Simulating the Social Processes of Science workshop Leiden, Netherlands, April 7th-14th, 2014

Agent-Based Models of Science: A Glimpse of the Past and Tools for the Future

Nicolas Payette

UQÀM

PhD Student in Philosophy, Université du Québec à Montréal

(Until recently:) Predoctoral Scholar, Center for Connected Learning and Computer-Based Modeling

Plan

I. An Overview of Some Previous Agent-Based Models of Science

II. Modelling Science with NetLogo: Three New Extensions

Part I

An Overview of Some Previous Agent-Based Models of Science

Part I

Not detailed

An Overview of Some Previous Agent-Based Models of Science

Part I Not detailed Not many An Overview of Some Previous Agent-Based Models of Science

Part I

Understanding Complex Systems

Andrea Scharnhorst Katy Börner Peter van den Besselaar *Editors*

Models of Science Dynamics

Encounters Between Complexity Theory and Information Sciences Chapter 4: ***Agent-Based Models of Science**

Gilbert, N. (1997). A simulation of the structure of academic science. Sociological Research Online, 2(2).

Lotka's Law

The number of authors making *n* contributions is about 1/*n*² of those making one contribution.

A first, simple model

- Select a random number from a uniform distribution from 0 to 1. If this number is less than α, give the publication to a new (i.e. previously unpublished) author.
- 2. If the publication is not from a new author, select a paper randomly from those previously published and give the new publication the same author as the one so selected.

A more complex model

- Every paper contains a *kene*: a string of bits, optionally mapped to a 2D space
- At each time step, every existing paper has a small constant probability of reproducing itself
- Author is assigned like in previous model
- Paper has references, chosen at random from "neighboring" kenes, that "pull" it in their direction

(c)

(d)

Naveh, I., & Sun, R. (2006). A cognitively based simulation of academic science.

Computational & Mathematical Organization Theory, 12(4), 313–337.

Ideas are not created equals

- Differences in "clarity, insightfulness, empirical evidence, theoretical results, application potential."
 - "Communal functions" vs. "subjective functions"
- Two tasks for the agents:
 - choosing the focal idea
 - choosing the pull ideas.

CLARION Cognitive Architecture

Bottom Level

"We put more distance between mechanisms and outcomes, which makes it harder to obtain a match with the human data. Thus, the fact that we were able to match the human data shows the power of our cognitive agent-based approach compared to traditional methods of simulation." (p. 325)

Edmonds, B. (2007). Artificial Science: A Simulation to Study the Social Processes of Science.

In Social Simulation: Technologies, Advances and New Discoveries (pp. 61–67).

$A \rightarrow B$ (Major Premise)

Weisberg M. & Muldoon, R. (2009). Epistemic landscapes and the division of cognitive labor. Philosophy of Science, 76(2), 225-252.

Distribution of cognitive labor

Controls

...are basically "hill climbers": they set a direction and move forward as long as they get better results. If they get worse results, they backtrack and change direction.

• Followers

...look around them to see if previous agents have found better approaches in their neighborhood and move there if there are. If not, they will look for unvisited place or choose at random.

Mavericks

...first look for unvisited spots. Only if there are none will they move at the best visited place in their neighborhood.

Follower Dynamics

Scientist Agents vs. Average Epistemic Progress

number of agents

Grim, P. (2009). Threshold phenomena in epistemic networks.

In Complex Adaptive Systems and the Threshold Effect: Views from the Natural and Social Sciences.

Social structure matters

"How does an individual figure out the structure of the world? The truth is that no individual does. It is cultures and communities that plumb the structure of reality; individuals figure out the structure of the world only as they participate in the epistemic networks in which they are embedded."

Some landscapes are harder than others

Network structure performance

Part II

Modelling Science with NetLogo

Three New Extensions

-

NetLogo Home Page

Ccl.northwestern.edu/netlogo/

NetLogo

Home

Download Resources Extensions FAQ References Contact Us

Models:

<u>Library</u> <u>Community</u> <u>Modeling Commons</u>

User Manuals: <u>Web</u> <u>Printable</u> <u>Chinese</u> <u>Czech</u> <u>Japanese</u>

Donate

NetLogo is a multi-agent programmable modeling environment. It is used by tens of thousands of students, teachers and researchers worldwide. It also powers <u>HubNet</u> participatory simulations. It is authored by <u>Uri Wilensky</u> and developed at the <u>CCL</u>. You can download it free of charge.

8 - Google

- C

Q 👃 🏠

What can you do with NetLogo? Read more here. Click here to watch videos.

Join mailing lists here.

Download

NetLogo comes with a large library of sample models. Click on some examples below.

setup	go	go g
-------	----	------

population	-	50

 $\mathbf{\nabla}$

landscape

LANGERMANN'S FUNCTION 11 (M=7)

network-generator

nw:generate-lattice-2d turtles links sqrt population sqrt population false

```
extensions [ nw rnd landscapes ]
patches-own [ value ]
to setup
  clear-all
  setup-landscape
  setup-network
  reset-ticks
end
```

😣 🗈 Chooser
Global variable landscape
Choices
"3 POT HOLES" "ACKLEY'S FUNCTION" "ACKLEY'S FUNCTION" "ACKLEY'S FATH FUNCTION 10" "AXIS PARALLEL HYPER-ELLIPSOID FUNCTION" "BRANINS'S RCOS FUNCTION" "BRANINS'S RCOS FUNCTION" "CPF2" "DE JONG F1" "EASOM'S FUNCTION" "EUCLIDEAN" "EXP" "F3" "F4 (PSHUBERT1)" "F5 (PSHUBERT2)" "F6 (QUARTIC)" "F7 (SHUBERT FUNCTION)" "G3" "GENERALIZED GRIEWANK FUNCTION" "GENERALIZED GRIEWANK FUNCTION" "GENERALIZED PENALIZED FUNCTION 2" "GENERALIZED PENALIZED FUNCTION 2" "GENERALIZED PENALIZED FUNCTION" "GENERALIZED ROSENBROCK'S FUNCTION" "GENERALIZED ROSENBROCK'S FUNCTION" "GENERALIZED ROSENBROCK'S FUNCTION" "GENERALIZED SCHWEFELS PROBLEM 2.26" "GOLDSTEIN-PRICE'S FUNCTION 8" "HANSENS FUNCTION 8" "HANSENS FUNCTION 11 (M=4)" "LANGERMANN'S FUNCTION 11 (M=4)" "LANGERMANN'S FUNCTION 11 (M=7)" "MTCHALEMAT'S FUNCTION 12" "EXAMPLE'S FUNCTION 11 (M=7)" "MTCHALEMAT'S FUNCTION 12" "EXAMPLE'S FUNCTION 12" "MTCHALEMAT'S FUNCTION 12" "MTCHALEMAT'S FUNCTION 12" "ACKLEY'S FUNCTION 11 (M=7)" "MTCHALEMAT'S FUNCTION 12" "EXAMPLE'S FUNCTION 12" "MTCHALEMAT'S FUNCTION 12" "MTCHALEMAT'S FUNCTION 12" "MTCHALEMAT'S FUNCTION 12" "MTCHALEMAT'S FUNCTION 12" "ACKLEY'S SUMMEDSY" "MTCHALEMAT'S FUNCTION 12" "MTCHALEMAT'S FUN
OK Apply Cancel


```
to setup-landscape
  resize-world -100 100 -100 100
  set-patch-size 3
  landscapes:generate landscape "value"
  ask patches [
    set pcolor scale-color green value 0 2
  1
  ask patches with-max [ value ] [
    set pcolor red
end
```


Global variable network-generator
Choices
"nw:generate-preferential-attachment turtles links population" "nw:generate-ring turtles links population" "nw:generate-star turtles links population" "nw:generate-wheel turtles links population" "nw:generate-lattice-2d turtles links sqrt population sqrt population false" "nw:generate-small-world turtles links sqrt population sqrt population 2 false" "nw:generate-random turtles links population 0.1"
example: "a" "b" "c" 3 4 5

Star

Wheel

Lattice

Small World

Random


```
to setup-network
  run network-generator
  ask turtles [
    set color yellow
    set shape "person"
    set size 6
    setxy random-pxcor random-pycor
  ]
  ask links [ set color white ]
end
```



```
to go
  ask turtles [
    let target rnd:weighted-one-of link-neighbors [
      [ value ] of ?
    if-else target != nobody and [ value ] of target > value [
      face target
      move-to patch-ahead 1
      move-to one-of patches in-radius 1 with-max [ value ]
    ]
  if all? turtles [ value = 1 ] [ stop ]
  tick
end
```

🛞 🗊 Experiment
Experiment name experiment
Vary variables as follows (note brackets and quotation marks):
["network-generator" "nw:generate-preferential-attachment turtles links population" "nw:generate-ring turtles links population" "nw:gener ["landscape" "3 POT HOLES" "ACKLEY'S FUNCTION" "ACKLEY'S PATH FUNCTION 10" "AXIS PARALLEL HYPER-ELLIPSOID FUNCTION" "BOHACHEVSKY'S FUNCTI ["population" 100]
Either list values to use, for example: ["my-slider" 1 2 7 8] or specify start, increment, and end, for example: ["my-slider" [0 1 10]] (note additional brackets) to go from 0, 1 at a time, to 10. You may also vary max-pxcor, min-pxcor, max-pycor, min-pycor, random-seed.
Repetitions 100
run each combination this many times
Measure runs using these reporters:
one reporter per line; you may not split a reporter across multiple lines
✓ Measure runs at every step if unchecked, runs are measured only when they are over
Setup commands: Go commands:
setup go
Stop condition: Final commands: the run stops if this reporter becomes true run at the end of each run
Time limit 10000
stop after this many steps (0 = no limit)
OK Cancel

	"SCHWEFEL'S PROBLEM 2.21" "EUCLIDEAN"	"SPHERE" "STEP FUNCTION"	"DE JONG FI"	"TEST FUNCTION F1"	"BOHACHEVSKY'S FUNCTION" "SUM OF DIFFERENT POWER FUNCTION"	EXP"	"CPF1" "CPF1"	"GENERALIZED PENALIZED FUNCTION 1" "GENERALIZED PENALIZED FUNCTION 2"	"TEST FUNCTION F3"	"MICHALEWICZ'S FUNCTION 12"	"SCHWEFEL'S PROBLEM 1.2"	"AVIS BABALLEL HYPER-ELLIPSOID ELINCTION"	"ROTATED HYPER-ELLIPSOID FUNCTION"	"ACKLEY'S FUNCTION"	"EASOM'S FUNCTION"	"GENERALIZED GRIEWANK FUNCTION"		"PEAKS"	"F6 (QUARTIC)"	"GRIEWANGK'S FUNCTION 8"	"SQUASHED FROG FUNCTION (TIMBO)"	"ROSENBROCK'S VALLEY (DE JONG F2)"	"TEST FUNCTION F2 (ROSENBROCK'S FUNCTION)"	"GENERALIZED ROSENBROCK'S FUNCTION"	"SIX-HUMP CAMEL BACK FUNCTION"	"HORN'S FMMEASY"	"GENERALIZED SCHWEFELS PROBLEM 2.26"	"MULTI FUNCTION"	"F5 (PSHUBERT2)"	"SCHWEFEL'S FUNCTION 7"	"I ANGERMANN'S EUNCTION 11 (ME4)"	"GENERALIZED RASTRIGIN'S FUNCTION" "RASTRIGIN'S FUNCTION 6"		"DOOTS"	"F4 (PSHUBERT1)"	"LANGERMANN'S FUNCTION 11 (M=7)"	"GENERALIZED HIMMELBLAU'S FUNCTION"	"GOLDSTEIN-PRICE'S FUNCTION"	"SCHAFFER'S FUNCTION"	"BRANINS'S RCOS FUNCTION"	"3 POT HOLES"	"HORNS 5 PEAKS (MODIFIED)"	"F7 (SHUBERT FUNCTION)"	"HANSENS FUNCTION"	"TEST FUNCTION F4 (QUARTIC FUNCTION)"	"M5 (HIMMELBLAU'S FUNCTION)"	"QUARTIC FUNCTION (NOISE)"	"M6 (SHEKEL'S FOXHOLES)"	"F3" "TEST FUNCTION F5 (SHEKEL'S FUNCTION)"	Tota
random	174 170	182 183	182 18	5 183 :	183 189	147 1	95 195	224 27	7 320	465	530 5	521 5	64 557	170	920	207 1	70 2	76 203	425	227	1291	358	565	387	1576	2776	1594	3174	1740 3	3088 3	969 3	2567 28	831 30	016 4	55 421	7 5518	3168	9031	6827	6915	9097 7	7193 7	7861 7	365 76	66 878	8 8395	8886	9600	9523 100	2863
small world	179 177	189 188	190 18	9 191 :	189 195	156 2	04 207	234 29	1 382	592	622 7	748 6	64 639	189	717	211 1	.88 34	41 320	560	284	548	431	402	707	2432	2082	3408	6515	2484 3	3548 3	900 :	2632 23	376 4	624 48	354 492	7 5886	7072	6383	5212	8432	8335	7288 8	8032 8	495 88	45 835	7 9824	8051	9782	9772 100	3081
wheel	182 180	191 193	192 19	2 195 :	192 205	161 2	06 210	214 22	8 412	347	326 3	326 3	24 337	190	823	218 1	.89 4	66 337	2987	331	1065	532	527	1173	1555	3498	4874	4715	5128 9	5192 5	935	8207 80	085 41	751 63	805 714	6 5108	6884	9218	8287	7089	9043	7716 7	7590 8	461 86	93 932	7 8401	9642	9430	9745 94	3553
lattice	185 190	194 196	193 19	7 196 :	199 205	187 2	16 212	258 32	0 489	1015 1	1074 10	57 9	77 1075	228	1175	237 2	22 4	62 586	1342	485	722	981	958	1773	4727	2165	5632	5071	4912 9	5533 6	529	5168 54	408 83	140 66	663	8 8062	9671	9303	8242	9935	8805 8	8943 9	9408 9	842 97	25 876	0 9934	8928	9782	9872 100	3893
ring	198 199	208 207	206 20	8 204 3	205 210	289 2	23 221	386 47	2 867	2124 2	2427 24	53 264	45 2602	413	2501	438 4	03 9	71 1202	1394	889	2196	8350	9048	8274	7266	8163	7781	4379	9456	7974 7	225	8613 87	757 9	456 68	818 1000	0 9892	9989	3873	9971 1	10000	5874 1	0000 10	000 10	000 100	00 1000	0 10000	10000 1	0000	9972 100	<mark>00</mark> 4968
star	154 166	152 151	154 15	3 156	156 153	161 1	56 158	164 14	8 839	152	163 1	164 1	51 164	7584	2481 5	5118 85	47 832	2 <mark>1</mark> 2819	3171	9772	10000	7087	6632	5447	4062	9336	8880	8939	9902 (3735 8	874 10	0000 99	901 7	559 93	31 981	8 9212	7430	9705	9901	7427	8819	9705 9	9541 9	713 95	24 993	3 8635	10000	9802	9706 95	<mark>)8</mark> 5578
pref. attachment	188 198	192 192	193 19	4 194 :	199 200	267 2	01 203	294 33	9 1431	1071 1	1474 14	47 153	34 1512	355	1131 <mark>3</mark>	8411 5	87 93	<mark>30</mark> 8397	10000	9847	10000	9363	9514	9927	9825 1	10000 1	0000 1	0000 1	0000 1	000 10	0000 10	0000 100	000 10	000 100	00 1000	0 10000	10000	10000 1	10000 1	10000 1	0000 1	0000 10	000 10	000 100	00 1000	0 10000	10000 1	0000 1	0000 100	<mark>00</mark> 6080
Total Result	180 183	187 187	187 18	8 188 :	189 194	195 2	00 201	253 29	6 677	824	945 9	959 9	80 984	1304	1393 1	406 14	72 168	81 1981	2840	3119	3689	3872	3949	3956	4492	5431	6024	6113	6232	6296 6	633	6741 67	766 6	792 69	29 753	5 7668	7745	8216	8349	8543	8568	8692 8	8919 9	125 92	08 930	9 9313	9358	9771	9799 981	4288

Get the model at: https://github.com/nicolaspayette/sspos