
4.   Dynamics of the Bush-Mosteller Reinforcement 

Learning Algorithm in 2x2 Games♣ 

4.1. Introduction 
Reinforcement learners interact with their environment and use their experience to 

choose or avoid certain actions based on the observed consequences. Actions that 

led to satisfactory outcomes (i.e. outcomes that met or exceeded aspirations) in the 

past tend to be repeated in the future, whereas choices that led to unsatisfactory 

experiences are avoided. The empirical study of reinforcement learning dates back 

to Thorndike’s animal experiments on instrumental learning at the end of the 19th 

century (Thorndike, 1898). The results of these experiments were formalised in 

the well known ‘Law of Effect’, which is nowadays one of the most robust 

properties of learning in the experimental psychology literature: 

 

Of several responses made to the same situation those which are 
accompanied or closely followed by satisfaction to the animal will, other 
things being equal, be more firmly connected with the situation, so that, 
when it recurs, they will be more likely to recur; those which are 
accompanied or closely followed by discomfort to the animal will, other 
things being equal, have their connections to the situation weakened, so 
that, when it recurs, they will be less likely to occur. The greater the 
satisfaction or discomfort, the greater the strengthening or weakening of 
the bond.  

(Thorndike, 1911, p. 244) 

 

Nowadays there is little doubt that reinforcement learning is an important aspect 

of much learning in most animal species, including many phylogenetically very 

distant from vertebrates (e.g. earthworms (Maier and Schneirla, 1964) and fruit 

flies (Wustmann et al., 1996)).  

 

In strategic contexts, empirical evidence for reinforcement learning is strongest in 

animals with limited reasoning abilities or in human subjects who have no 
                                                   
♣ Some parts of the material presented in this chapter are in press in Izquierdo, L.R., Izquierdo, 

S.S., Gotts, N.M. and Polhill, J.G. (2007), “Transient and asymptotic dynamics of reinforcement 

learning in games”, Games and Economic Behavior , and others have been accepted for 

publication in the Journal of Artificial Societies and Social Simulation. 
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information beyond the payoff they receive and specifically may be unaware of 

the strategic nature of the situation (Mookherjee and Sopher, 1994; Roth and 

Erev, 1995; Bendor et al., 2001a; Camerer, 2003; Duffy, 2006). In the context of 

experimental game theory with human subjects, several authors have used simple 

models of reinforcement learning successfully to explain and predict behaviour in 

a wide range of games (McAllister, 1991; Mookherjee and Sopher, 1994; Roth 

and Erev, 1995; Mookherjee and Sopher, 1997; Chen and Tang, 1998; Erev and 

Roth, 1998; Erev et al., 1999; Erev and Roth, 2001). Reinforcement models in the 

literature tend to differ in the following, somewhat interrelated, features: 

 

 Whether learning slows down or not, i.e. whether the model accounts for the 

‘Power Law of Practice’ (e.g. Erev and Roth (1998) vs. Börgers and Sarin 

(1997)). 

 Whether the model allows for avoidance behaviour in addition to approach 

behaviour (e.g. Bendor et al. (2001b) vs. Erev and Roth (1998)). Approach 

behaviour is the tendency to repeat the associated choices after receiving a 

positive stimulus; avoidance behaviour is the tendency to avoid the associated 

actions after receiving a negative stimulus (one that does not satisfy the 

player). Models that allow for negative stimuli tend to define an aspiration 

level against which achieved payoffs are evaluated. This aspiration level may 

be fixed or vary endogenously (Bendor et al., 2001a, 2001b). 

 Whether “forgetting” is considered, i.e. whether recent observations weigh 

more than distant ones (Erev and Roth, 1998; Rustichini, 1999; Beggs, 2005).  

 Whether the model imposes inertia – a positive bias in favour of the most recently 

selected action (Bendor et al., 2001a, 2001b). 

 

Laslier et al. (2001) present a more formal comparison of various reinforcement 

learning models. Each of the features above can have important implications for 

the behaviour of the particular model under consideration and for the 

mathematical methods that are adequate for its analysis. For example, when 

learning slows down, theoretical results from the theory of stochastic 

approximation (Benveniste et al., 1990; Kushner and Yin, 1997) and from the 

theory of urn models can often be applied (e.g. Ianni, 2001; Beggs, 2005; Hopkins 

and Posch, 2005), whereas if the learning rate is constant, results from the theory 
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of distance diminishing models (Norman, 1968, 1972) tend to be more useful (e.g. 

Börgers and Sarin, 1997; Bendor et al., 2001b). Similarly, imposing inertia 

facilitates the analysis to a great extent, since it often ensures that a positive 

stimulus will be followed by an increase in the probability weight on the most 

recently selected action at some minimum geometric rate (Bendor et al., 2001b). 

 

A popular model of reinforcement learning in the game theory literature is the 

Erev-Roth (ER) model (Roth and Erev, 1995; Erev and Roth, 1998). 

Understanding of the ER model (also called Cumulative Proportional 

Reinforcement model by Laslier et al. (2001) and Laslier and Walliser (2005)) 

and its relation with an adjusted version of the evolutionary replicator dynamics 

(Weibull, 1995) has been developed in papers by Laslier et al. (2001), Hopkins 

(2002), Laslier and Walliser (2005), Hopkins and Posch (2005) and Beggs (2005). 

An extension to the ER model covering both partial and full informational 

environments (in the latter, a player can observe the payoffs for actions not 

selected), as well as linear and exponential adjustment procedures, is analysed for 

single person decision problems by Rustichini (1999).  

 

Arthur (1991) proposed a model differing from the ER model only in that the step 

size of the learning process in ER is stochastic whereas it is deterministic in 

Arthur’s model – but step sizes are of the same order in both (see Hopkins and 

Posch (2005) for details). Theoretical results for Arthur’s model in games and its 

relation with the ordinary evolutionary replicator dynamics are given by Posch 

(1997), Hopkins (2002), Hopkins and Posch (2005) and Beggs (2005): despite 

their similarity, the ER model and Arthur’s model can have different asymptotic 

behaviour (Hopkins and Posch, 2005). 

 

Another important set of reinforcement models are the aspiration-based models, 

which allow for negative stimuli (see Bendor et al. (2001a) for an overview). The 

implications of aspiration-based reinforcement learning in strategic contexts have 

been studied thoroughly by Karandikar et al. (1998) and Bendor et al. (2001b). 

This line of work tends to require very mild conditions on the way learning is 

conducted apart from the assumption of inertia. Assuming inertia greatly 

facilitates the mathematical analysis, enabling the derivation of sharp predictions 
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for long-run outcomes in 2-player repeated games, even with evolving aspirations 

(see e.g. Karandikar et al. (1998), Palomino and Vega-Redondo (1999), and 

Bendor et al. (2001b)). 

 

The model analysed here is a variant of Bush and Mosteller’s (1955) linear 

stochastic model of reinforcement learning (henceforth BM model). The BM 

model is an aspiration-based reinforcement learning model, but does not impose 

inertia. In contrast to the ER model and Arthur’s model, it allows for negative 

stimuli and learning does not fade with time. A special case of the BM model 

where all stimuli are positive was originally considered by Cross (1973), and 

analysed by Börgers and Sarin (1997), who also related it to the replicator 

dynamics. Börgers and Sarin (2000) studied an extension of the BM model where 

aspirations evolve simultaneously with choice probabilities in single person 

decision contexts. Here, we develop Börgers and Sarin’s work by analysing the 

dynamics of the BM model in 2×2 games where aspiration levels are fixed, but 

not necessarily below the lowest payoff, so negative stimuli are possible. These 

dynamics have been explored by Hegselmann and Flache (2000), Macy and 

Flache (2002) and Flache and Macy (2002) in 2×2 social dilemmas using 

computer simulation. Here we formalize their analyses and extend their results to 

cover any 2×2 game. 

 

In contrast to other reinforcement learning models in the literature, we show that, 

in general, the asymptotic behaviour of the BM model cannot be approximated 

using the continuous time limit version of its expected motion. Such an 

approximation may be valid over bounded time intervals but it can deteriorate as 

the time horizon increases. This important point –originally emphasized by 

Boylan (1992; 1995) in a somewhat different context– was already noted by 

Börgers and Sarin (1997) in the BM model for strictly positive stimuli, and has 

also been found in other models since then (Beggs, 2002). The asymptotic 

behaviour of the BM model is characterized in the present chapter using the 

theory of distance diminishing models (Norman, 1968, 1972). Börgers and Sarin 

(1997) also used this theory to analyse the case where aspirations are below the 

minimum payoff; here we extend their results for 2×2 games where aspiration 

levels can have any fixed value.  
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4.2. The BM model 
The model we analyse here is an elaboration of a conventional Bush-Mosteller 

(Bush and Mosteller, 1955) stochastic learning model for binary choice. In this 

model, players decide what action to select stochastically: each player’s strategy is 

defined by the probability of undertaking each of the two actions available to 

them. After every player has selected an action according to their probabilities, 

every player receives the corresponding payoff and revises her strategy. The 

revision of strategies takes place following a reinforcement learning approach: 

players increase their probability of undertaking a certain action if it led to payoffs 

above their aspiration level, and decrease this probability otherwise. When 

learning, players in the BM model use only information concerning their own past 

choices and payoffs, and ignore all the information regarding the payoffs and 

choices of their counterparts.  

 

More precisely, let I = {1, 2} be the set of players in the game, and let Yi be the 

pure-strategy space for each player i ∈ I. For convenience, and without loss of 

generality, later we will call the actions available to each of the players C (for 

Cooperate) and D (for Defect). Thus Yi = {C, D}. Let ui be the payoff function that 

gives player i’s payoff for each profile y = (y1, y2) of pure strategies, where yi ∈ Yi 

is a pure strategy for player i. As an example, ui(C, D) denotes the payoff obtained 

by player i when player 1 cooperates and player 2 defects. Let Y = ×i∈ I Yi be the 

space of pure-strategy profiles, or possible outcomes of the game. We can 

represent any mixed strategy for player i as a vector pi in the unit simplex Δ1, 

where the jth coordinate pi,j ∈ R of the vector pi is the probability assigned by pi to 

player i’s jth pure strategy. A mixed-strategy profile is a vector p = (p1, p2), where 

each component pi ∈ Δ1 represents a mixed strategy for player i ∈ I.  

 

In the BM model, strategy updating takes place in two steps. First, after outcome 

 in time-step n, each player i calculates her stimulus s),( nn yy 21=ny i(yn) for the 

action just chosen  according to the following formula: n
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where Ai is player i’s aspiration level. Hence the stimulus is always a number in 

the interval [–1, 1]. Note that players are assumed to know . 

Secondly, having calculated their stimulus s

( ) ||sup iiY Au −∈ kk

i(yn) after the outcome yn, each player i 

updates her probability of undertaking the selected action y
iyip , i as follows: 
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where  is player i’s probability of undertaking action yn
yi i

p , i in time-step n, and li 

is player i’s learning rate (0 < li < 1). Thus, the higher the stimulus magnitude (or 

the learning rate), the larger the change in probability. The updated probability for 

the action not selected derives from the constraint that probabilities must add up 

to one.  

 

A 2×2 BM model parameterization requires specifying both players’ payoff 

function ui, aspiration level (Ai), and learning rate (li). Unless otherwise stated, the 

analysis conducted here is valid for any 2×2 game but, for illustrative purposes, 

we focus on 2×2 symmetric social dilemma games where both players are 

parameterised in exactly the same way (homogeneous models). A certain 

parameterisation of such a homogeneous model will be specified using the 

template [ Temptation , Reward , Punishment , Sucker | A | l ]2.  

 

The following notation will also be useful. A parameterized model will be 

denoted S (for System). Since the state of any particular system can be fully 

characterized by the strategy profile p, p will also be named state of the system. 

Note, however, that there are only two independent variables in p, so the state of 

the game can be determined using a two-dimensional vector [ p1,C , p2,C ], where 

pi,C is player i’s probability to cooperate (the actual name of the action is 

irrelevant for the mathematical analysis). Let Pn(S) be the state of a system S in 

time-step n. Note that Pn(S) is a random variable and p is a particular value of that 

variable; the sequence of random variables {Pn(S)}n≥0 constitutes a discrete-time 

Markov process with potentially infinite transient states. In a slight abuse of 

notation we refer to such a process {Pn(S)}n≥0 as the BM process Pn. 
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4.3. Attractors in the Dynamics of the System 
Using computer simulation, Macy and Flache (2002) described two types of 

learning-theoretic equilibria that govern the dynamics of the BM model: self-

reinforcing equilibria (SRE), and self-correcting equilibria (SCE). These are not 

static equilibria, but strategy profiles which act as attractors in the sense that, 

under certain conditions, the system will tend to approach them or linger around 

them. Here, we formalize these two concepts. 

 

We define an SRE as an absorbing state of the system (i.e. a state p that cannot be 

abandoned) where both players receive a positive stimulus11. An SRE corresponds 

to a pair of pure strategies (pi,j is either 0 or 1) such that its certain associated 

outcome gives a strictly positive stimulus to both players (henceforth a mutually 

satisfactory outcome). For example, the strategy profile [ p1,C , p2,C ] = [ 1 , 1 ] is an 

SRE if both players’ aspiration levels are below their respective Rewardi. Escape 

from an SRE is impossible since no player will change her strategy. More 

importantly, SREs act as attractors: near an SRE, there is a high chance that the 

system will move towards it, because there is a high probability that its associated 

mutually satisfactory outcome will occur, and this brings the system even closer 

to the SRE. The number of SREs in a system is the number of outcomes where 

both players obtain payoffs above their respective aspiration levels. 

 

Flache and Macy (2002, p. 634) define SCEs in the following way: “The SCE 

obtains when the expected change of probabilities is zero and there is a positive 

probability of punishment as well as reward”. In this context, punishment means 

negative stimulus while reward means positive stimulus; the expected change of 

probability for one player is defined as the sum of the possible changes in 

probability the player might experience weighted by the likelihood of such 

changes actually happening. As we show below, SCEs defined in this way are not 

necessarily attractors, but may be unstable saddle points where small 
                                                   
11 The concept of SRE is extensively used by Macy and Flache but we have not found a clear definition 

in their papers (Flache and Macy, 2002; Macy and Flache, 2002). Sometimes their use of the word SRE 

seems to follow our definition (e.g. Macy and Flache, 2002, p. 7231), but often it seems to denote a 

mutually satisfactory outcome (e.g. Macy and Flache, 2002, p. 7231) or an infinite sequence of such 

outcomes (e.g. Macy and Flache, 2002, p. 7232). 
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perturbations can cause expected probabilities to move away from them. Figure 

4-1 represents the expected movement after one time-step for different states of 

the system in a Stag Hunt game. The Expected Motion (EM) of a system S in state 

p for the following iteration is given by a function vector EMS(p) whose 

components are, for each player, the expected change in the probabilities of 

undertaking each of the two possible actions. Mathematically, 

)()( pSPSPp nn =≡ )(|)(ΔEEM S  

In the context of 2×2 social dilemma games, the two independent components of 

the equation above can be rewritten as follows: 

DDCDCCCDCCCC

C

Pr{DD}Pr{DC}Pr{CD}Pr{CC}
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iiii
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where  is the expected change in player i’s probability to cooperate, 

and {CC, CD, DC, DD} represent the four possible outcomes that may occur. 

Note that in general the expected change will not reflect the actual change in a 

simulation run, and to make this explicit we have included the trace of a 

simulation run starting in state [ p

 )(EM C pS
i ,

1,C , p2,C ] = [ 0.5 , 0.5 ] in Figure 4-1. The 

expected change – represented by the arrows in Figure 4-1 – is calculated 

considering the four possible changes that could occur (see equation above), 

whereas the actual change in a simulation run – represented by the numbered balls 

in Figure 4-1 – is only one of the four possible changes (e.g. 
CCC,ipΔ , if both 

agents happen to cooperate). The source code used to create every figure in this 

chapter is available in the Supporting Material. 
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Figure 4-1. Expected motion of the system in a Stag Hunt game parameterised as [ 3 , 4 , 1 , 0 | 0.5 

| 0.5 ]2, together with a sample simulation run (40 iterations).  The arrows represent the expected 

motion for various states of the system; the numbered balls show the state of the system after the 

indicated number of iterations in the sample run. The background is coloured using the norm of the 

expected motion. For any other learning rate the size of the arrows would vary but their direction 

would be preserved.  

 

The state [ p1,C , p2,C ] = [ 0.5 , 0.5 ] in Figure 4-1 is an example of a strategy 

profile that satisfies Flache and Macy’s requirements for SCE, but where small 

deviations tend to lead the system away from it (saddle point). To avoid such 

undesirable situations where an SCE is not self-correcting, we redefine the 

concept of SCE in a more restrictive way: an SCE of a system S is an 

asymptotically stable critical point (Mohler, 1991) of differential equation [4-2] 

(the continuous time limit approximation of the system’s expected motion).  

)(EM ff S=&  [4-2] 

Roughly speaking this means that all trajectories in the phase plane of Eq. [4-2] 

that at some instant are sufficiently close to the SCE will approach the SCE as the 

parameter t (time) approaches infinity and remain close to it at all future times. 

Note that, with this definition, there could be a state of the system that is an SRE 
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and an SCE at the same time (this is not possible using Flache and Macy’s 

definitions of SRE and SCE).  

 

Figure 4-2 shows several trajectories for the differential equation corresponding to 

the Stag Hunt game used in Figure 4-1. It can be clearly seen that state [p1,C , p2,C] 

= [0.5 , 0.5] is not an SCE according to our definition, since there are trajectories 

that get arbitrarily close to it, but then escape from its neighbourhood. 

 

 

Figure 4-2. Trajectories in the phase plane of the differential equation corresponding to a Stag 

Hunt game parameterised as [ 3 , 4 , 1 , 0 | 0.5 | 0.5 ]2, together with a sample simulation run (40 

iterations). The background is coloured using the norm of the expected motion.   

 

Figure 4-3 shows some trajectories of the differential equation corresponding to 

the Prisoner’s Dilemma parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]2. This system 

exhibits a unique SCE at [ p1,C , p2,C ] = [ 0.37 , 0.37 ] and a unique SRE at [ p1,C , 

p2,C ] = [ 1 , 1 ]. The two independent components of the function EM(p) for this 

system can be written as follows: 
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Figure 4-3. Trajectories in the phase plane of the differential equation corresponding to the 

Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]2, together with a sample simulation 

run ( l = 2−4 ). This system has a SCE at [ p1,C , p2,C ] = [ 0.37 , 0.37 ]. The background is coloured 

using the norm of the expected motion.  

 

 61



Let fx(t) denote the solution of the differential equation [4-2] for some initial state 

x. As an example, Figure 4-4 shows fx(t) for the Prisoner’s Dilemma game 

parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]2 for different (and symmetric) initial 

conditions [ p1,C , p2,C ]  = [ x0 , x0 ]. For this particular case and settings, the two 

independent components of fx(t) corresponding to each player’s probability to 

cooperate – denoted fi,x(t) – take the same value at any given t, so the 

representation in Figure 4-4 corresponds to both these independent components. 

Convergence to the SCE at [ 0.37 , 0.37 ] can be clearly observed for every initial 

condition [ x0 , x0 ], except for [ x0 , x0 ] = [1, 1], which is the SRE. 

 

Figure 4-4. Solutions of differential equation [4-2] for the Prisoner’s Dilemma game parameterised 

as [ 4 , 3 , 1 , 0 | 2 | l ]2 with different (and symmetric) initial conditions [ p1,C , p2,C ]  = [x0 , x0]. 

This system has a unique SCE at [ p1,C , p2,C ]  = [ 0.37 , 0.37 ] and a unique SRE at [ p1,C , p2,C ]  = 

[ 1 , 1 ].  

 

The expected motion at any point p in the phase plane is a vector tangent to the 

unique trajectory to which that point belongs. The use of expected motion (or 

mean-field) approximations to understand simulation models and to design 

interesting experiments has already proven to be very useful in the literature (e.g. 

Huet et al (2007); Galán and Izquierdo (2005); Edwards et al. (2003); Castellano, 

Marsili, and Vespignani (2000)). Note, however, that such approaches are 

approximations whose validity may be constrained to specific conditions: as we 

can see in Figure 4-3, simulation runs and trajectories will not coincide in general.  

A crucial question to characterize the dynamics of learning models, and one to 

which stochastic approximation theory (Benveniste et al., 1990; Kushner and Yin, 

1997) is devoted, is whether the expected and actual motion of the system should 
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become arbitrarily close in the long run. This is generally true for processes whose 

motion slows down at an appropriate rate (as explained by Hopkins and Posch 

(2005) when studying the ER model), but not necessarily so in other cases. We 

show in the next sections that the BM model’s asymptotic behaviour can be 

dramatically different from that suggested by its associated ODE, which is, 

however, very relevant for characterizing the transient dynamics of the system, 

particularly with small learning rates. From now on we will use our definitions of 

SRE and SCE. 

4.4. Attractiveness of SREs 
Macy & Flache’s experiments (Flache and Macy, 2002; Macy and Flache, 2002) 

with the BM model showed a puzzling phenomenon. A significant part of their 

analysis consisted in studying, in a Prisoner’s Dilemma in which mutual 

cooperation was mutually satisfactory (i.e. Ai < Rewardi = ui(C, C)), the proportion 

of simulation runs that “locked” into mutual cooperation. Such ”lock-in rates” 

were reported to be as high as 1 in some experiments. However, starting from an 

initial state which is not an SRE, the BM model specifications guarantee that after 

any finite number of iterations any outcome has a positive probability of occurring 

(i.e. strictly speaking, lock-in is impossible)12. To investigate this apparent 

contradiction we conducted some qualitative analyses that we present here to 

familiarise the reader with the complex dynamics of this model. Our first 

qualitative analysis consisted in studying the expected dynamics of the model. 

Figure 4-5 illustrates the expected motion of a system extensively studied by 

Macy & Flache: the Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 | 

0.5 ]2. As we saw before, this system features a unique SCE at [ p1,C , p2,C ]  = [ 

0.37 , 0.37 ] and a unique SRE at [ p1,C , p2,C ]  = [ 1 , 1 ]. Figure 4-5 also includes 

the trace of a sample simulation run. Note that the only difference between the 

                                                   
12 The specification of the model is such that probabilities cannot reach the extreme values of 0 or 1 

starting from any other intermediate value. Therefore if we find a simulation run that has actually ended 

up in an SRE starting from any other state, we know for sure that such simulation run did not follow the 

specifications of the model (e.g. perhaps because of floating-point errors). For a detailed analysis of the 

effects of floating point errors in computer simulations, with applications to this model in particular, see 

Izquierdo and Polhill (2006), Polhill and Izquierdo (2005), Polhill et al. (2006),  Polhill et al. (2005). 
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parameterisation of the system shown in Figure 4-3 and that shown in Figure 4-5 

is the value of the learning rate. 

 

Figure 4-5. Expected motion of the system in a Prisoner’s Dilemma game parameterised as  

[ 4 , 3 , 1 , 0 | 2 | 0.5 ]2, with a sample simulation run.  

 

Figure 4-5 shows that the expected movement from any state is towards the SCE, 

except for the only SRE, which is an absorbing state. In particular, near the SRE, 

where both probabilities are high but different from 1, the distribution of possible 

movements is very peculiar: there is a very high chance that both agents will 

cooperate and consequently move a small distance towards the SRE, but there is 

also a positive chance, tiny as it may be, that one of the agents will defect, causing 

both agents to jump away from the SRE towards the SCE. The improbable, yet 

possible, leap away from the SRE is of such magnitude that the resulting expected 

movement is biased towards the SCE despite the unlikelihood of such an event 

actually occurring. The dynamics of the system can be further explored analysing 

the most likely movement from any given state, which is represented in Figure 

4-6.  
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Figure 4-6 Figure showing the most likely movements at some states of the system in a Prisoner’s 

Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 | 0.5 ]2, with a sample simulation run. The 

background is coloured using the norm of the most likely movement. 

 

Figure 4-6 differs significantly from Figure 4-5; it shows that the most likely 

movement in the upper-right quadrant of the state space is towards the SRE. Thus 

the walk towards the SRE is characterized by a fascinating puzzle: on the one 

hand, the most likely movement leads the system towards the SRE, which is even 

more likely to be approached the closer we get to it; on the other hand, the SRE 

cannot be reached in any finite number of steps and the expected movement as 

defined above is to walk away from it (see Figure 4-5).  

 

It is also interesting to note in this game that, starting from any mixed (interior) 

state, both players have a positive probability of selecting action D in any future 

time-step, but there is also a positive probability that both players will engage in 

an infinite chain of the mutually satisfactory event CC forever, i.e., that neither 

player will ever take action D from then onwards. This latter probability can be 

calculated using a result derived by Professor Jörgen W. Weibull (see Appendix 

A). The probability of starting an infinite chain of CC events depends largely on 

the value of the learning rate l. Figure 4-7 shows the probability of starting an 

infinite chain of the mutually satisfactory outcome CC in a Prisoner’s Dilemma 

game parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]2, for different learning rates l, and 
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different initial probabilities to cooperate x0 (the same probability for both 

players). For some values, the probability of immediately starting an infinite chain 

of mutual cooperation can be surprisingly high (e.g. for l = 0.5 and initial 

conditions [ x0 , x0 ] = [ 0.9 , 0.9 ] such probability is approximately 44%).  

 

Figure 4-7. Probability of starting an infinite chain of the Mutually Satisfactory (MS) outcome CC 

in a Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]2. The 5 different (coloured) 

series correspond to different learning rates l. The variable x0, represented in the horizontal axis, is 

the initial probability of cooperating for both players.  

 

In summary, assuming that aspirations are different from payoffs, a BM process 

that starts in an initial state different from an SRE will never reach an SRE in 

finite time, and there is always a positive probability that the process leaves the 

proximity of an SRE. However, if there is some SRE, there is also a positive 

probability that the system will approach it indefinitely (i.e. forever) through an 

infinite chain of the mutually satisfactory outcome associated to the SRE.   

4.5. Three Dynamic Regimes 
In the general case, the dynamics of the BM model may exhibit three different 

regimes: medium run, long run, and ultralong run. This terminology is borrowed 

from Binmore and Samuelson (1993) and Binmore et al. (1995, p. 10), who 

reserve the term short run for the initial conditions. The medium run is ‘the time 

intermediate between the short run [i.e. initial conditions] and the long run, during 

which the adjustment to equilibrium is occurring’. The long run is ‘the time span 
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needed for the system to reach the vicinity of the first equilibrium in whose 

neighborhood it will linger for some time’. Finally, the ultralong run is ‘a period of 

time long enough for the asymptotic distribution to be a good description of the 

behavior of the system’.  

 

Binmore et al.’s terminology is particularly useful for our analysis because it is 

often the case in the BM model that the transient dynamics of the system are 

dramatically different from its asymptotic behaviour. Whether the three different 

regimes (i.e. medium, long, and ultralong run) are clearly distinguishable strongly 

depends on the players’ learning rates. For high learning rates the system quickly 

approaches its asymptotic behaviour and the distinction between the different 

regimes is not particularly useful. For small learning rates, however, the three 

different regimes can be clearly observed.  

 

In brief, it is shown in the following section that with sufficiently small learning 

rates li and number of iterations n not too large (n·li bounded), the medium run 

dynamics of the system are best characterised by the trajectories in the phase 

plane of eq. [4-2]. Under these conditions, SCEs constitute the ‘the first 

equilibrium in whose neighborhood it [the system] will linger for some time’ and, as 

such, they usefully characterize the long run dynamics of the system. After a 

potentially very lengthy long-run regime in the neighborhood of an SCE, the 

system will eventually reach its ultralong run behaviour, which in most BM 

systems consists in approaching an SRE asymptotically (see formal analysis 

below). 

 

For an illustration of the different regimes, consider once again the Prisoner’s 

Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]2. It is shown below that this 

system asymptotically converges to its unique SRE with probability 1 regardless 

of the value of l. The evolution of the probability to cooperate with initial state 

[p1,C , p2,C] = [ 0.5 , 0.5 ] (with these settings the probability is identical for both 

players) is represented in the rows of Figure 4-8 for different learning rates l.  



Figure 4-8. Histograms representing the probability to cooperate for one player (both players’ probabilities are identical) after n iterations, for different learning rates li = l, 

with Ai = 2, in a symmetric Prisoner’s Dilemma with payoffs [ 4 , 3 , 1 , 0 ]. Each histogram has been calculated over 1,000 simulation runs. The initial probability for both 

players is 0.5. The significance of the gray arrows will be explained later in the text.
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For l = 0.5 (see top row in Figure 4-8), after only 29 = 512 iterations, the 

probability that both players will be almost certain to cooperate is very close to 1, 

and it remains so thereafter. For l = 2-4 and lower learning rates, however, the 

distribution is still clustered around the SCE even after 221 = 2097152 iterations. 

With low learning rates, the chain of events that is required to escape from the 

neighbourhood of the SCE is extremely unlikely, and therefore this long run 

regime seems to persist indefinitely. However, given sufficient time, such a chain 

of coordinated moves will occur, and the system will eventually reach its 

ultralong run regime, i.e. almost-certain mutual cooperation. The following 

sections are devoted to the formal analysis of the transient and asymptotic 

dynamics of the BM model. The proofs of every proposition in this chapter are 

included in Appendix A. 

4.6. Transient Dynamics 
As mentioned above, when learning takes place by large steps the system quickly 

approaches its asymptotic behaviour, and no clear (transient) patterns are observed 

before it does so (see top row in Figure 4-8). With small learning rates, however, 

the two transient regimes, which may be significantly different from the 

asymptotic regime, are clearly distinguishable. This section shows that SCEs are 

powerful attractors of the actual dynamics of the system when learning occurs by 

small steps. Specifically, it is demonstrated that the BM process Pn follows the 

trajectories of its associated ODE with probability approaching 1 as learning rates 

decrease and n is kept within certain limits.  

 

Consider a family of BM systems Sl whose members, indexed in l = l1, only differ 

in both players’ learning rates, and such that l1/l2 is a fixed constant for every 

model in the family. Let  be the family of stochastic processes 

associated with such a family of systems S

)( l
n

l
n SPP =

l. As an example, note that Figure 4-8 

shows simulation runs of seven stochastic processes ( , …) 

belonging to one particular family F

)( 5.0FPn )( 25.0FPn

l. Consider the ODE given by eq. [4-3] below, 

and let fx(t) be the trajectory of this ODE with initial state x.  

)(1 ff
lSEM

l
=&  [4-3] 
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The ODE in eq. [4-3] is common to every member of a given family, and its 

solution trajectories fx(t) only differ from those given by eq. [4-2] (which 

determines a different ODE for each member) in the time scale, i.e. the 

representation of the trajectories of ODEs [4-2] and [4-3] in the phase plane is 

identical: the learning rate determines how quickly the path is walked, but the path 

is the same for every model of a family. Similarly, SCEs and SREs are common 

to every model in a family. The following proposition characterizes the medium-

run (statements (i) and (ii)) and the long-run (statement (iii)) dynamics of the BM 

model when l is small. No conditions are imposed on players’ aspirations. 

 

Proposition 4-1: Consider the family of stochastic processes  with initial 

state  for every l. Let K be an arbitrary constant. For learning by small 

steps (l → 0) and transient behaviour (n·l ≤ K < ∞), we have: 

0}{ ≥n
l

n
xP ,

xP =l
0

i. For fixed ε > 0 and l sufficiently small,  

),(})(max{ ,

)/(
KlClnl

nlKn
≤>⋅−

≤
   Pr

  
εx

x fP  

where, for fixed K< ∞ , C(l, K) → 0 as l → 0. Thus, for transient behaviour and 

learning by small steps, we have uniform convergence in probability of  to 

the trajectory f

xP ,l
n

x of the ODE in [4-3]. 

ii. The distribution of the variable 
l

lnl
n )(, ⋅− x

x fP
 converges to a normal 

distribution with mean 0 and variance independent of l as l → 0 and 

 n·l → K < ∞. 

iii. Let Lx be the limit set of the trajectory fx(t). For n = 0, 1… N < ∞, and for any 

δ > 0, the proportion of values of  within a neighborhood BxP ,l
n δ(Lx) of Lx 

goes to 1 (in probability) as l → 0 and N·l → ∞. 

 

To see an application of Proposition 4-1, consider the particular family Fl (Figure 

4-8). Statement (i) says that when n is not too large (n·l bounded), with probability 

increasingly close to 1 as l decreases, the process  with initial state 

 follows the trajectory f

)( l
n FP x

xFP =)( l
0 x(n·l) of the ODE in [4-3] within a distance 

never greater than some arbitrary, a priori fixed, ε > 0. (This proves the conjecture 

put forward by Börgers and Sarin (1997) in remark 2.) The trajectories 
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corresponding to  are displayed in )( l
n FP Figure 4-3, and the convergence of the 

processes to the appropriate point in the trajectory fx(n·l) as l → 0 can be 

appreciated following the gray arrows (which join histograms for which n·l is 

constant) in Figure 4-8. Figure 4-9 illustrates this convergence in the phase plane. 

The grey arrows in Figure 4-8 also illustrate statement (ii): the distribution of 

 approaches normality with decreasing variance as l→0, keeping n·l 

constant.  

)( l
n FP x

 

Figure 4-9. Three sample runs of a system parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]2 for different 

values of n and l. The product n·l is the same for the three simulations; therefore, for low values of 

l, the state of the system at the end of the simulations tends to concentrate around the same point.  

 

The fact that the trajectory fx is a good approximation for the medium-run 

dynamics of the system for slow learning shows the importance of SCEs as 

attractors of the actual dynamics of the system. To illustrate this, consider family 

Fl again. It can be shown using the square of the Euclidean distance to the SCE as 

a Liapunov function that every trajectory starting in any state different from the 

SRE [p1,C , p2,C] = [ 1 , 1 ] will end up in the SCE [p1,C , p2,C] = [ 0.37 , 0.37 ] – i.e. 

the limit set Lx is formed exclusively by the SCE for any x ≠ SRE (see Figure 

4-3). This means that starting from any initial state x ≠ SRE, if K is sufficiently 

large and n < K/l (i.e. if in Figure 4-8 we consider the region to the left of a grey 

arrow that is sufficiently to the right), the distribution of  will be tightly 

clustered around the SCE [ 0.37 , 0.37 ] and will approach normality as n 

increases. Furthermore, statement (iii) says that, for any x ≠ SRE, any δ > 0, and  

n = 0, 1… N < ∞, the proportion of values of  within a neighbourhood 

B

)( l
n FP x

)( l
n FP x

Bδ(SCE) of the SCE goes to 1 (in probability) as l → 0 and N·l → ∞. This is the 
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long run. Remember, however, that given any l,  will eventually converge 

to the unique SRE [1, 1] in the ultralong run (n → ∞). This is proved in the 

following section. 

)( l
n FP x

4.7. Asymptotic Behaviour 
This section presents theoretical results on the asymptotic (i.e. ultralong run) 

behaviour of the BM system. Note that with low learning rates the system may 

take an extraordinarily long time to reach its ultralong-run behaviour (e.g. see 

bottom row in Figure 4-8). 

 

Proposition 4-2: In any 2×2 game, assuming players’ aspirations are different 

from their respective payoffs (ui(d) ≠ Ai for all i and d) and below their respective 

maximin13, the BM process Pn converges to an SRE with probability 1 (the set 

formed by all SREs is asymptotically reached with probability 1). If the initial 

state is completely mixed, then every SRE can be asymptotically reached with 

positive probability. 

 

Proposition 4-3: In any 2×2 game, assuming players’ aspirations are different 

from their respective payoffs and above their respective maximin: 

i. If there is any SRE then the BM process Pn converges to an SRE with 

probability 1 (the set formed by all SREs is asymptotically reached with 

probability 1). If the initial state is completely mixed, then every SRE can be 

asymptotically reached with positive probability. 

ii. If there is no SRE then the BM process Pn is ergodic14 with no absorbing 

state.  

 

                                                   
13 Maximin is the largest possible payoff players can guarantee themselves in a single-stage game using 

pure strategies. 
14 Following Norman (1968, p. 67), by ‘ergodic’ we mean that the sequence of stochastic kernels 

defined by the n-step transition probabilities of the Markov process associated with the BM system 

converges uniformly to a unique limiting kernel independent of the initial state. Intuitively, this means 

that the asymptotic probability distribution over the states of the system (i.e. the distribution of Pn when 

n→∞) is unique and does not depend on the initial state.   
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Corollary to Proposition 4-3: Consider any of the three 2×2 social dilemma games: 

Prisoner’s Dilemma, Chicken, and Stag Hunt (see section 3.1). Assuming players’ 

aspirations are different from their respective payoffs and above their respective 

maximin: 

i. The BM process Pn is ergodic. 

ii. There is an SRE if and only if mutual cooperation is satisfactory for both 

players. In that case, the process converges to the unique SRE (i.e. certain 

mutual cooperation) with probability 1. 

 

Since most BM systems end up converging to an SRE in the ultralong run, but 

their transient dynamics with slow learning are governed by their associated ODE, 

mathematical results that relate SREs with the solutions of the ODE can be 

particularly useful. The following proposition shows that the Nash equilibrium 

concept is key to determining the stability of SREs under the associated ODE. 

 

Proposition 4-4: Consider the BM process Pn and its associated ODE (eq. [4-2] or 

[4-3]) in any 2×2 game: 

i. All SREs whose associated outcome is not a Nash equilibrium are unstable. 

ii. All SREs whose associated outcome is a strict Nash equilibrium where at least 

one unilateral deviation leads to a satisfactory outcome for the non-deviating 

player are asymptotically stable (i.e. they are SCEs too). 

 

Thus, our analysis adds to the growing body of work in learning game theory that 

supports the general principle that to assess the stability of outcomes in games, it is 

important to consider not only how unilateral deviations affect the deviator, but 

also how they affect the non-deviators. Outcomes where unilateral deviations hurt 

the deviator (strict Nash) but not the non-deviators (protected15) tend to be the 

most stable. In the particular case of reinforcement learning with fixed aspirations, 

an additional necessary condition for the stability of an outcome is, of course, that 

every player finds the outcome satisfactory. Remark: Proposition 4-4 can be 

                                                   
15 An outcome is protected if unilateral deviations by any player do not hurt any of the other 

players (Bendor et al., 2001b). 
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strengthened for the special case where all stimuli are positive (Phansalkar et al., 

1994; Sastry et al., 1994). 

4.8. Trembling hands process 
To study the robustness of the previous asymptotic results we consider an 

extension of the BM model where players suffer from ‘trembling hands’ (Selten 

1975): after having decided which action to undertake, each player i may select 

the wrong action with some probability εi > 0 in each iteration. This noisy feature 

generates a new stochastic process, namely the noisy process Nn, which can also 

be fully characterized by a 2-dimensional vector prop = [prop1 , prop2] of 

propensities (rather than probabilities) to cooperate. Player i’s actual probability 

to cooperate is now (1 – εi) · propi + εi · (1 – propi), and the profile of propensities 

prop evolves after any particular outcome following the rules given by eq. [4-1]. 

Theorem 2.2 in Norman (1968, p. 67) can be used to prove that this noisy process 

is ergodic in any 2×2 game16. Proposition 4-1 applies to this extension too. 

 

The noisy process has no absorbing states (i.e. SREs) except in the trivial case 

where both players find one of their actions always satisfactory and the other 

action always unsatisfactory – thus, for example, in the Prisoner’s Dilemma the 

inclusion of noise precludes the system from convergence to a single state. 

However, even though noisy processes have no SREs in general, the SREs of the 

associated unperturbed process (SREUPs, which correspond to mutually 

satisfactory outcomes) do still act as attractors whose attractive power depends on 

the magnitude of the noise: ceteris paribus the lower the noise the higher the long 

run chances of finding the system in the neighborhood of an SREUP (see Figure 

4-10). This is so because in the proximity of an SREUP, if εi are low enough, the 

SREUP’s associated mutually satisfactory outcome will probably occur, and this 

brings the system even closer to the SREUP. The dynamics of the noisy system 

will generally be governed also by the other type of attractor, the SCE (see Figure 

4-10). 

                                                   
16 We exclude here the meaningless case where the payoffs for some player are all the same and equal 

to her aspiration.    
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Figure 4-10. Histograms representing the propensity to cooperate for one player (both players’ 

propensities are identical) after 1,000,000 iterations (when the distribution is stable) for different 

levels of noise (εi = ε) in a Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 | 0.25 ]2. 

Each histogram has been calculated over 1,000 simulation runs.  

 

Figure 4-11 and Figure 4-12, which correspond to a Prisoner’s Dilemma game 

parameterised as [ 4 , 3 , 1 , 0 | 2 | l ]2, show that the presence of noise can greatly 

damage the stability of the (unique) SREUP associated to the event CC. Note that 

the inclusion of noise implies that the probability of an infinite chain of the 

mutually satisfactory event CC becomes zero. 

 

The systems represented on the left-hand side of Figure 4-11, corresponding to a 

learning rate l = 0.5, show a tendency to be quickly attracted to the state [ 1 , 1 ], 

but the presence of noise breaks the chains of mutually satisfactory CC events 

from time to time (see the series on the bottom-left corner); unilateral defections 

make the system escape from the area of the SREUP before going back towards it 

again and again. The systems represented on the right-hand side of Figure 4-11, 

corresponding to a lower learning rate (l = 0.25) than those on the left, show a 

tendency to be lingering around the SCE for longer. In these cases, when a 

unilateral defection breaks a chain of mutually satisfactory events CC and the 

system leaves the proximity of the state [ 1 , 1 ], it usually takes a large number of 

periods to go back into that area again.  
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Figure 4-11. Representative time series of player 1’s propensity to cooperate over time for the 

Prisoner’s Dilemma game parameterised as [4 , 3 , 1 , 0 | 2 | 0.5 ]2 (left) and [4 , 3 , 1 , 0 | 2 | 0.25 ]2 

(right), with initial conditions [ x0 , x0 ] = [ 0.5 , 0.5 ], both without noise (top) and with noise level 

εi = 10-3 (bottom). 

 

Figure 4-12 shows that a greater level of noise implies higher destabilisation of 

the SREUP. This is so because, even in the proximity of the SREUP, the long 

chains of reinforced CC events needed to stabilise the SREUP become highly 

unlikely when there are high levels of noise, and unilateral defections (whose 

probability increases with noise in the proximity of the SREUP) break the stability 

of the SREUP. 

 

 

 76 



 

Figure 4-12. Evolution of the average probability / propensity to cooperate of one of the players in 

a Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 2 | 0. 5 ]2 with initial state [ 0.5 , 0.5 ], 

for different levels of noise (εi = ε). Each series has been calculated averaging over 100,000 

simulation runs. The standard error of the represented averages is lower than 3·10-3 in every case.  

Stochastic stability 
Importantly, not all the SREs of the unperturbed process are equally robust to 

noise. Consider, for instance, the system [ 4 , 3 , 1 , 0 | 0.5 | 0. 5 ]2, which has two 

SREs: [p1,C , p2,C] = [ 1 , 1 ] and  [p1,C , p2,C] = [ 0 , 0 ]. Using Proposition 4-2 we 

know that the set formed by the two SREs is asymptotically reached with 

probability 1; the probability of the process converging to one particular SRE 

depends on the initial state; and if the initial state is completely mixed, then the 

process may converge to either SRE. Simulations of this process show that, in 

almost every case, the system quickly approaches one of the SREs and then 

remains in its close vicinity. Looking at the line labelled “ε = 0” in Figure 4-13 we 

can see that this system with initial state [ 0.9 , 0.9 ] has a probability of 

converging to its SRE at [ 1 , 1 ] approximately equal to 0.7, and a probability of 

converging to its SRE at [ 0 , 0 ] approximately equal to 0.3.  

 

However, the inclusion of (even tiny levels of) noise may alter the dynamics of 

the system dramatically. In general, for low enough levels of “trembling hands” 

noise we find an ultralong run (invariant) distribution concentrated on 

neighbourhoods of SREUPs. The lower the noise, the higher the concentration 

around SREUPs. If there are several SREUPs, the invariant distribution may 
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concentrate on some of these SREUPs much more than on others. In the limit as 

the noise goes to zero, it is often the case that only some of the SREUPs remain 

points of concentration. These are called stochastically stable equilibria (Foster 

and Young, 1990; Young, 1993; Ellison, 2000) and will be discussed in detail in 

chapter 5. As an example, consider the simulation results shown in Figure 4-13, 

which clearly suggest that the SRE at [ 0 , 0 ] is the only stochastically stable 

equilibrium even though the unperturbed process converges to the other SRE 

more frequently with initial conditions [ 0.9 , 0.9 ]. Note that whether an 

equilibrium is stochastically stable or not is independent on the initial conditions.  

 

 

Figure 4-13. Evolution of the average probability / propensity to cooperate of one of the players in 

a Prisoner’s Dilemma game parameterised as [ 4 , 3 , 1 , 0 | 0.5 | 0. 5 ]2 with initial state  

[ 0.9 , 0.9 ], for different levels of noise (εi = ε). Each series has been calculated averaging over 

10,000 simulation runs. The inset graph is a magnification of the first 500 iterations. The standard 

error of the represented averages is lower than 0.01 in every case.  

 

Intuitively, note that in the system shown in Figure 4-13, in the proximities of the 

SRE at [ 1 , 1 ], one single (possibly mistaken) defection is enough to lead the 

system away from it. On the other hand, near the SRE at [ 0 , 0 ] one single 

(possibly mistaken) cooperation will make the system approach this SRE at  

[ 0 , 0 ] even more closely. Only a coordinated mutual cooperation (which is 

highly unlikely near the SRE at [ 0 , 0 ]) will make the system move away from 
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this SRE. This makes the SRE at [ 0 , 0 ] much more robust to occasional 

mistakes made by the players when selecting their strategies than the SRE at  

[ 1, 1 ], as illustrated in Figure 4-14 and Figure 4-15.   

 

 

Figure 4-14. One representative run of the system parameterised as [ 4 , 3 , 1 , 0 | 0.5 | 0. 5 ]2 with 

initial state [ 0.9 , 0.9 ], and  noise εi = ε = 0.1. This figure shows the evolution of the system in the 

phase plane of propensities to cooperate, while figure 15 below shows the evolution of player 1’s 

propensity to cooperate over time for the same simulation run.  

 

 

Figure 4-15. Time series of player 1’s propensity to cooperate over time for the same simulation 

run displayed in Figure 4-14.  
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4.9. Extensions 
The theoretical results on asymptotic behaviour presented in this chapter derive 

from the theory of distance diminishing models developed by Norman (1968; 

1972), which can also be applied to 2-player games with any finite number of 

strategies without losing much generality. The results on transient behaviour when 

learning takes place by small steps (which derive from the theory of stochastic 

approximation (Benveniste et al., 1990; Kushner and Yin, 1997) and the theory of 

slow learning (Norman, 1972)) and Proposition 4-4 (which derives from Sastry et 

al. (1994)) can be easily extended to any finite game.  

 

More immediately, every proposition in this chapter can be directly applied to 

finite populations from which two players are randomly17 drawn repeatedly to 

play a 2×2 game. Indications on how to prove this are given in Appendix A. As an 

example, assume that there is a finite population of BM reinforcement learners 

with aspirations above their respective maximin and below their payoff for mutual 

cooperation, who meet randomly to play a 2×2 social dilemma game (Macy and 

Flache, 2002). Then, every player in the group will end up cooperating with 

probability 1 in the ultralong run. The more players in the group, the longer it 

takes the group to reach universal cooperation. 

 

As for the general existence of SREs and SCEs in games with any finite number 

of players and strategies, note that both solution concepts require that the expected 

change in every player’s strategy is zero – i.e. they are both critical points of the 

expected motion of the system. This is an important property since if any system 

converges to a state, that state must be a critical point of its expected motion. The 

following shows that every game has at least one such critical point for a very 

wide range of models. Consider the extensive set of models of normal-form 

games where every player’s strategy is determined at any time-step by the 

probability of undertaking each of their possible actions. Assume that, after any 

given outcome y in time step n, every player i (i = 1, 2…m) updates her strategy pi 

using an adaptation rule , where  is continuous for every y )( ny
i

n
i prp =+1 )( ny

i pr

                                                   
17 The important point here is that, at any time, every player must have a positive probability of being 

selected to play the game. 
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and every i. Let us call such adaptation rules continuous. Note that BM adaptation 

rules are continuous, and consider the following proposition.  

 

Proposition 4-5:  Assuming that players’ adaptation rules after every possible 

outcome of the game are continuous, every finite normal-form game has at least 

one critical point (a strategy profile where the expected change of every player’s 

strategy is zero). 

 

4.10. Conclusions of this chapter 
This chapter has focused on the study of games played by individuals who use one 

of the most widespread forms of learning in nature: reinforcement learning. This 

analysis (and related literature cited in section 4.1) has shown that the outcome of 

games played by reinforcement learners can be substantially different from the 

expected outcomes when the game is played among perfectly rational individuals 

with common knowledge of rationality. As an example, cooperation in the 

repeated Prisoner’s Dilemma is not only feasible but also the unique asymptotic 

outcome in many cases. More generally, outcomes where players select 

dominated strategies can emerge through social interaction and persist through 

time.  

 

This chapter in particular has characterised the dynamics of the Bush-Mosteller 

(Bush and Mosteller, 1955) aspiration-based reinforcement learning model in 2x2 

games. These dynamics have been shown to depend mainly on three features: 

• The speed of learning. 

• The existence of self-reinforcing equilibria (SREs). SREs are states which 

are particularly relevant for the ultralong-run or asymptotic behaviour of 

the process. 

• The existence of self-correcting equilibria (SCEs). SCEs are states which 

are particularly relevant for the transient behaviour of the process with low 

learning rates. 

With high learning rates, the model approaches its asymptotic behaviour fairly 

quickly. If there are SREs, such asymptotic dynamics are concentrated on the 

SREs of the system. With low learning rates, two transient distinct regimes 
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(medium-run and long-run) can usually be distinguished before the system 

approaches its asymptotic regime. Such transient dynamics are strongly linked to 

the solutions of the continuous time limit approximation of the system’s expected 

motion. 

 

An extension of the Bush-Mosteller model where players suffer from trembling 

hands has also been explored. It has been shown that the inclusion of small 

quantities of noise in the original Bush-Mosteller model can change its dynamics 

quite dramatically. Some states of the system that are asymptotically reached with 

high probability in the unperturbed model (i.e. some SREs) can effectively lose all 

their attractiveness when players make occasional mistakes in selecting their 

actions. A field for further research is the analytical identification of the 

asymptotic equilibria of the unperturbed process that are robust to small trembles 

(i.e. the set of stochastically stable equilibria).   

 

This chapter has characterised not only the asymptotic behaviour of the Bush-

Mosteller model of reinforcement learning, but also its transient dynamics. The 

study of the transient dynamics of learning algorithms has been neglected until 

recently due to the complexity of its formal analysis. Thus, most of the literature 

in learning game theory focuses on asymptotic equilibria. This may be insufficient 

since, as this chapter has illustrated, the transient dynamics of learning algorithms 

may be substantially different from their asymptotic behaviour. In broader terms, 

the importance of understanding the transient dynamics of formal models of social 

interactions is clear: social systems tend to exhibit an impressive ability to adapt 

and reorganize themselves structurally, meaning that most likely it is not 

asymptotic behaviour that we observe in the real world.  
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