen to make the same decision the first time 

they visit that state, and they will end up defecting in that situation otherwise. 

Therefore, for those two values of AT, we could expect average cooperation rates 

to be the same or at least similar. However, because the actual process of learning 

is different, differences in average cooperation rates are substantial and get larger 

as the memory length increases (see Figure 5-3). 

Importance of a common perception of the state of the world 
To study the importance of having a shared perception of the state of the world in 

the PD, we studied the outcome of the game when played by players with partial 

representations of the state of world: players who only look at the other player’s 

actions (only descriptor D1) and players who only look at their own actions (only 

descriptor D2). In both these cases, the two players may perceive the state of the 

world differently. Figure 5-4 shows the results obtained for AT > T. The results for 

other aspiration thresholds are very similar30 so they are omitted.  

                                                   
30 Except, again, for the trivial case where AT ≤ S, in which the average cooperation rate is always 

25%. 
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Cooperation Rates vs Memory Length (AT  > T )
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Figure 5-4. Average cooperation rates when modelling two players with Memory Length ml, 

Aspiration Threshold greater than Temptation, and with 3 different representations of the state of 

the world (D1, D2, and D1&D2), playing the PD. The values represented for ml = 1 have been 

computed exactly. The rest of the values have been estimated by running the model 10,000 times 

(ml = 2, 3, 4) or 1,000 times (ml = 5, 6) with different random seeds. All standard errors are less 

than 1%. 

 

The difference in terms of average cooperation rate between the complete 

representation of the state of the world (D1&D2) and the two incomplete 

representations of the state of the world (D1, and D2) is clear and it becomes 

larger the greater the value of memory length ml is. When both the player’s own 

decisions and the other player’s decisions form the perceived state of the world 

(D1&D2) the average cooperation rate is much higher than in the other cases.  

 

As we saw in Table 5-1, except in the trivial case where AT ≤ S, players will never 

cooperate again in a given state of the world after having received the Sucker 

payoff in that state. When using either of the two incomplete perceptions of the 

state of the world, there are sets of situations that are represented by the same 

perceived state of the world for one player but by different perceived states of the 

world for the other. The size of such sets of situations increases as the memory 

length ml increases. In these sets of situations, one of the players will make 

several decisions at random in situations which they perceive as novel, but which 

are represented by one single perceived state of the world for the other player. 
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This fact strongly increases the chances of the latter player getting a Sucker payoff 

and therefore not achieving a cooperative outcome.  

5.4.2. The Tragedy of the Commons game 

Aspiration Thresholds 
The TC game is more complex to analyse than the PD since at any given time in 

the simulation players have not necessarily visited what they perceive as a distinct 

situation the same number of times31. Therefore, in a given time-step some 

players may be making decisions at random while some others may not. This 

means that we cannot build a table like Table 5-1 for the TC game. 

 

Figure 5-5 shows the results obtained in the TC game when played by 10 players 

with memory length ml = 1, for different values of M (maximum number of 

defectors for which the reward is given). Similar results have been obtained when 

the game is played by 5 and by 25 players. 
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Figure 5-5. Average reward rates for different values of M in the Tragedy of the Commons game 

played by 10 Players with Memory Length ml = 1. Each represented value has been estimated by 

running the model 1,000 times. All standard errors are less than 1.5%. 

                                                   
31 Recall that players know only whether they cooperated or defected, and how many others 

defected. In the TC game, the information provided to the players is thus not complete in the sense 

that they cannot identify who is defecting, as they could in the PD (since there was only one other 

player). 
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Figure 5-5 shows that levels of cooperation strongly depend on the maximum 

number of defectors for which the reward is given (M). When the requirement is 

too demanding (low values of M), levels of cooperation tend to be low and the 

reward is not usually given. On the other hand, for moderate and high values of M 

(M ≥ 6), the reward is almost always given32. If players have aspiration thresholds 

greater than Def-P then the reward will be given more often than if they choose at 

random (AT ≤ Coop-P). The highest levels of cooperation are achieved when the 

aspiration thresholds are just above Def-P. Levels of cooperation then decrease as 

aspiration thresholds separate from the optimal value.  

Importance of a common perception of the state of the world 
To test the importance of a common perception of the state of the world, we put 

our players on a toroidal 2x5 grid so they could only observe their most 

immediate five neighbours in their Moore neighbourhood of radius 1. Results are 

shown in Figure 5-6.  
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Figure 5-6. Average reward rates for different values of M in the Tragedy of the Commons game 

played by 10 Players with Memory Length ml = 1. Every player A can observe other 5 players 

only, who are the only ones that can observe player A. Each represented value has been estimated 

by running the model 1,000 times. All standard errors are less than 1.5%. 

                                                   
32 When the game is played by 25 Agents, average reward rates are greater than 80% if M ≥ 15 and 

greater than 99% if M ≥ 19, for any aspiration threshold. 
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When players can observe only their local neighbourhood, the range of values of 

M to which the reward rate is sensitive is shifted and squeezed to the right. The 

use of local neighbourhoods sharpens the global movement from defection to 

cooperation. When players can only observe their neighbours, their global 

response to changes in the reward programme (parameterised by M) is not smooth 

anymore. Instead, the global behaviour is now better characterised by a hard 

threshold whose particular value depends on the aspiration threshold of the 

players forming the society. When players can only observe their neighbours there 

is a very narrow range of values for M where a very small change can make a 

huge difference. 

 

As in the previous case, the highest levels of cooperation are achieved when the 

aspiration thresholds are just above Def-P. It is once again clear from these results 

that in CBR, not only what is learnt is important, but also how it is learnt, and that 

aspiration thresholds play a crucial role in that process. 

5.5. Discussion of the results obtained with the CBR model 
The experiments conducted with the CBR model show that cooperation can 

emerge from the interaction of selfish and unforgiving (but satisficing) case-based 

reasoners. We are aware that the assumption that Agents make their decisions at 

random when confronted with a new situation is difficult to maintain. However, 

Table 5-1 shows that when AT > Maximin13, any positive correlation between the 

random decisions taken by the Agents will tend to increase levels of cooperation. 

Similarly, we would expect negative correlations to lead to less cooperative 

outcomes. The experiments have also shown that the optimal value of the 

aspiration threshold is just above Maximin, and that sharing a common perception 

of the state of the world strongly increases levels of cooperation.  

 

More importantly, the experiments conducted have revealed a concept of 

equilibrium which is more relevant than the Nash equilibrium for repeated games 

played by case-based reasoners: strictly undominated outcomes (or individually-

rational outcomes). The concept of strictly undominated outcome is defined for 

one single stage of any game. Its defining property is that no player can be 
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guaranteed a higher payoff by changing their decision33 (i.e. every player is 

getting at least their Maximin). The concept of strictly undominated outcome is 

weaker (i.e. less restrictive) than the Nash equilibrium: A Nash equilibrium is 

always a strictly undominated outcome but the reverse is not necessarily true. In 

particular, in the one-shot PD, bilateral cooperation is a strictly undominated 

outcome while it is not a Nash equilibrium.  

 

As opposed to the concept of Nash equilibrium (which makes the assumption that 

the other players will keep their strategies unchanged), the concept of strictly 

undominated outcome accounts for every possible action that the other players 

might take. A strictly undominated outcome as equilibrium concept is best defined 

by negation: if a certain player perceives that by changing their strategy they will 

always get a higher payoff no matter the other players’ response, then the player 

has a clear incentive to deviate from that outcome, so that outcome cannot be an 

equilibrium (it is strictly dominated by other outcomes). If, on the contrary, no 

player has such incentive, the outcome could be an equilibrium. It comes as no 

surprise that this equilibrium concept is based on outcomes rather than strategies, 

since case-based reasoners place the emphasis on the case rather than on the rule.  

 

In the PD, the only strictly undominated outcomes are the two bilateral decisions. 

In the TC the only strictly undominated outcome in which the reward is not given 

is universal defection; all the outcomes in which the reward is given are strictly 

undominated. 

 

It can be mathematically shown that all the non-trivial simulations (i.e. those 

where aspiration thresholds are above the lowest payoff) reported in this chapter 

must end up in cycles made up of strictly undominated outcomes (Izquierdo et al., 

                                                   
33 A slightly more restrictive concept is that of an undominated outcome, in which no player can 

be guaranteed the same or a higher payoff by changing their decision. The concept of undominated 

outcome as equilibrium implies that players deviate from an outcome only if it is certain that they 

will not be worse off by doing so, whereas the strictly undominated concept implies that players 

move away from an outcome only if it is certain that they will be better off by doing so. The 

concept of undominated outcome as equilibrium is neither weaker nor stronger than the Nash 

equilibrium. 
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2004). As we have seen in the previous section, the actual selection among 

different strictly undominated outcomes can be strongly path-dependent and 

depends on the specific type of CBR algorithm that players use.  

 

If their aspiration threshold is high enough, players in the CBR model will not 

accept outcomes in which they are guaranteed a higher payoff by changing their 

decision once their learning process is finished. However, they are quite naive in 

the sense that they are not able to infer that the game has locked in to a persistent 

cycle. In other words, they are not able to infer that the other players will not 

accept outcomes where they are not getting their Maximin either. We can 

conjecture what would happen if the players were sophisticated enough as to 

infer, through repeated interaction and learning, the fact that the rest of the players 

are also non-exploitable (i.e. they do not accept outcomes where they get a payoff 

lower than Maximin). Assuming (or learning) that the rest of the players are not 

exploitable can then enable a player X to infer that certain outcomes which give 

payoffs higher than Maximin to this player X will not be sustainable (because they 

do not yield payoffs higher than Maximin to some other player). This inference 

can make an outcome which was not initially strictly dominated in effect be 

dominated. In other words, the concept of strict dominance can be applied to 

outcomes iteratively just as it is applied iteratively to strategies.  

 

As an example, we have seen that players with a high enough aspiration threshold 

who play the PD will end up in a cycle made up of bilateral cooperations and/or 

bilateral defections (the only two strictly undominated outcomes; see Figure 

5-7b). If through repeated interaction the players were able to infer that the game 

will not have any other outcome (because one of the players will not accept it), 

then they could eliminate the unilateral outcomes from their analysis and apply 

the concept of outcome dominance for the second time to the (two) remaining 

possible outcomes. For this to happen, it would have to be mutual belief34 that the 

opponent is not exploitable either. When only bilateral decisions are confronted, 

                                                   
34 A proposition A is mutual belief among a set of players if each player believes that A. Mutual 

belief by itself implies nothing about what, if any, beliefs anyone attributes to anyone else 

(Vanderschraaf and Sillari, 2007). 
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the only strictly undominated outcome is bilateral cooperation (see Figure 5-7c). 

When confronted with bilateral cooperation as the only alternative, bilateral 

defection is not a strictly undominated outcome anymore, since the two players 

are guaranteed a higher payoff by changing their decision. In other words, 

bilateral cooperation is the only outcome that survives two steps of outcome 

dominance in the PD. In the TC game all the outcomes in which the reward is 

given survive two steps of outcome dominance, and they are the only outcomes 

that do so. It can be shown that in any game, after applying any number of steps 

of outcome dominance, the remaining outcomes are not Pareto-dominated by any 

of the outcomes which have been eliminated. 

 

 

Figure 5-7. Elimination of dominated outcomes. Figure b shows the remaining outcomes after 

having applied one step of outcome dominance. Figure c shows the remaining outcomes after 

having applied two steps of outcome dominance. Red crosses represent outcomes which are 

unacceptable for player Red (row), blue crosses represent outcomes which are unacceptable for 

player Blue (column), and black crosses represent outcomes eliminated in previous steps. 

 

How players would be able to move from bilateral defection to bilateral 

cooperation, if indeed they were, is not clear and is a matter for further research. 

We conjecture that this could be achieved by signalling processes to promote 

cooperation, or it could emerge from a form of learning by induction, since once 

the simulation has locked in to a cycle, it does show a general rule or pattern 

(players get a higher payoff when they cooperate than when they defect). Perhaps 

induction would then be produced by the simple forgetting of an episode’s details 

and the consequent blurring together in memory of that episode with other similar 

episodes (Reisberg, 1999). In any case, the movement from bilateral defection to 

bilateral cooperation would require a non-trivial degree of coordination. 
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We have seen that if CBR players have a high enough aspiration threshold they 

are not exploitable in the sense that they do not accept outcomes where they are 

not getting at least Maximin. We find that a more useful definition of rationality in 

games is that of non-systemic-exploitability. Rational players are not systemically 

exploitable. According to this definition, cooperation emerges among selfish 

rational players as soon as it becomes mutual (not necessarily common) belief that 

the game is being played among rational players. Using Macy’s words, 

cooperation would then emerge among self-interested agents “not from the 

shadow of the future but from the lessons of the past” (Macy, 1998). 

5.6. Trembling hands process: the N-CBR model 
While useful as a “tool to think with”, the CBR model is admittedly rather 

unrealistic in the sense that simulations end up necessarily with players locked in 

to a persistent cycle. In this section we consider an extension of the CBR model 

where players may suffer from “trembling hands” (Selten, 1975) –i.e. they 

occasionally experiment (or make mistakes) with small probability. Importantly, 

we also significantly relax the assumptions made about what defines a perceived 

state of the world and about the decision-making algorithm used by players. These 

changes make the model more general, slightly more realistic, and the 

introduction of noise allows us to make more specific predictions. In particular, as 

in chapter 4, we will characterise the set of outcomes where the system spends a 

significant proportion of time in the long-term when players experiment with very 

low probability, i.e. the set stochastically stable outcomes. Such a set of outcomes 

is a subset of the set of outcomes that can be observed in the model without 

experimentation. As an example, we will see that in the prisoner’s dilemma, 

mutual cooperation belongs to the latter set but not to the former. 

 

The definition of a case is substantially more general in the noisy CBR model 

(henceforth N-CBR) than in the CBR model. A case (an experience) lived by 

player i in the N-CBR model comprises: 

• The time-step t when the case occurred. 

• The perceived state of the world at the beginning of time-step t, which is 

determined by a subset of the decisions undertaken by every player in the 

game (potentially all decisions by all players, including the case-holder i) in 
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the preceding mli (for memory length) time-steps. (Note that different players 

may have different memory lengths.) When comparing the N-CBR model 

with the CBR-model it will be assumed that players in the N-CBR model 

build their perceived state of the world as in the CBR model (see section 5.3). 

• The decision made by the case-holder in that situation, in time-step t, having 

observed the state of the world in that same time-step. 

• The payoff that the case-holder obtained after having decided in time-step t.  

As in the CBR model, players in the N-CBR model decide what action to select 

by retrieving the most recent case which occurred in a similar situation for each 

one of the actions available to them. This set of cases, which is potentially empty, 

is denoted Ci. A case is perceived by the player to have occurred in a similar 

situation if and only if its state of the world is a perfect match with the current 

state of the world observed by the case-holder. The definition of the decision-

making algorithm in the N-CBR model is also substantially more general than in 

the CBR model. In a certain situation (i.e. for a given perceived state of the world) 

any particular player i will face one of two possibilities: 

• Not every action available to player i is represented in Ci. Given the fact that 

players in the N-CBR model suffer from trembling hands (this is explained in 

detail below), this is a temporary situation. No assumptions are made in the 

N-CBR about how players make decisions in this situation. When comparing 

the N-CBR model with the CBR-model it will be assumed that players in the 

N-CBR model use, for this situation, the same decision-making algorithm as 

in the CBR model (see section 5.3). 

• Every action available to player i is represented in Ci. As in the CBR model, 

in this situation player i selects randomly among those actions with the 

highest payoff obtained in the set Ci. 

 

As mentioned before, we also assume that players suffer from trembling hands: 

there is some small probability ε·λi  ≠ 0 that player i selects her action randomly 

instead of following the algorithm above. The ratio λi/ λj determines player i’s 

relative tendency to experiment compared with player j’s. The factor ε is a general 

measure of the frequency of experimentation in the whole population of players. 

The event that i experiments is assumed to be independent of the event that j 
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experiments for every i ≠ j. Different players may experiment in different ways, 

but it is assumed that player i’s probability of selecting any action a available to 

her when experimenting (qi(a)) is non-zero, potentially different for different 

actions, and independent of time for all i; these conditions can be relaxed to some 

extent (Young, 1993). This completes the specifications of the N-CBR model. 

 

This chapter will present some mathematical results valid when the overall 

probability of experimentation ε tends to zero; all such results are independent of 

λi and of the particular way each of the players experiments. When presenting 

simulation results, it will be assumed that λi = 1 for all i, and that players select 

one of their actions randomly and without any bias when experimenting. 

5.7. Dynamics of the N-CBR model 
The following explains why the N-CBR model has a unique limiting distribution. 

First, note that any N-CBR model can be formulated as a Markov chain where the 

state of the system is defined by every player’s set of most recent cases that 

occurred in every possible perceived state of the world for each one of the actions 

available to her. Given the definition of the set of different states of the world 

possibly perceived by every player and the nature of the trembling hands noise, it 

is clear that this Markov chain is finite and has a unique recurrent class (where all 

actions available to each player i are represented in the set Ci for every state of the 

world possibly perceived by i). The trembling hands noise guarantees that it is 

possible to go from any recurrent state to any other recurrent state in a finite 

number of steps. This basically means that the N-CBR model can be formulated 

as a uni-reducible Markov chain, which has a unique limiting distribution (Janssen 

and Manca, 2006, Corollary 5.2, pg. 117).  

 

Thus, note that both the CBR and the N-CBR model can be formulated as finite-

state discrete-time Markov chains, but there is a crucial difference between them: 

the CBR model will end up in one of many possible cycles (the period of some of 

these cycles is potentially equal to one), whereas the N-CBR process has one 

unique limiting distribution. Thus, when players suffer from trembling hands, the 

indefinite cycles where players were locked in the CBR model are broken, and 

outcomes that occurred infinitely often in the CBR process (like mutual 
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cooperation in the Prisoner’s Dilemma) turn out not to be robust to small 

trembles. In the following two sections we study the transient and the asymptotic 

behaviour of the N-CBR process. 

5.7.1. Transient dynamics 
To explore the transient dynamics of the N-CBR model we focus on the particular 

N-CBR process merely consisting of adding noise to the CBR model, and we 

study the Prisoner’s Dilemma (PD). As one would expect, the short-term 

dynamics of this N-CBR process –i.e. when only a few trembles have taken 

place– are initially similar to the dynamics of the CBR process. How many “a few 

trembles” are depends on the players’ memory and aspiration thresholds; how 

quickly those “few trembles” occur depends on the probability of trembles 

happening. Figure 5-8 shows the proportion of outcomes where both players are 

cooperating (cooperation rate) in the PD for different values of both players’ 

memory mli = ml and aspiration threshold AT, and for different values of the 

overall probability of trembles ε. The cooperation rates shown in Figure 5-8 are 

calculated over time-steps 1001 to 1100.  

 

A word of caution about Figure 5-8 is that, because it shows the data collected at a 

predetermined range of time-steps (1001–1100), it represents the short-term 

behaviour of those series for which 1000 time-steps are not enough to approach 

their long-term behaviour (e.g. mli = 5) but, on the other hand, it represents the 

long-run behaviour for some other series (e.g. those series for which 1000 time-

steps are enough to reach it, like series with mli = 0, and ε ≠ 0.001).  
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Figure 5-8. Average proportion of outcomes where both players are cooperating in the Prisoner’s 

Dilemma (PD), calculated over 100 time-steps starting at time-step 1001, and using 500 simulation 

runs for each data point. The payoffs in the game are represented by its initial letter: S for Suckers, 

P for Punishment, R for Reward, and T for Temptation. 

 

5.7.2. Asymptotic behaviour 
Once enough trembles have taken place in every situation distinctively perceived 

by any player, the dynamics of the N-CBR model approach its asymptotic 

behaviour. The following proposition shows that a very broad range of N-CBR 

models share the same asymptotic behaviour:  

 

Proposition 5-1: Assuming that every player has a common perception of the state 

of the world35, the asymptotic behaviour of the N-CBR process is independent: 

1. of the specific structure of the perceived state of the world (i.e. the 

algorithm used to construct it), and  

2. of the decision-making algorithm employed by each player i when she has 

not explored every action available to her in a similar situation (i.e. when 

not every action available to player i is represented in Ci).  

 
                                                   
35 This means that any two situations that look the same to one player will also look the same to 

every other player and any two situations that look different to one player will also look different 

to every other player. 
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Proposition 5-1, which is proved in Appendix B, implies that the asymptotic 

dynamics of all the simulations shown in Figure 5-8 are independent of the 

players’ memory (see point 1 in the proposition) and of their aspiration thresholds 

(see point 2 in the proposition). Thus, for example, the long-run cooperation rate 

in the PD (calculated analytically) is 4.985·10–2 for ε = 0.1, 4.978·10–3 for  

ε = 0.01, and 4.998·10–4 for ε = 0.001. As we can see in Figure 5-8, the series with 

low memory (mli = 0 or mli = 1) and high probability of trembles (ε = 0.1 or  

ε = 0.01) quickly converge to their limiting values; for those parameterisations 

1000 time-steps are sufficient to reach the long-run behaviour of the process. If 

we represented the data in Figure 5-8 after a sufficiently high number of time-

steps, the value of every data point with ε ≠ 0 would only depend on the 

probability of trembles ε (and on λi and qi(·) generally), and it would approach the 

analytically calculated values presented above (calculated for λi = 1, and qi(·) 

unbiased). Something which is clear in Figure 5-8 is that whereas mutual 

cooperation usually forms part of the cycles in the CBR model, it cannot be 

sustained in the long-term when small trembles occur. 

 

To summarise, the dynamics of the N-CBR model follow a transition from a very 

path-dependent distribution similar to that corresponding to the CBR model, to a 

very different distribution which is only dependent on the probabilities with which 

trembles occur.  

5.7.3. Stochastic stability 
Having seen that the asymptotic behaviour of the N-CBR model is only dependent 

on the structure of trembles (assuming a common perception of the state of the 

world), a natural question is: What outcomes can be observed with probability 

bounded away from zero in the long-run as the probability of trembles ε tends to 

zero? Following Young (1993), such outcomes will be called stochastically 

stable. It turns out that whether an outcome is stochastically stable or not is 

independent of λi and of qi(·) (Young, 1993).  

 

Young (1993) provides a general method to identify stochastically stable states in 

a wide range of models by solving a series of shortest path problems in a graph. In 

our model there are more states than outcomes, but identifying stochastically 
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stable outcomes when the set of stochastically stable states is known is 

straightforward. Young’s method uncovers an important feature of stochastic 

stability: stochastic stability selects states which are easiest to flow into from all 

possible states of the system. This contrasts with most notions of equilibrium 

based on full rationality. As Young (1993) notes, risk dominance “selects the 

equilibrium that is easiest to flow from every other equilibrium considered in 

isolation”. Similarly, Nash stability is determined only by unilateral deviations 

from the equilibrium. 

 

In this section we present some features to identify stochastically stable outcomes 

when reasoning is based on singletons of distinct prior outcomes. We start with a 

necessary condition for outcomes to be stochastically stable in N-CBR models (it 

is not assumed that players must share a common perception of the state of the 

world). 

 

Proposition 5-2: In all N-CBR models, every stochastically stable outcome is 

individually rational. 

 

The proof of Proposition 5-2 can be found in appendix B. Proposition 5-2 is a 

useful necessary condition to identify outcomes which cannot be stochastically 

stable but, except in very simple games (e.g. see Figure 5-9A), it is not sufficient 

to characterise the set of stochastically stable outcomes. To try to identify features 

that make outcomes stochastically stable we developed a computer program in 

Mathematica© that calculates the exact long-run probability that any 2-player 

game is in each possible outcome when the probability of trembles tends to zero. 

To calculate such probabilities, we did have to assume that players share a 

common perception of the state of the world. Using the computer program, we 

came to the following conclusions: 

• Stochastically stable outcomes are not necessarily Nash equilibria (e.g. see 

the game of Chicken in Figure 5-9B).  

• In fact, some players in some stochastically stable outcomes may be 

choosing strictly dominated strategies (e.g. see the game represented in 

Figure 5-9C). 
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• Nash equilibria are not necessarily stochastically stable (e.g. see the game 

of Stag Hunt in Figure 5-9D).  

• Stochastically stable outcomes can be Pareto dominated by outcomes 

which are not stochastically stable (e.g. see the Prisoner’s Dilemma game 

in Figure 5-9E). However, it can be proved that stochastically stable 

outcomes cannot be Pareto dominated by outcomes which are one tremble 

away and which are not stochastically stable. Thus, in the game 

represented in Figure 5-9C, for example, if we knew that outcome (3,3) is 

stochastically stable, then we could infer that (4,4) would have to be 

stochastically stable too. 

• Stochastically stable outcomes can Pareto dominate outcomes which are 

not stochastically stable (e.g. see game represented in Figure 5-9A). 

 

 

Figure 5-9. Stochastically stable outcomes (highlighted in white) in various 2-player 2-strategy 

games. Payoffs are numeric for the sake of clarity, but only their relative order for each player is 

relevant. 

 

Intuitively, note that trembles can destabilise outcomes in two different ways: by 

giving the deviator a higher (or equal) payoff, or by giving any of the non-

deviators a lower payoff36. The first possibility is related to the concept of Nash 

equilibrium, whilst the second is related to the concept of “protection” (Bendor et 

al., 2001b). As explained in section 4.7 when studying the Bush-Mosteller 

learning algorithm, an outcome is protected if unilateral deviations by any player 

do not hurt any of the other players. Bendor et al. (2001b) show that under a very 

wide range of conditions, reinforcement learning converges to individually 

rational outcomes which are either Pareto optimal or a protected Nash 

                                                   
36 Non-deviators could get a lower payoff after a tremble and still keep choosing the same action if 

the payoff obtained when the tremble occurs is higher than any of the payoffs that the non-deviator 

obtained when she last selected each of the other possible actions. 

 115



equilibrium. The same is not true for the model we study in this chapter (see the 

game represented in Figure 5-9F), but protected strict Nash equilibria are very 

relevant here too (as they were proved to be in the Bush-Mosteller model too; see 

section 4.7): if there is a protected strict Nash equilibrium in a game, then there is 

at least one state which is robust to any one single tremble, and the outcome that 

follows such a state in the absence of trembles is the protected strict Nash 

equilibrium. In fact, it can be shown that the only stochastically stable outcome in 

any 2-player 2-strategy game with a (necessarily unique) protected strict Nash 

equilibrium is such equilibrium. The extension of this result to more general 

games is left for future work. 

5.8. Conclusions of this chapter 
This chapter has explored the implications in strategic contexts of reasoning by 

single and distinctive past experiences as opposed to reasoning by abstract rules 

(strategies). While the short-term dynamics of models where players base their 

decisions on past experiences are very dependent on the specifics of such models, 

a very wide range of models behave similarly in the long-term. In particular, a 

large collection of models where players experiment from time to time share the 

same set of stochastically stable outcomes (outcomes that persist in the long-run 

when trembles are very rare). 

 

Stochastically stable outcomes are necessarily individually rational, but a clear 

relationship between them and Nash equilibria, or Pareto optimality, has not been 

found. Nash equilibria may, or may not, be stochastically stable, and 

stochastically stable outcomes may, or may not, be Nash equilibria. The same 

applies for Pareto optimal outcomes. A concept that is indeed closely related to 

stochastic stability is the concept of protected strict Nash equilibrium. In 

particular, in 2-player 2-strategy games with a protected strict Nash equilibrium 

(which is necessarily unique), the only stochastically stable is such an 

equilibrium. The importance of the impact of unilateral deviations on non-

deviators for the stability of outcomes was also highlighted in chapter 4. This 

seems to be a recurring observation in learning game theory: if a unilateral 

deviation harms another player, the non-deviator who has been hurt may choose 

to select a different strategy in the subsequent period, thus compromising the 
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stability of the original strategy profile. A unilateral deviation that does not hurt 

any non-deviator is less likely to trigger a change of strategy in the non-deviators. 

 

In broader terms, this chapter has proposed a new algorithm to narrow the set of 

expected outcomes in games. This method, i.e. iterative elimination of dominated 

outcomes, is a logical process through which outcome-based reasoners can arrive 

at sensible (i.e. Pareto optimal) outcomes in games. The only outcome that 

survives two steps of iterative elimination of dominated outcomes in the 

Prisoner’s Dilemma is mutual cooperation. Thus, this chapter has shown that 

reasoning by outcomes leads to solution concepts significantly different from 

those present in the classical game theory literature (where reasoning is conducted 

using strategies as the key concept). Interestingly, one could argue that there is no 

a priori logical argument why rationality in game theory should be defined in 

terms of strategies rather than outcomes. Players in game theory do select a 

strategy (rather than an outcome), but the payoff they receive (i.e. their measure of 

performance) is determined by the resulting outcome, which is only partially 

determined by their selection of strategy. Thus, when defining rationality in game 

theory, it seems as natural to define it in terms of outcomes as the key concept 

(i.e. rational players do not choose dominated outcomes), as to define it using 

strategies (i.e. rational players do not accept dominated strategies). Reasoning by 

outcomes may even be a more natural way of modelling real human behaviour. 

Admittedly, the definition of rationality by outcomes proposed here implies some 

dynamicity (note the sentence: “players do not accept dominated outcomes”), 

whereas the definition of dominance reasoning does not. However, it is also true 

that, as explained in section 2.2.2, the concept of dominance reasoning is hardly 

ever enough to narrow the set of expected outcomes in games significantly, and 

when stronger concepts of rationality based on strategies are brought into play, 

issues at least as worrying as those that may be raised when defining outcome-

based rationality often appear. These issues will be discussed further in chapter 7. 
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