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Quantifying the role of teamwork and 
reputation across scientific careers



Practical Question: how to measure scientific output 
and impact at various scales while accounting for 

systemic heterogeneity
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● Country
 
● Institution 

● Lab / Team

● Individual

● Paper 
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C O M M E N TA R Y “ ”
communications, social science, transla-
tional research, complex systems, technol-
ogy, business and management, research 
development, biomedical and life sciences, 
and physical sciences. !e increasing inter-
est in professional gatherings centered on 
SciTS combined with recent progress in 
SciTS research and practice suggest that 
this community is coalescing into its own 
area of inquiry.

MULTI-LEVEL, MIXED-METHODS  
APPROACH FOR SCITS
!e burgeoning "eld of SciTS can serve as a 
transformative melting pot of existing the-
ories and scienti"c techniques. We propose 
a multi-level, mixed-methods approach 
that can serve as a framework capable of 
organizing the diverse forms of inquiry and 
interlink research on individual scientists, 
teams, and populations of teams (Fig. 1).

Researchers working at di#erent levels 
study di#erent facets of the team science 
ecology, contribute di#erent theories and 
techniques, and generate diverse "ndings. 
Each level might analyze di#erent data; use 
multiple approaches, techniques, and visual 
representations; and provide di#erent in-
sights. !e combination of insights from all 
levels is considerably larger than their sum.

First, “macro-level” research examines 
teams at the population level and leads 
to insights about patterns of collabora-
tion that are broad in both their amount 
and their form, and that provide input on 
how to measure the growth and e#ect of 
knowledge. Macro-level studies might use 
terabytes of data that require large-scale 
computing infrastructures to process and 
communicate results. Recent work com-
bines computational, behavioral, organiza-
tional, and other methodological approach-
es to derive new insights at this broad level. 
Second, “meso-level” research increases 
our understanding at the group level, ex-
amining, for example, how interaction pat-
terns, the nature and amount of intra-team 
communications, and the composition of 
the team contribute to team process and 
outcomes. Such approaches can use net-
work analysis—the representation of data 
as nodes and their interlinkages—to study 
the evolution and impact of (social) net-
work structures at varied time scales or an-
alyze the speci"c quality and type of inter-
action via examination of communication 
context and patterns within teams (12). 
!ird, “micro-level” research considers the 
individuals within the team; their training, 

dispositions, and education; and how such 
factors predispose them to particular types 
of collaboration. Micro-level studies can be 
quantitative and, if considering network 
analyses, involve many attributes for nodes 
and linkages. Other methods include indi-
vidual-level analysis of researchers partici-
pating within teams in which members are 
queried about their experiences as team 
members (13, 14).

Each of these levels addresses di#erent 
issues that can be roughly classi"ed into 

when (temporal), where (geospatial), what 
(topical), with whom (network), how (pro-
cess), and why (modeling) questions. Table 
1 presents key insights from studies apply-
ing these di#ering levels of analysis.

Each level of team science involves a set 
of challenges. Macro-level challenges ad-
dress organizational change and the exist-
ing culture that either sti$es or encourages 
collaboration and interdisciplinarity. Chal-
lenges at the meso-level involve explicat-
ing the group dynamics emerging in team 
science as well as how to better understand 
and train teamwork in science teams. At 
the micro-level (the individual level), but 
tightly intertwined with the macro- and 
meso-level issues, are issues pertaining to 
how individual scientists acquire training 
in the scienti"c aspects of their work, in the 
process of innovation and discovery, and 
in communication and con$ict resolution. 
Table 2 lists key challenges that need to be 
addressed within these three levels.

MOVING FORWARD WITH SCITS
We conclude with a description of the 
more general challenges and opportunities 
surrounding SciTS. First, research relevant 
to SciTS is conducted in a variety of set-
tings—academic and commercial, technol-
ogy development, and government sector. 
As such, the variety of research results pub-
lished, approaches and tools applied, and 
data produced is impressive. We identi"ed 
more than 180 core papers and reports 
that convey key results in team science re-
search. Of those papers, 17 were published 
between 1944 and 2000, with the remain-
der being published since 2001, showcas-
ing a surge of activity on SciTS. Many of 
the reported studies use proprietary pub-
lication data sets (such as Web of Science 
by !omson Reuters or Scopus by Elsevier) 
and most tools are commercial, making it 
di%cult to replicate results. Data such as 
journal publications, conference proceed-
ings, and book chapters, but also patents 
and grant awards, are not comprehensive-
ly collected across the sciences. !e data 
studied are typically published in English, 
although science is international and mul-
tilingual. Furthermore, the uni"cation of 
data records (such as the identi"cation of 
all papers by one scholar as stored in di#er-
ent databases) and the interlinkage of col-
lections of data (such as the retrieval of all 
papers that were supported by one funding 
award) proves di%cult because no unique 
identi"ers are available.

Fig. 1. Multi-level, mixed-methods approach 
to SciTS. Team science can be studied at differ-
ent levels using different approaches. Together, 
the insights derived from these studies are worth 
more than the sum of their parts.   C
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K. Börner, et al. A multi-level systems 
perspective for the science of team science. 
Sci. Transl. Med. 2, 49cm24 (2010).

Science is  a multi-scale system with emergent complexity

Science of Science 



Macro (institutions)
• Exponential growth of Science
• Economics of research universities and national funding programs
• Increasing role of teams (division of labor) in science

Micro (individual careers)
• Growth of careers
• Collaboration patterns within careers
• Competition
• Issues of ethics  (rules of the game)

Models of science: 
don’t throw the baby out with the bathwater!
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Chain-like NON Star-like NON Tree-like NON

Figure 6 | Three types of loopless NON composed of five coupled
networks. All have the same percolation threshold and the same giant
component. The dark node represents the origin network on which failures
initially occur.

NON, (2) a tree-like random regular fully dependent NON, (3) a
loop-like Erd⇤s–Rényi partially dependent NON and (4) a random
regular network of partially dependent Erd⇤s–Rényi networks.
All cases represent different generalizations of percolation theory
for a single network. In all examples except (3) we apply the
no-feedback condition.

(1) We solve explicitly96 the case of a tree-like NON (Fig. 6)
formed by n Erd⇤s–Rényi networks92–94 with the same average
degrees k, p1 = p, pi = 1 for i ⌃= 1 and qij = 1 (fully interdependent).
From equations (15) and (16) we obtain an exact expression for the
order parameter, the size of the mutual giant component for all p, k
and n values,

P⇧ = p[1�exp(�kP⇧)]n (17)

Equation (17) generalizes known results for n= 1,2. For n= 1, we
obtain the known result pc =1/k, equation (11), of an Erd⇤s–Rényi
network and P⇧(pc) = 0, which corresponds to a continuous
second-order phase transition. Substituting n= 2 in equation (17)
yields the exact results of ref. 73.

Solutions of equation (17) are shown in Fig. 7a for several values
of n. The special case n= 1 is the known Erd⇤s–Rényi second-order
percolation law, equation (12), for a single network. In contrast,
for any n> 1, the solution of (17) yields a first-order percolation
transition, that is, a discontinuity of P⇧ at pc.

Our results show (Fig. 7a) that the NON becomes more vul-
nerable with increasing n or decreasing k (pc increases when
n increases or k decreases). Furthermore, for a fixed n, when
k is smaller than a critical number kmin(n), pc ⇤ 1, meaning
that for k < kmin(n) the NON will collapse even if a single
node fails96.

(2) In the case of a tree-like network of interdependent random
regular networks97, where the degree k of each node in each network
is assumed to be the same, we obtain an exact expression for the
order parameter, the size of the mutual giant component for all
p, k and n values,

P⇧ = p
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Numerical solutions of equation (18) are in excellent agreement
with simulations. Comparing with the results of the tree-like
Erd⇤s–Rényi NON, we find that the robustness of n interdependent
random regular networks of degree k is significantly higher than
that of the n interdependent Erd⇤s–Rényi networks of average
degree k. Moreover, whereas for an Erd⇤s–Rényi NON there exists
a critical minimum average degree k = kmin that increases with n
(below which the system collapses), there is no such analogous kmin
for the random regular NON system. For any k > 2, the random
regular NON is stable, that is, pc < 1. In general, this is correct
for any network with any degree distribution, Pi(k), such that

Pi(0) = Pi(1) = 0, that is, for a network without disconnected or
singly connected nodes97.

(3) In the case of a loop-like NON (for dependences in
one direction) of n Erd⇤s–Rényi networks96, all the links are
unidirectional, and the no-feedback condition is irrelevant. If the
initial attack on each network is the same, 1�p, qi�1i = qn1 = q and
ki =k, using equations (15) and (16)we obtain thatP⇧ satisfies

P⇧ = p(1�e�kP⇧)(qP⇧ �q+1) (19)

Note that if q = 1 equation (19) has only a trivial solution
P⇧ = 0, whereas for q = 0 it yields the known giant component
of a single network, equation (12), as expected. We present
numerical solutions of equation (19) for two values of q in
Fig. 7b. Interestingly, whereas for q = 1 and tree-like structures
equations (17) and (18) depend on n, for loop-like NON structures
equation (19) is independent of n.

(4) For NONs where each ER network is dependent on exactly
m other Erd⇤s–Rényi networks (the case of a random regular
network of Erd⇤s–Rényi networks), we assume that the initial attack
on each network is 1� p, and each partially dependent pair has
the same q in both directions. The n equations of equation (15)
are exactly the same owing to symmetries, and hence P⇧ can be
obtained analytically,

P⇧ = p
2m

(1�e�kP⇧)[1�q+
⇣
(1�q)2 +4qP⇧]m (20)

from which we obtain

pc =
1

k(1�q)m
(21)

Again, as in case (3), it is surprising that both the critical threshold
and the giant component are independent of the number of
networks n, in contrast to tree-like NON (equations (17) and (18)),
but depend on the coupling q and on both degrees k and
m. Numerical solutions of equation (20) are shown in Fig. 7c,
and the critical thresholds pc in Fig. 7c coincide with the
theory, equation (21).

Remark on scale-free networks
The above examples regarding Erd⇤s–Rényi and random regular
networks have been selected because they can be explicitly
solved analytically. In principle, the generating function formalism
presented here can be applied to randomly connected networks
with any degree distribution. The analysis of the scale-free networks
with a power-law degree distribution P(k) ⌅ k�⌦ is extremely
important, because many real networks can be approximated
by a power-law degree distribution, such as the Internet, the
airline network and social-contact networks, such as networks
of scientific collaboration2,10,51. Analysis of fully interdependent
scale-free networks73 shows that, for interdependent scale-free
networks, pc > 0 even in the case ⌦ ⇥ 3 for which in a single
network pc = 0. In general, for fully interdependent networks,
the broader the degree distribution the greater pc for networks
with the same average degree73. This means that networks with a
broad degree distribution become less robust than networks with
a narrow degree distribution. This trend is the opposite of the
trend found in non-interacting isolated networks. The explanation
of this phenomenon is related to the fact that in randomly
interdependent networks the hubs in one network may depend on
poorly connected nodes in another. Thus the removal of a randomly
selected node in one network may cause a failure of a hub in
a second network, which in turn renders many singly connected
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Quantifying social group evolution
Gergely Palla1, Albert-László Barabási2 & Tamás Vicsek1,3

The rich set of interactions between individuals in society1–7

results in complex community structure, capturing highly con-
nected circles of friends, families or professional cliques in a social
network3,7–10. Thanks to frequent changes in the activity and com-
munication patterns of individuals, the associated social and com-
munication network is subject to constant evolution7,11–16. Our
knowledge of themechanisms governing the underlying commun-
ity dynamics is limited, but is essential for a deeper understanding
of the development and self-optimization of society as a whole17–22.
We have developed an algorithm based on clique percolation23,24

that allows us to investigate the time dependence of overlapping
communities on a large scale, and thus uncover basic relationships
characterizing community evolution. Our focus is on networks
capturing the collaboration between scientists and the calls be-
tween mobile phone users. We find that large groups persist for
longer if they are capable of dynamically altering their member-
ship, suggesting that an ability to change the group composition
results in better adaptability. The behaviour of small groups dis-
plays the opposite tendency—the condition for stability is that
their composition remains unchanged. We also show that know-
ledge of the time commitment of members to a given community
can be used for estimating the community’s lifetime. These find-
ings offer insight into the fundamental differences between the
dynamics of small groups and large institutions.

The data sets we consider are (1) the monthly list of articles in the
Cornell University Library e-print condensed matter (cond-mat)
archive spanning 142 months, with over 30,000 authors25, and (2)
the record of phone calls between the customers of a mobile phone
company spanning 52weeks (accumulated over two-week-long per-
iods), and containing the communication patterns of over 4 million
users. Both types of collaboration events (a new article or a phone
call) document the presence of social interaction between the
involved individuals (nodes), and can be represented as (time-
dependent) links. The extraction of the changing link weights from
the primary data is described in Supplementary Information. In
Fig. 1a, b we show the local structure at a given time step in the
two networks in the vicinity of a randomly chosen individual
(marked by a red frame). The communities (social groups repre-
sented by more densely interconnected parts within a network of
social links) are colour coded, so that black nodes/edges do not
belong to any community, and those that simultaneously belong to
two or more communities are shown in red.

The two networks have rather different local structure: the collab-
oration network of scientists emerges as a one-mode projection of the
bipartite graph between authors and papers, so it is quite dense and
the overlap between communities is very significant. In contrast, in the
phone-call network the communities are less interconnected and are
often separated by one ormore inter-community nodes/edges. Indeed,
whereas the phone record captures the communication between two
people, the publication record assigns to all individuals that contribute
to a paper a fully connected clique. As a result, the phone data are

dominated by single links, whereas the co-authorship data have many
dense, highly connected neighbourhoods. Furthermore, the links in
the phone network correspond to instant communication events, cap-
turing a relationship as it happens. In contrast, the co-authorship data

1Statistical and Biological Physics ResearchGroup of theHAS, Pázmány P. stny. 1A, H-1117 Budapest, Hungary. 2Center for ComplexNetwork Research andDepartments of Physics and
Computer Science, University of Notre Dame, Indiana 46566, USA. 3Department of Biological Physics, Eötvös University, Pázmány P. stny. 1A, H-1117 Budapest, Hungary.
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Figure 1 | Structure and schematic dynamics of the two networks
considered. a, The co-authorship network. The figure shows the local
community structure at a given time step in the vicinity of a randomly selected
node. b, As a but for the phone-call network. c, The filled black symbols
correspond to the average size of the largest subset of members with the same
zip-code, Ænrealæ, in the phone-call communities divided by the same quantity
found in randomsets, Ænrandæ, as a function of the community size, s. Similarly,
the open symbols show the average size of the largest subset of community
members with an age falling in a three-year time window, divided by the same
quantity in random sets. The error bars in both cases correspond to Ænrealæ/
(Ænrandæ1srand) and Ænrealæ/(Ænrandæ2srand), where srand is the standard
deviation in the case of the random sets. d, The Ænrealæ/s as a function of s, for
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events in community evolution. f, The identificationof evolving communities.
The links at t (blue) and the links at t1 1 (yellow) aremerged into a joint graph
(green). Any CPM community at t or t1 1 is part of a CPM community in the
joined graph, so these can be used to match the two sets of communities.
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Limited complexity
in small knowledge networks

The Royal Society of London for Improving 
Natural Knowledge, Established 1660

Early scholarly societies, e.g. national societies, 
scholastic monasteries, noble courts

⇒

Paradigm shifts 
arising from 
Growth and 
increasing

organizational 
complexity

Emergent complexity
in large knowledge networks

Academic staff
2,100

Urban property
210 acres (85 ha) (Main campus)
21 acres (8.5 ha) (Medical campus)
360 acres (150 ha) (Allston campus)
4,500 acres (1,800 ha) (other holdings)

Endowment
US$30 billion (2012) (Large-cap company,
e.g. same market capitalization as Enel and Mitsubishi)

Admin. staff
2,500 non-medical
11,000 medical



“Cooperation has created a conundrum for generations of evolutionary scientists. If 
natural selection among individuals favors the survival of the fittest, why would one 
individual help another at a cost to itself? .... Cooperation leads to integration, and 
integration to the complexity we see in modern life... So pervasive is cooperation that 
Martin Novak of Harvard University ranks it as the third pillar of evolution, alongside of 
mutation and natural selection.”

Overcoming grand challenges via teamwork

On the origin of cooperation (2009) E. Pennisi. Science 325
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Connecting the dots reveals the persistent growth of team size in R&D
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Diverse disciplines

Regularities allow for
Future projections....

For example, if we extend the growth 
trend observed for the journal Cell over 
the last 35 years, extrapolating to the 
year 2050, the average team size is 
likely to be around 34 coauthors per 
paper. For PRL and NEJM the 
predictions are 105 and 74 coauthors 
per publication, respectively.

For comparison, repeating the same 
extrapolation for the European Patent 
Office (EPO) growth trend, suggests 
that by 2050 the average patent will 
have roughly 4.2 coinventors, the same 
average team size for Cell publications 
in 1988.

EPO 
patents

9

ethically conscious scientist. However, providing solutions to
the problems raised here will be challenging since monitoring
ethical standards and sanctioning misbehavior is difficult in
large team endeavors due to the transparency problem.

An insidious problem highlighted is how a large team en-
vironment may hinder the cross-generational transmission of
values from mentor to mentee, undermining the building of
virtuous academic characters. Over time this may lead to
gradual erosion of ethical standards across science. To fill
the gap, there is need for policies that aim to cultivate moral-
ity. Such policies should promote a bottom-up educational
approach with emphasis on humanistic values, starting with a
student’s first introduction to science in secondary school. In
a very general sense, cultivation of team science ethical val-
ues should become a corollary of the longstanding scientific
method.

A body of ethical scientists is indeed an invaluable
community resource since the support of social norms is
a self-reinforcing process, gaining strength with adoption
size. This is a virtuous cycle to which we are likely to fall
if we address the emerging team science issues early. The
alternative is a vicious cycle that we should aspire to avoid.

Data & Methods

Publication and patent collaboration data. Publication data
for the journals Cell, the New England Journal of Medicine
(NEJM), Physical Review Letters (PRL), and 14 top eco-
nomics journals, American Economic Review, Econometrica,
Journal of Political Economy, Journal of Economic Theory,
Journal of Econometrics, Journal of Financial Economics,
Journal of Finance, Journal of Economic Growth, Journal
of Economic Perspectives, Journal of Economic Literature,
Quarterly Journal of Economics, Review of Economic
Studies, Review of Financial Studies, Review of Economics
and Statistics, were downloaded from Thomson Reuters
Web of Knowledge for the 55-year period 1958–2012. For
the natural science journals we restricted our analysis to
publications denoted as “Articles”, which excludes reviews,
letters to editor, corrections, and other content types. For
the economics publications we restricted our analysis to the
publication types: “Articles,” “Reviews” and “Proceedings
Paper”. We obtained the patent data from the Organization
for Economic Cooperation and Development (OECD) [28]:
Years 1974 – 2008 for European Patent Office (EPO) patents
and 1979 – 2008 for Patent Cooperation Treaty (PCT) patents.
We obtained the NSF Science and Engineering Indicators

data from [21–23, 31].

International collaboration network data. Article collab-
orations are tabulated using a whole-count basis whereby
a country is counted only once per paper even if there are
multiple affiliations with a given country address. Article
data from Thomson Reuters Web of Science covers journals
indexed in Science Citation Index and Social Sciences

TABLE I: Summary statistics for the journal and patent datasets an-
alyzed. The exponential growth rate ⌧ (per year) is estimated using
ordinary least squares regression where the standard error in the last
significant digit is denoted in parentheses. Multiply growth rates by
a factor of 100 to obtain the percentage growth.

Articles / Team size

Dataset Years Patents growth rate ⌧

Cell 1978 – 2012 11,637 0.035(1)

14 Economics journals 1958 – 2012 36,466 0.013(1)

New England J. Medicine 1958 – 2012 18,347 0.040(3)

Physical Review Letters 1958 – 2012 98,739 0.045(4)

European Patent Office 1974 – 2008 2,207,204 0.011(1)

Patent Cooperation Treaty 1979 – 2008 1,695,339 0.018(2)

Citation Index. Country abbreviations are: United States
(US), Germany (GM), United Kingdom (UK), France (FR),
Canada (CA), Japan (JA), Italy (IT), Russia (RS), Netherlands
(NL), Switzerland (SZ), Sweden (SW), Spain (SP), Australia
(AS), Belgium (BE), China (CH), Poland (PL), Israel (IS),
Denmark (DA), Austria (AU), Brazil (BR), Finland (FI),
India (IN), Norway (NO), South Korea (KS), Hungary (HU),
Czech Republic (EZ), Mexico (MX), Taiwan (TW), Greece
(GR), New Zealand (NZ) Argentina (AR), South Africa
(SF), Portugal (PO), Ireland (EI), Chile (CI), Turkey (TU),
Singapore (SN), Iran (IR).
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Output change (“growth fluctuation”),

Collaboration radius and team efficiency

average number of 
publications per year

There is a decreasing marginal 
returns (inefficiencies aggregate sub-
linearally,ψ < 1) with increasing 
collaboration radius S, likely 
attributable to team management 
inefficiencies,  

4

The independent case ⌅ = 0 results in a Gaussian P⇥(r)
and the linear case ⌅ = 1 results in a Laplace (double-
exponential) P⇥(r). See the SI Appendix text and ref.
[43] for further discussion of the ⌅ dependence of P⇥(r).

C. The size-variance relation and group e�ciency

The values of ⌅ for scientific and athletic careers follow
from the di�erent combination of physical and intellec-
tual inputs that enter the production function for the
two distinct professions. Academic knowledge is typi-
cally a non-rival good, and so knowledge-intensive pro-
fessions are characterized by spillovers, both over time
and across collaborations [35, 36], consistent with �i > 1
and ⌅ > 0. Interestingly, Azoulay et al. show evidence
for production spillovers in the 5–8% decrease in output
by scientists who were close collaborators with a “super-
star” scientists who died suddenly [27].

We now formalize the quantitative link between scien-
tific collaboration [37, 38] and career growth given by the
size-variance scaling relation in Eq. [5] visualized in the
scatter plot in Fig. 3(B). Using ordinary least squares
(OLS) regression of the data on log-log scale, we cal-
culate ⌅/2 ⇥ 0.40 ± 0.03 (R = 0.77) for dataset [A],
⌅/2 ⇥ 0.22± 0.04 (R = 0.51) [B], and ⌅/2 ⇥ 0.26± 0.05
(R = 0.45) [C]. Interdependent tasks characteristic of
group collaborations typically involve partially overlap-
ping e�orts. Hence, the empirical ⌅ values are signifi-
cantly less than the value ⌅ = 1 that one would expect
from the sum of Si independent random variables with
approximately equal variance V . Collectively, these em-
pirical evidences serve as coherent motivations for the the
preferential capture growth model that we propose in the
following section.

Alternatively, it is also possible to estimate ⌅ using
the relation between the average annual production ⌅ni⇧
and the collaboration radius Si. The input-output re-
lation ⌅ni⇧ � S⇥

i quantifies the collaboration e⇥ciency,
with ⌅ = 0.74 ± 0.04 (R = 0.87) for dataset [A] and
⌅ = 0.25±0.04 (R = 0.37) for dataset [B]. If the autocor-
relation between sequential production values ni(t) and
ni(t + 1) is relatively small, then we expect the scaling
exponents calculated for ⌅ni⇧ and ⇤2

i (r) to be approxi-
mately equal. This result follows from considering ri(t)
as the convolution of an underlying production distribu-
tion Pi(n) for each scientist that is approximately stable.
Interestingly, the larger ⌅ values calculated for dataset
[A] scientists suggests that prestige is related to the in-
creasing returns in the scientific production function [44].

Next we use an alternative method to estimate the
annual collaboration e⇥ciency by relating the number
of publications ni(t) in a given year to the number of
distinct coauthors ki(t) over the same year. We use a
single-factor production function,

ni(t) ⇥ qi[ki(t)]�i , (7)

to quantify the relation between output and labor in-
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FIG. 2: Empirical evidence for the proportional growth model
of career production. (A) Probability density function (pdf)
of the annual production change r in the number of papers
published over a �t = 1 year period. In the bulk of each P (r),
the growth distribution is approximately double-exponential
(Laplace). (B) To test the stability of the distribution over
career trajectory subintervals, we separate ri(t) values into 5
non-overlapping 10-year periods and verify the stability of the
Laplace P (r). For each P (r), we also plot the corresponding
Laplace distribution (solid line) with standard deviation �
and mean µ ⇤ 0 calculated using the maximum likelihood
estimator method. To improve graphical clarity, we vertically
o⇥set each P (r) by a constant factor. For visual comparison,
we also plot a Normal distribution (dashed black curve) with
� � 1 which instead decays parabolically on the log-linear
axes. (C) Accounting for individual production factors by
using the normalized production change r�, the resulting pdfs
P (r�) collapse onto a Gaussian distribution with unit variance.
Deviations in the tails likely correspond to extreme “career
shocks.” (D) The cumulative distribution CDF (X ⇥ Si) is
exponential, indicating that the unconditional distributions
P (r) in (A) and (B) follow from an exponential mixing of
conditional Gaussian distributions P (r|Si).

puts with a scaling exponent ⇥i. We estimate qi and
⇥i for each author using OLS regression, and define the
normalized output measure Qi ⇤ ni(t)/ki(t)�i using the
best-fit qi and ⇥i values calculated for each scientist i.
Fig. 3(C) shows the e⇥ciency parameter ⇥ calculated
by aggregating all careers in each dataset, and indicates
that this aggregate ⇥ is approximately equal to the av-
erage ⌅⇥i⇧ calculated from the ⇥i values in each career
dataset: ⇥ = 0.68 ± 0.01 [A], ⇥ = 0.52 ± 0.01 [B], and
⇥ = 0.51± 0.02 [C]. Furthermore, the ⌅ and ⇥ values are
approximately equal, which is not surprising, since both
scaling exponents are e⇥ciency measures that relate the
scaling relation of output ni(t) per input ki(t).

Si is median number of 
coauthors per year

std. deviation of publication change 

team efficiency 
parameter ψ

Towards a micro-level production function:

3

N �
i(t) belonging to each dataset,

⌃N �(t)⌥ ⇥
�Ni(t)
⌃ni⌥

⇥
⇥ 1

100

100⇤

i=1

Ni(t)
⌃ni⌥

. (1)

The standard deviation ⌅(N �(t)) shown in Fig. S2(B)
begins to decrease after roughly 20 years for dataset [A]
and [B] scientists. Over this horizon, the stochastic ar-
rival of career shocks can significantly alter the career
trajectory [20, 23, 26, 27].

Each N �
i(t) exhibits robust scaling corresponding to

the scaling law ⌃N �(t)⌥ ⌅ t�. This regularity reflects the
abundance of of careers with �i > 1 corresponding to ac-
celerated career growth. This acceleration is consistent
with increasing returns arising from knowledge and pro-
duction spillovers. Notably, this is not true for sports
careers which show � ⇧ 1 corresponding to relatively
constant ni(t). In fact, annual production in professional
sports is capped by the limited number of opportunities
available per season.

B. Fluctuations in scientific output over the
academic career

Individuals are constantly entering and exiting the
professional market, with birth and death rates depend-
ing on complex economic and institutional factors. Due
to competition, decisions and performance at the early
stages of the career can have long lasting consequences
[16, 28]. To better understand career uncertainty por-
trayed by the common saying “publish or perish” [29],
we analyze the outcome fluctuation

ri(t) ⇥ ni(t)� ni(t��t) (2)

of career i in year t over the time interval �t = 1 year.
Fig. 2(A) and (B) show the unconditional pdf of r values
which are leptokurtic but remarkably symmetric, illus-
trating the endogenous frequencies of positive and nega-
tive output growth. Output fluctuations arise naturally
from the lulls and bursts in both the mental and physical
capabilities of humans [30, 31]. Moreover, the statistical
regularities in the annual production change distribution
indicate a striking resemblance to the growth rate distri-
bution of countries, firms, and universities [32, 33].

To better account for individual growth factors, we
next define the normalized production change

r�i(t) ⇥ [ri(t)� ⌃ri⌥]/⌅i(r) (3)

which is measured in units of the fluctuation scale ⌅i(r)
unique to each career. We measure the average ⌃ri⌥ and
the standard deviation ⌅i(r) of each career using the first
Li available years for each scientist i. r�i(t) is a better
measure for comparing career uncertainty, since individ-
uals have production factors that depend on the type
of research, the size of the collaboration team, and the
position within the team. Fig. 2(C) show that P (r�),

the probability density function (pdf) of r� measured in
units of standard deviation, is well approximated by a
Gaussian distribution with unit variance. The data col-
lapse of each P (r�) onto the predicted Gaussian distribu-
tion (solid green curve) indicates that individual output
fluctuations are consistent with a proportional growth
model. We note that the remaining deviations in the
tails for |r�| ⇤ 3 are likely signatures of the exogenous
career shocks that are not accounted for by an endoge-
nous proportional growth model.

The ability to collaborate on large projects, both in
close working teams and in extreme examples as remote
agents (i.e. Wikipedia [34]), is one of the foremost prop-
erties of human society. In science, the ability to attract
future opportunities is strongly related to production and
knowledge spillovers [27, 35, 36] that are facilitated by
the collaboration network [7, 12, 37–41]. Indeed, there is
a tipping point in a scientific career that occurs when a
scientist’s knowledge investment reaches a critical mass
that can sustain production over a long horizon, and
when a scientist becomes an attractor (as opposed to a
pursuer) of new collaboration/production opportunities.
To account for collaboration, we calculate for each au-
thor the number ki(t) of distinct coauthors per year and
then define his/her collaboration radius Si as the median
of the set of his/her ki(t) values, Si ⇥ Med[ki(t)]. We
use the median instead of the average ⌃ki(t)⌥ since ex-
tremely large ki(t) values can occur in specific fields such
as high-energy physics and astronomy.

Given the complex scientific coauthorship network, we
ask the question: what is the typical number of unique
coauthors per year? Fig. 2(D) shows that the cumu-
lative distribution function CDF (Si) of Si values for
each data set. The approximately linear form on log-
linear axes indicates that Si is exponentially distributed,
CDF (Si) ⌅ exp[�⇥Si]. We calculate ⇥ = 0.15 ± 0.01
[A], ⇥ = 0.11 ± 0.01 [B], and ⇥ = 0.11 ± 0.01 [C]. The
exponential size distribution has been shown to emerge
in complex systems where linear preferential attachment
governs the acquisition of new opportunities [42]. This
result shows that the leptokurtic “tent-shaped” distribu-
tion P (r) in Fig. 2 follows from the exponential mixing
of heterogenous conditional Gaussian distributions [43].

The exponential mixture of Gaussians decomposes the
unconditional distribution P (r) into a mixture of condi-
tional Gaussian distributions

P (r|Si) = exp[�r2/2V S⇥
i ]/

⇧
2⇤V S⇥

i , (4)

each with a fluctuation scale ⌅i(r) depending on Si by
the scaling relation

⌅2
i (r) ⇧ V S⇥

i . (5)

Hence, the mixture is parameterized by ⇧

P⇥(r) =
⌅ ⇥

0
P (r|S)P (S)dS ⇧

⇤

i=1

Pi(r|Si)P (Si) . (6)
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FIG. 3: Quantitative relations between career growth, career
risk, and collaboration e⇥ciency. The fluctuations in produc-
tion reflect the unpredictable horizon of “career shocks” which
can a�ect the ability of a scientists to access new creative op-
portunities. (A) Relation between average annual production
⇤ni⌅ and collaboration radius Si � Med[ki] shows a decreasing
marginal output per collaborator as demonstrated by sublin-
ear ⌅ < 1. Interestingly, dataset [A] scientists have on average
a larger output-to-input e⇥ciency. (B) The production fluc-
tuation scale ⇤i(r) is a quantitative measure for uncertainty

in academic careers, with scaling relation ⇤i(r) ⇥ S�/2
i . (C)

Over time, there is an increasing returns evident in the annual
production ni(t) since � > 1. Management, coordination, and
training ine⇥ciencies can result in a ⇥ < 1 corresponding to a
decreasing marginal return with each additional coauthor in-
put. The significantly larger ⇥ value for dataset [A] scientists
seems to suggest that managerial abilities related to output
e⇥ciency is a common attribute of top scientists.

D. A Proportional growth model for scientific
output

We develop a stochastic model as a heuristic tool to
better understand the e⇥ects of long-term versus short-
term contracts. In this competition model, opportunities
(i.e. new scientific publications) are captured according
to a general mechanism whereby the capture rate Pi(t)
depends on the appraisal wi(t) of an individual’s record
of achievement over a prescribed history. We define the
appraisal to be an exponentially weighted average over a
given individual’s history of production

wi(t) ⇥
t�1⇥

�t=1

ni(t��t)e�c�t , (8)

which is characterized by the appraisal horizon 1/c. We
use the value c = 0 to represent a long-term appraisal
(tenure) system and a value c ⇧ 1 to represent a short-
term appraisal system. Each agent i = 1...I simultane-
ously attracts new opportunities at a rate

Pi(t) =
wi(t)�

�I
i=1 wi(t)�

. (9)

until all P opportunities for a given period t are allo-
cated. We assume that each agent has the production
potential of one unit per period, and so the total number
of opportunities allocated per period P is equal to the
number of competing agents, P ⇥ I.

We use Monte Carlo (MC) simulation to analyze this
2-parameter model over the course of t = 1...T sequen-
tial periods. In each production period (representing a
timescale on the order of half a human year), a fixed
number of P production units are captured by the com-
peting agents. At the end of each period, we update each
wi(t) and then proceed to simulate the next preferential
capture period t + 1. Since Pi(t) depends on the relative
achievements of every agent, the relative competitive ad-
vantage of one individual over another is determined by
the parameter ⇤. In the SI Appendix text we elaborate
in more detail the results of our simulation of synthetic
careers dynamics. We vary ⇤ and c for a labor force of
size I ⇥ 1000 and maximum lifetime T ⇥ 100 periods as
a representative size and duration of a real labor cohort.
Our results are general, and for su⇤ciently large system
size, the qualitative features of the results do not depend
significantly on the choice of I or T .

The case with ⇤ = 0 corresponds to a random capture
model that has (i) no appraisal and (ii) no preferential
capture. Hence, in this null model, opportunities are cap-
tured at a Poisson rate ⇥p = 1 per period. The results
of this model (see Fig. S13) shows that almost all ca-
reers obtain the maximum career length T with a typical
career trajectory exponent ⌥�i� ⌅ 1. Comparing to sim-
ulations with ⇤ > 0 and c ⇤ 0, the null model is similar
to a “long-term” appraisal system (c ⌃ 0) with sublin-
ear preferential capture (⇤ < 1). In such systems, the

Dataset A: Top physicists
Dataset B: random set of prolific physicists

productivity 
fluctuation scale

Persistence and Uncertainty in the Academic Career,  
A. M. Petersen, M. Riccaboni, H. E. Stanley, F. Pammolli. 
Proc. Natl. Acad. Sci. USA 109, 5213-5218 (2012).
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Team (in)efficiency
Q: How does annual productivity depend on the number of “labor inputs” ?
Q: Are there disciplinary variations ?

We measure the input-output relation using two aggregation methods, which both yield sub-
linear scaling relations with efficiency parameters ψ ≈ γ and ψ, γ < 1

Interestingly, for scientists not in the top cohort we observe smaller ψ and γ values, suggesting 
that team management skills are an important factor related to success
γTop100 Phyics = 0.68(1) >  γProlific Physics = 0.52(1), γAsstProfessor Physics = 0.51(2)
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Spurious ties: 70% of collaboration 
ties last less than <L>
Strong ties: only ~1% last longer 
than 7 <L>

Patterns of collaboration tie-strength

Is the “invisible college” held together by weak-ties ?
(short-term grad/postdoc collaborations) How much 

does this contribute to team inefficiency?



6 ethics issues in team settings: 
(i)   Credit/Blame
(ii)  Parasitic coauthorship (freeloading), 
and sanctioning of bad behavior in team 
setting
(iii) Conflicts of interest 
(iv) Breakdown of the mentor-trainee 
relation and virtue ethics
(v)  International variations in ethics codes
(vi) Universality “One-size-fits-all” of 
team ethics

A quantitative perspective on ethics in large team science, 
A. M. Petersen, I. Pavlidis, I. Semendeferi. 
Under review, Science & Engineering Ethics. ArXiv: 1404.0191

The growth of team endeavors across 
multiple size scales requires individual 
introspection and institutional revision 
of the norms of team ethics:

Paradigm shifts beyond growth and efficiency
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this kind of science is actually done, if the award had been made collec-
tively to all members of the two groups,” Rees told Reuters.

Within hours of the announcement, Schmidt and Riess decided to 
invite the remaining 17 members of the High-z team to Stockholm for 
the Nobel ceremony. Each laureate would be allowed 14 tickets to the 
various events organized by the Swedish Academy, and between the 
two of them, Schmidt and Riess had enough tickets to accommodate 
everybody and their spouses. The spare tickets they gave to Perlmutter, 
who had a bigger challenge with the 30 collaborators that he wanted 
to invite. By December, all arrangements had been made to bring both 
teams to the world’s grandest scientifi c celebration, with the three lau-
reates spending roughly $100,000 from the $1.5 million prize to pay for 
their guests’ airfares, hotel rooms, tuxedo rentals, and other expenses. 
After years of a deep and sometimes hostile rivalry, the two groups 
would have a chance to revel in their shared glory, sip champagne side 
by side, and possibly reconcile their warring narratives of the discovery 
in a scientifi c colloquium at the end of the celebrations.

December is bleak in Stockholm. On most days, the sun sets at 2:00 
p.m., enveloping the city in a darkness that seems merciful at the end 
of what has usually been a gray, overcast morning. The joke among 
guests attending the Nobel festivities is that the Swedes invented the 
Nobel Prize to bring cheer to Stockholm in its darkest month and 
boost the local economy with an infl ux of tourists.

The two teams began arriving in the city on 5 December. All of 
the High-z members had rooms reserved at the magnifi cent Grand 
Hotel, where laureates stay. The Grand was already full by the time 
the SCP team made reservations, so its members had to fi nd rooms 
elsewhere. “We were a bit late off the gate,” says Andrew Fruchter, a 
member of Perlmutter’s group. 

In the race that led up to the discovery of the accelerating universe, 
however, Perlmutter’s group had been the fi rst to start. Founded in the 
early 1980s by Carl Pennypacker and Richard Muller, both physi-

cists at LBNL, the 
SCP began as an 
effort to fi nd nearby 
supernovae using an 
automated search 
technique. The tech-
nique involved tak-
ing telescopic images 
of the same swaths of 
sky at different times 

and using an algorithm to contrast those images to spot supernovae that 
might have exploded in the time between two shots. In 1988, the group 
proposed applying the technique to fi nd distant supernovae. As outsid-
ers to astronomy, Pennypacker and Muller faced a constant challenge 
in getting funded. For this, they would later blame a prominent member 
of the yet-to-be-formed High-z team: Kirshner, who by virtue of his 
supernova expertise was on proposal review committees appointed by 
the Department of Energy and the National Science Foundation.

By 1991, Pennypacker’s interests had turned to science education, 
and Muller had shifted to studying weather patterns. The two handed 
the reins of the SCP to Perlmutter—a hawk-nosed, tenacious, young 
physicist who had been Muller’s graduate student. Perlmutter’s impres-
sive organizational skills helped seal his position as the undisputed 
leader of the project, even though the group included a senior, and at 
the time, more distinguished, physicist named Gerson Goldhaber.

Perlmutter systematized the search technique. He demonstrated that 
one could more or less guarantee fi nding supernovae by taking a refer-
ence image of a patch of the sky just after a new moon and subtract-
ing it from another image of the same sky taken right before the next 
new moon. Through the early 1990s, Perlmutter expanded the group by 
recruiting collaborators in Europe and Australia. What had begun as a 
team of physicists grew to include several astronomers. But the group 
still had a tough time persuading review committees of telescope facili-
ties to grant them observing time.

While the SCP was led by physicists interested in astronomy as a 
tool to understand the universe, the High-z collaboration grew out of a 
team of astronomers who realized that Type 1a supernova explosions 
could help them answer a fundamental physics question: the fate of 
the cosmos. These astronomers—including Mario Hamuy, Nicholas 
Suntzeff, Mark Phillips, and others—had been studying nearby Type 
1a supernovae for years before they began the search for distant Type 
1a supernovae. Because the universe is expanding, far-off supernovae 
recede from Earth at such great velocities that their light reaches us 
stretched in wavelengths toward the red end of the electromagnetic 
spectrum—a “redshift” represented by the letter z. That’s why these 
objects are known as high-redshift or high-z supernovae. Unlike Perl-
mutter’s group, the High-z team was a fl at organization. Even though 
Schmidt was technically the leader, the team was a collaboration 
among equals, with different members getting primary authorship on 
papers that they individually led about different aspects of the work.
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At first glance, Robert Kirshner took the 
e-mail message for a scam. An astronomer 
at King Abdulaziz University (KAU) in Jed-
dah, Saudi Arabia, was offering him a con-
tract for an adjunct professorship that would 
pay $72,000 a year. Kirshner, an astrophysi-
cist at Harvard University, would be expected 
to supervise a research group at KAU and 
spend a week or two a year on KAU’s cam-
pus, but that requirement was fl exible, the 
person making the offer wrote in the e-mail. 
What Kirshner would be required to do, 
however, was add King Abdulaziz Univer-
sity as a second affi liation to his name on the 
Institute for Scientifi c Information’s (ISI’s) 
list of highly cited researchers.

“I thought it was a joke,” says Kirshner, 
who forwarded the e-mail to his department 
chair, noting in jest that the money was a lot 
more attractive than the 2% annual raise pro-
fessors typically get. Then he discovered that 
a highly cited colleague at another U.S. insti-
tution had accepted KAU’s offer, adding KAU 
as a second affi liation on ISIhighlycited.com.

Kirshner’s colleague is not alone. Sci-

ence has learned of more than 60 top-ranked 
researchers from different scientific disci-
plines—all on ISI’s highly cited list—who 
have recently signed a part-time employment 
arrangement with the university that is struc-
tured along the lines of what Kirshner was 
offered. Meanwhile, a bigger, more promi-
nent Saudi institution—King Saud Univer-
sity in Riyadh—has climbed several hundred 
places in international rankings in the past 

4 years largely through initiatives specifi cally 
targeted toward attaching KSU’s name to 
research publications, regardless of whether 
the work involved any meaningful collabora-
tion with KSU researchers.

Academics both inside and outside Saudi 
Arabia warn that such practices could detract 
from the genuine efforts that Saudi Arabia’s 
universities are making to transform them-
selves into world-class research centers. For 
instance, the Saudi government has spent bil-
lions of dollars to build the new King Abdul-
lah University of Science and Technology in 
Thuwal, which boasts state-of-the-art labs 
and dozens of prominent researchers as full-
time faculty members (Science, 16 October 
2009, p. 354).

But the initiatives at KSU and KAU are 
aimed at getting speedier results. “They are 
simply buying names,” says Mohammed Al-
Qunaibet, a professor of agricultural eco-
nomics at KSU, who recently criticized the 
programs in an article he wrote for the leading 
Saudi newspaper, Al Hayat. Teddi Fishman, 
director of the Center for Academic Integ-
rity at Clemson University in South Carolina, 
says the programs deliberately create “a false 
impression that these universities are produc-
ing great research.”

Academics who have accepted KAU’s 
offer represent a wide variety of faculty 
from elite institutions in the United States, 
Canada, Europe, Asia, and Australia. All 
are men. Some are emeritus professors who 
have recently retired from their home insti-

tutions. All have changed their affi liation on 
ISI’s highly cited list—as required by KAU’s 
contract—and some have added KAU as an 
affi liation on research papers. Other require-
ments in the contract include devoting “the 
whole of your time, attention, skill and abili-
ties to the performance of your duties” and 
doing “work equivalent to a total of 4 months 
per contract period.”

Neil Robertson, a professor emeritus 
of mathematics at Ohio State University in 
Columbus who has signed on, says he has 
no concerns about the offer. “It’s just capi-
talism,” he says. “They have the capital 
and they want to build something out of it.” 
Another KAU affiliate, astronomer Gerry 
Gilmore of the University of Cambridge in 
the United Kingdom, notes that “universities 
buy people’s reputations all the time. In prin-
ciple, this is no different from Harvard hiring 
a prominent researcher.”

Officials at KAU did not respond to 
Science’s request for an interview. But 
Surender Jain, a retired mathematics pro-
fessor from Ohio University in Athens who 
is an adviser to KAU and has helped recruit 
several of the adjuncts, provided a list of 61 
academics who have signed contracts simi-
lar to the one sent to Kirshner. The fi nancial 
arrangements in the contracts vary, Jain says: 
For instance, some adjuncts will receive their 
compensation not as salary but as part of a 
research grant provided by KAU.

Jain acknowledges that a primary goal of 
the program—funded by Saudi Arabia’s Min-
istry of Higher Education—is to “improve 
the visibility and ranking of King Abdulaziz 
University.” But he says KAU also hopes the 
foreign academics will help it kick-start indig-
enous research programs. “We’re not just giv-
ing away money,” he says. Most recruits will 
be expected to visit for a total of 4 weeks in a 
year to “give crash courses”; they will also be 
expected to supervise dissertations and help 
KAU’s full-time faculty members develop 
research proposals. Even the “shadows” of 
such eminent scholars would inspire local stu-
dents and faculty members, he says.

The recruits Science spoke to say they 
have a genuine interest in promoting research 
at KAU, even though none of them knew how 
their individual research plans would match 
up with the interests and abilities of KAU’s 
faculty members and students. Ray Carlberg, 
an astronomer at the University of Toronto in 
Canada who accepted the offer, says he had 
to Google the university after he received the 
e-mail. He admits that he was initially con-

Saudi Universities Offer Cash
In Exchange for Academic Prestige
Two Saudi institutions are aggressively acquiring the affi liations of overseas scientists 

with an eye to gaining visibility in research journals
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at King Abdulaziz University (KAU) in Jed-
dah, Saudi Arabia, was offering him a con-
tract for an adjunct professorship that would 
pay $72,000 a year. Kirshner, an astrophysi-
cist at Harvard University, would be expected 
to supervise a research group at KAU and 
spend a week or two a year on KAU’s cam-
pus, but that requirement was fl exible, the 
person making the offer wrote in the e-mail. 
What Kirshner would be required to do, 
however, was add King Abdulaziz Univer-
sity as a second affi liation to his name on the 
Institute for Scientifi c Information’s (ISI’s) 
list of highly cited researchers.

“I thought it was a joke,” says Kirshner, 
who forwarded the e-mail to his department 
chair, noting in jest that the money was a lot 
more attractive than the 2% annual raise pro-
fessors typically get. Then he discovered that 
a highly cited colleague at another U.S. insti-
tution had accepted KAU’s offer, adding KAU 
as a second affi liation on ISIhighlycited.com.

Kirshner’s colleague is not alone. Sci-

ence has learned of more than 60 top-ranked 
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plines—all on ISI’s highly cited list—who 
have recently signed a part-time employment 
arrangement with the university that is struc-
tured along the lines of what Kirshner was 
offered. Meanwhile, a bigger, more promi-
nent Saudi institution—King Saud Univer-
sity in Riyadh—has climbed several hundred 
places in international rankings in the past 

4 years largely through initiatives specifi cally 
targeted toward attaching KSU’s name to 
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the work involved any meaningful collabora-
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from the genuine efforts that Saudi Arabia’s 
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lions of dollars to build the new King Abdul-
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Thuwal, which boasts state-of-the-art labs 
and dozens of prominent researchers as full-
time faculty members (Science, 16 October 
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But the initiatives at KSU and KAU are 
aimed at getting speedier results. “They are 
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nomics at KSU, who recently criticized the 
programs in an article he wrote for the leading 
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says the programs deliberately create “a false 
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ments in the contract include devoting “the 
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no concerns about the offer. “It’s just capi-
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several of the adjuncts, provided a list of 61 
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arrangements in the contracts vary, Jain says: 
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compensation not as salary but as part of a 
research grant provided by KAU.

Jain acknowledges that a primary goal of 
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istry of Higher Education—is to “improve 
the visibility and ranking of King Abdulaziz 
University.” But he says KAU also hopes the 
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enous research programs. “We’re not just giv-
ing away money,” he says. Most recruits will 
be expected to visit for a total of 4 weeks in a 
year to “give crash courses”; they will also be 
expected to supervise dissertations and help 
KAU’s full-time faculty members develop 
research proposals. Even the “shadows” of 
such eminent scholars would inspire local stu-
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at KAU, even though none of them knew how 
their individual research plans would match 
up with the interests and abilities of KAU’s 
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POLICYFORUM

            M
any national governments have 
implemented policies providing 
incentives for researchers to pub-

lish, especially in highly ranked international 
journals. Although still the top publishing 
nation, the United States has seen its share 
of publications decline from 34.2% in 1995 
to 27.6% in 2007 as the number of articles 
published by U.S. scientists and engineers 
has plateaued and that of other countries has 
grown ( 1,  2). Hicks ( 3) argues that the two 
events are not unrelated: The decline in the 
relative performance of the United States 
relates to increased international competition 
engendered by newly adopted incentives that 
have crowded out some work by U.S. authors.

We investigate how changes in incentives 
to publish implemented at the country level 
relate to the number of submissions and pub-
lications and the acceptance rates to the jour-
nal Science for 27 OECD (Organization for 
Economic Cooperation and Development) 
countries and 3 OECD-monitored countries 
(China, Russia, and Singapore) for the period 
2000–09. We further differentiate by type of 
incentive. Our analysis shows that the intro-
duction of incentives by a country is associ-
ated with an increase in submissions by the 
country; the relation is particularly strong 
between cash bonuses and submissions. We 
fi nd some indication that publications relate 
to career-based incentives.

Incentives

Incentives for faculty to publish have a long 
history in the United States and Canada. 
Promotion and tenure, as well as compen-
sation, depend to a considerable extent on a 
faculty member’s publication record ( 4). An 
active labor market exists for highly produc-
tive faculty, who often increase their salaries 
by receiving offers from alternative institu-
tions. In many other countries, incentives for 
faculty to publish in international journals 

have been less strong with regard to salary 
and promotion. Funding for research often 
did not emphasize publications in interna-
tional journals. Departments often received 
funds based on enrollment numbers and 
number of personnel.

Incentives to publish in international jour-
nals began to be more widespread in the 1980s. 
In some countries, incentives apply only to sci-
ence and engineering; in other countries, they 
apply to a wider range of disciplines. The UK 
took the lead with adoption of the Research 
Assessment Exercise (RAE) in 1986, which 
allocates national funds to departments on the 
basis of past performance and peer review. A 
number of factors are included in the rank-
ings, but publications constitute the core for 
science and engineering (5, 6). 

The UK reform provided an example for 
governments worldwide. Australia and New 
Zealand drew on the RAE to put in place 
policy reforms for funding academic institu-
tions whereby better-performing institutions 
receive more funding than lower-performing 
ones and, thus, have more resources to com-
pete in the job market for scientists. Norway, 
Belgium, Denmark, and Italy started similar 
policies during the past decade for allocating 
a share of the budget [table S1, supporting 
online material (SOM)].

Other countries focus on incentives 
directed at individuals rather than institu-
tions. Germany and Spain made reforms in 
the mechanisms that regulate access to uni-
versity careers, promotion, and salary, link-
ing them more tightly to international publi-
cations. In Spain, a national agency was put 
in place to assess the performance of young 

recruits and to decide ten-
ure and promotions. In 
Germany, reforms were 
made that allow univer-
sities to link salaries to 
research performance 
(table S1, SOM).

Some countries have 
introduced a system of 

cash bonuses to individuals for each arti-
cle published in a top international scientifi c 
journal. Turkey introduced in 2008 a national 
agency that collects publication data and, for 
each article, pays a cash bonus equivalent to 
~7.5% of the average faculty salary ( 7,  8). 
The Chinese Academy of Sciences adopted a 
bonus policy in 2001. Rewards vary by insti-
tute but represent a large amount of cash com-
pared with the standard salary of the research-
ers. Bonuses are particularly high for publica-
tions in journals such as Science and Nature 
( 9). The Korean government inaugurated a 
similar policy in 2006 whereby 3 million won 
(roughly U.S. $2800) is paid to the fi rst and 
corresponding authors on papers in key jour-
nals such as Science, Nature, and Cell ( 10).

Data and Models

We studied the journal Science because of 
its high impact factor and international and 
interdisciplinary scope. Moreover, the annual 
number of published articles has remained 
fairly constant at ~800. During the 10-year 
study period, fi rst authors from 144 differ-
ent countries submitted 110,870 original 
research articles; 7.3% of these submissions 
were accepted for publication, with first 
authors from 53 different countries ( 11,  12).

We analyzed funding and reward policies 
for 30 countries, which collectively repre-
sent 95% of all articles submitted and 99% 
of all articles published in Science during the 
period (see chart and table). Eleven of the 30 
countries have introduced reforms and poli-
cies related to incentives to publish in interna-
tional journals in the past 10 years. Incentives 
are subdivided into three categories: policies 
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EFFECT OF DOSE ON SIDE EFFECTS

The US National Institutes of Health is to 
crack down on scientists ‘brain doping’ 
with performance-enhancing drugs such 

as Provigil and Ritalin, a press release declared 
last week. The release, brainchild of evolution-
ary biologist Jonathan Eisen of the University 
of California, Davis, turned out to be an April 
Fools’ prank. And the World Anti-Brain Dop-
ing Authority website that it linked to was like-
wise fake. But with a number of co-conspirators 
spreading rumours about receiving anti-doping 
affidavits with their first R01 research grants, 
the ruse no doubt gave pause to a few of the 
respondents to Nature’s survey on readers’ 
use of cognition-enhancing drugs.

The survey was triggered by a Com-
mentary by behavioural neuroscientists 
Barbara Sahakian and Sharon Morein-
Zamir of the University of Cambridge, 
UK, who had surveyed their colleagues 
on the use of drugs that purportedly enhance 
focus and attention (Nature 450, 1157–1159; 
2007). In the article, the two scientists asked 
readers whether they would consider “boost-
ing their brain power” with drugs. Spurred by 
the tremendous response, Nature ran its own 
informal survey. 1,400 people from 60 coun-
tries responded to the online poll. 

We asked specifically about three drugs: 
methylphenidate (Ritalin), a stimulant nor-
mally used to treat attention-deficit hyper-
activity disorder but well-known on college 
campuses as a ‘study aid’; modafinil (Provigil), 
prescribed to treat sleep disorders but also 
used off-label to combat general fatigue or 
overcome jet lag; and beta blockers, drugs 

prescribed for cardiac arrhythmia that also 
have an anti-anxiety effect. Respondents who 
had not taken these drugs, or who had taken 
them for a diagnosed medical condition were 
directed straight to a simple questionnaire 
about general attitudes. Those who revealed 
that they had taken these drugs, or others, for 
non-medical, cognition-enhancing purposes 

were asked several additional questions about 
their use. Here’s what they had to say:

One in five respondents said they had used 
drugs for non-medical reasons to stimulate 
their focus, concentration or memory. Use did 
not differ greatly across age-groups (see line 
graph, left), which will surprise some. Nora 
Volkow, director of the National Institute on 
Drug Abuse (NIDA) in Bethesda, Maryland, 
says that household surveys suggest that stimu-
lant use is highest in people aged 18–25 years, 
and in students. 

For those who choose to use, methylpheni-
date was the most popular: 62% of users 
reported taking it. 44% reported taking 
modafinil, and 15% said they had taken 
beta blockers such as propanolol, reveal-
ing an overlap between drugs. 80 respond-
ents specified other drugs that they were 
taking. The most common of these was 
adderall, an amphetamine similar to meth-
ylphenidate. But there were also reports 
of centrophenoxine, piractem, dexedrine 
and various alternative medicines such as 
ginkgo and omega-3 fatty acids.

The most popular reason for taking 
the drugs was to improve concentra-
tion. Improving focus for a specific task 
(admittedly difficult to distinguish from 
concentration) ranked a close second 
and counteracting jet lag ranked fourth, 

Poll results: look who’s doping
In January, Nature launched an informal survey into readers’ use of cognition-enhancing drugs. Brendan 
Maher has waded through the results and found large-scale use and a mix of attitudes towards the drugs.

behind ‘other’ which received a few interesting 
reasons, such as “party”, “house cleaning” and 
“to actually see if there was any validity to the 
afore-mentioned article”.

Our question on frequency of use, for those 
who took drugs for non-medical purposes, 
revealed an even split between those who took 
them daily, weekly, monthly, or no more than 
once a year. Roughly half reported unpleasant 
side effects, and some discontinued use because 
of them. Some might expect that negative side 
effects would correlate positively with a low 
frequency of use, but that doesn’t seem to be 
the case in our sample (see bar graph, below). 

Reported side effects included headaches, jit-
teriness, anxiety and sleeplessness. 

Neuroscientist Anjan Chatterjee of the 
University of Pennsylvania in Philadelphia 
predicts a rise in the use of these drugs and 

other neuroenhancing products and proce-
dures as they become available (A. Chatterjee 
Cam. Q. Healthc. Ethics 16, 129–137; 2007). 
Like the rise in cosmetic surgery, use of cogni-
tive enhancers is likely to increase as bioethical 
and psychological concerns are overcome (see 
‘Worrying words’) and as the products gain 
cultural acceptance. One difference, Chatterjee 
says, is that use of cognitive enhancers doesn’t 
rely on training of medical specialists such as 
surgeons. Internet availability will also greatly 
accelerate use, he says.

Our poll found that one-third of the drugs 
being used for non-medical purposes were 
purchased over the Internet (see pie chart). The 
rest were obtained from pharmacies or on pre-
scription. It is unclear whether the prescribed 
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Today there are several drugs on the 
market that improve memory, concen-
tration, planning and reduce impulsive 

behaviour and risky decision-making, and 
many more are being developed. Doctors 
already prescribe these drugs to treat cogni-
tive disabilities and improve quality of life 
for patients with neuropsychiatric disorders 
and brain injury. The prescription use of such 
drugs is being extended to other conditions, 
including shift-workers. Meanwhile, off-label 
and non-prescription use by the general public 
is becoming increasingly commonplace. 

Although the appeal of pharmaceutical cog-
nitive enhancers — to help one study longer, 
work more effectively or better manage eve-
ryday stresses — is understandable, potential 
users, both healthy and diseased, must consider 
the pros and cons of their choices. To enable 
this, scientists, doctors and policy-makers 
should provide easy access to information about 
the advantages and dangers of using cognitive-
enhancing drugs and set out clear guidelines for 
their future use. To trigger broader discussion of 
these issues we offer the following questions, to 
which readers can respond in an online forum. 
Now, on to the questions. 

Should adults with severe memory and 
concentration problems from neuropsy-
chiatric disorders be given cognitive-
enhancing drugs? 
We believe the answer is a resounding yes. 
A large debilitating aspect of many neuropsy-
chiatric disorders is cognitive impairment. 
Thus, cognitive-enhancing drugs are a useful 
therapy option for several disorders, includ-
ing Alzheimer’s disease and Attention Deficit 
Hyperactivity Disorder (ADHD). 

Alzheimer’s disease is a 
neurodegenerative disease of 
the ageing mind character-
ized by a decline in cognitive 
and behavioural functioning, 
and in particular learning and 
memory. There are, at present, no treatments 
for Alzheimer’s disease that can stop or reverse 
the decline in brain function, but cholineste-
rase inhibitors are being used to ameliorate the 
impaired neural transmission in the cholin-
ergic system. Such drugs aim to increase the 
levels of acetylcholine, a neurotransmitter 
important for maintaining attention and 
in forming new memories, and may have 

additional neuro-protective effects. 
Countries with ageing populations are seeing 

a surge in the number of people with Alzheim-
er’s. The personal and social costs are stagger-
ing and in the United Kingdom, economic 
costs associated with dementias1 are estimated 
to rise to £10.9 billion (US$22 billion) by 2031. 
According to a report commissioned by the 
Alzheimer’s Research Trust in Cambridge, UK, 
treatment that would reduce severe cognitive 
impairment in older people by just 1% a year 

has been estimated to cancel 
out all predicted increases in 
long-term care costs due to the 
ageing population1. 

For all medications, the chief 
concern cautioning against 

their use is adverse side effects that affect the 
individual’s health and well being. These may 
range from mild, temporary physical symp-
toms, such as dry mouth and headaches, to 
more severe side effects such as vomiting and 
joint pain and even cardiac arrhythmia or psy-
chosis. All medications also carry contraindi-
cations for certain conditions, such as high 
blood pressure, when one should not take the 

drug. For patients with neuropsychiatric disor-
ders, the benefits of the drugs must be weighed 
against the potential short-term and long-term 
side effects, and these factors should be dis-
cussed with the individual’s doctor to ascertain 
the level of acceptable risk in each case.

If drugs can be shown to have mild side 
effects, should they be prescribed more 
widely for other psychiatric disorders? 
We believe that cognitive-enhancing drugs 
with minimal side effects would also benefit 
many of the patients with schizophrenia, a 
condition for which they are not yet routinely 
prescribed. Currently, the disorder affects 
about 24 million people worldwide. 

As with Alzheimer’s, the personal and social 
costs are immense, with economic costs in the 
United States estimated in the tens of billions of 
dollars2. It is common knowledge that people 
with schizophrenia typically have hallucina-
tions and delusions, yet it is the long-term cog-
nitive impairments that often impede everyday 
function and quality of life for many patients.  
Even small improvements in cognitive func-
tions could help patients with schizophrenia 

Professor’s little helper
The use of cognitive-enhancing drugs by both ill and healthy individuals raises ethical questions that 
should not be ignored, argue Barbara Sahakian and Sharon Morein-Zamir.
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Morning pick-me-up: will drugs that help you stay alert become as widely acceptable as coffee?

“The chief concern 
cautioning against the 
use of medications is 
adverse side effects.”
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make the transition to independent living3. 
Thus, cognitive-enhancing drugs are 

increasingly being considered as possible add-
ons to antipsychotic medication, and long-
term clinical trials are underway with drugs 
such as modafinil, which promotes wakeful-
ness4. Although the mechanisms of modafinil 
are not fully understood, it has been found 
to have direct and indirect effects on various 
neurotransmitter systems. Behaviourally, an 
acute dose of modafinil has been found to 
increase alertness, memory and planning in 
healthy young adults and cognitive flexibility 
in patients with chronic schizophrenia5.

Due to the stated economic and personal 
costs, the pharmaceutical industry is targeting 
drugs that would improve impaired cognition 
in specific neuropsychiatric disorders. Often 
when a drug is approved for one disorder, its 
efficacy in improving cognition in additional 
disorders is investigated and thus its use can 
be extended to multiple patient groups. In our 
view, the original justification for drug treat-
ment improving quality of life still holds in 
these other disorders.

Do the same arguments apply for 
young children and adolescents with 
neuropsychiatric disorders, such as those 
with ADHD?
At present, children diagnosed with ADHD 
are routinely prescribed long-term medi-
cations including atomoxetine and stimu-
lants, such as methylphenidate (Ritalin) and 
amphetamine. Both methylphenidate and 
atomoxetine increase the levels of the neuro-
transmitter noradrenaline. Generally, the thera-
peutic effects of these drugs include reductions 
in inattention, hyperactivity and impulsivity, 
although their widespread and long-term use 
in younger children has been controversial.

ADHD is a heritable and disabling condition 
characterized by core cognitive and behav-
ioural symptoms of impulsivity, hyperactivity 
and/or inattention. ADHD affects 4–10% of 
children worldwide, and is the most prevalent 
neuropsychiatric disorder of childhood. 
ADHD is associated with increased lev-
els of drop-outs from education, job 
dismissal, criminal activities, sub-
stance abuse, other mental illness 
and accidents6. Long-term drug 
treatment seems to be beneficial 
in many cases.

However, the side effects of chronic 
drug use may only become noticeable in 
the longer term, for example, with apparent 
reductions in normal growth rates in chil-
dren with ADHD who are taking stimulant 
medication7. In fact, for many drugs there is 
limited information on long-term effects and 
in many areas the findings are inconsistent7. 
Consequently, in all the cases outlined above, 
we believe the medical consensus would be 
that medication choice, dose and timing, 
therapeutic effects and safety should be moni-
tored for individual patients by a healthcare 

professional. This is particularly important 
because of potential drug interactions, and so 
we do not advocate self-medication.  

Would you boost your own brain power? 
Cognitive-enhancing drugs are increasingly 
being used in non-medical situations such as 
shift work and by active military personnel. 
This is where the debate about their use begins 
in earnest. How should the use of cognitive-
enhancing drugs be regulated in healthy peo-
ple? Should their use always be monitored by 
healthcare professionals? 

If offered by a friend or col-
league, would you, the reader, 
take a pill that would help you 
to better focus, plan or remem-
ber? Under what conditions 
would you feel comfortable 
taking a pill, and under what conditions would 
you decline? 

The answers to such questions hinge on 
many factors, including the exact drug being 
discussed, its short-term and long-term ben-
efits and risks, and the purpose for which it is 
used. There are instances in which most people 
would agree that the use of cognitive-enhanc-
ing drugs should be prevented or at least 
regulated and monitored, such as by healthy 

children or in competitive settings (including 
entrance exams to university). 

There are also situations in which many 
would agree that the use of drugs to improve 
concentration or planning may be tolerated, 

if not encouraged, such as by air-traffic con-
trollers, surgeons and nurses who work long 
shifts. One can even imagine situations where 
such enhancing-drug-taking would be recom-
mended, such as for airport-security screeners, 
or by soldiers in active combat. But there are 
no straightforward answers and any fruitful 
debate must address each situation in turn. 

How would you react if you knew your 
colleagues — or your students — were 
taking cognitive enhancers?
In academia, we know that a number of our 
scientific colleagues in the United States and 
the United Kingdom already use modafinil 
to counteract the effects of jetlag, to enhance 
productivity or mental energy, or to deal with 
demanding and important intellectual chal-
lenges (see graphic opposite). Modafinil and 
other drugs are available online, but their non-
prescription and long-term use has not been 
monitored in healthy individuals. 

For many, it seems that the immediate and 
tangible benefits of taking these drugs are more 
persuasive than concerns about legal status and 
adverse effects. There are clear trends suggest-
ing that the use of stimulants such as methyl-
phenidate on college campuses is on the rise, 

and is becoming more common-
place in ever younger students8. 
Universities may have to decide 
whether to ban drug use alto-
gether, or to tolerate it in some 
situations (whether to enable all-
night study sessions or to boost 

alertness during lectures).
The debate over cognitive-enhancing drugs 

must also consider the expected magnitude of 
the benefits and weigh them against the risks 
and side effects of each drug. Most readers 
would not consider that having a double shot 
of espresso or a soft drink containing caffeine 
would confer an unfair advantage at work. 
The use of caffeine to enhance concentration 
is commonplace, despite having side effects in 
at least some individuals9. Often overlooked 
in media reports on cognitive enhancers is the 
fact that many of the effects  in healthy individ-

uals are transient and small-to-mod-
erate in size. Just as one would 
hardly propose that a strong cup 
of coffee could be the secret of 
academic achievement or faster 
career advancement, the use of 

such drugs does not necessarily 
entail cheating.
Cognitive enhancers with 

small or no side effects but with moder-
ate enhancing effects that alleviate for-

getfulness or enable one to focus better on 
the task at hand during a tiring day at work 
would be unlikely to meet much objection. 
And does it matter if it is delivered as a pill 
or a drink? Would you, the reader, welcome 
a cognitive enhancer delivered in a bever-
age that is readily obtainable and afford-
able, and has a moderate yet noticeable effect 

”Most would not 
consider that an 
espresso confers 

an unfair advantage 
at work.”
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EFFECT OF DOSE ON SIDE EFFECTS

The US National Institutes of Health is to 
crack down on scientists ‘brain doping’ 
with performance-enhancing drugs such 

as Provigil and Ritalin, a press release declared 
last week. The release, brainchild of evolution-
ary biologist Jonathan Eisen of the University 
of California, Davis, turned out to be an April 
Fools’ prank. And the World Anti-Brain Dop-
ing Authority website that it linked to was like-
wise fake. But with a number of co-conspirators 
spreading rumours about receiving anti-doping 
affidavits with their first R01 research grants, 
the ruse no doubt gave pause to a few of the 
respondents to Nature’s survey on readers’ 
use of cognition-enhancing drugs.

The survey was triggered by a Com-
mentary by behavioural neuroscientists 
Barbara Sahakian and Sharon Morein-
Zamir of the University of Cambridge, 
UK, who had surveyed their colleagues 
on the use of drugs that purportedly enhance 
focus and attention (Nature 450, 1157–1159; 
2007). In the article, the two scientists asked 
readers whether they would consider “boost-
ing their brain power” with drugs. Spurred by 
the tremendous response, Nature ran its own 
informal survey. 1,400 people from 60 coun-
tries responded to the online poll. 

We asked specifically about three drugs: 
methylphenidate (Ritalin), a stimulant nor-
mally used to treat attention-deficit hyper-
activity disorder but well-known on college 
campuses as a ‘study aid’; modafinil (Provigil), 
prescribed to treat sleep disorders but also 
used off-label to combat general fatigue or 
overcome jet lag; and beta blockers, drugs 

prescribed for cardiac arrhythmia that also 
have an anti-anxiety effect. Respondents who 
had not taken these drugs, or who had taken 
them for a diagnosed medical condition were 
directed straight to a simple questionnaire 
about general attitudes. Those who revealed 
that they had taken these drugs, or others, for 
non-medical, cognition-enhancing purposes 

were asked several additional questions about 
their use. Here’s what they had to say:

One in five respondents said they had used 
drugs for non-medical reasons to stimulate 
their focus, concentration or memory. Use did 
not differ greatly across age-groups (see line 
graph, left), which will surprise some. Nora 
Volkow, director of the National Institute on 
Drug Abuse (NIDA) in Bethesda, Maryland, 
says that household surveys suggest that stimu-
lant use is highest in people aged 18–25 years, 
and in students. 

For those who choose to use, methylpheni-
date was the most popular: 62% of users 
reported taking it. 44% reported taking 
modafinil, and 15% said they had taken 
beta blockers such as propanolol, reveal-
ing an overlap between drugs. 80 respond-
ents specified other drugs that they were 
taking. The most common of these was 
adderall, an amphetamine similar to meth-
ylphenidate. But there were also reports 
of centrophenoxine, piractem, dexedrine 
and various alternative medicines such as 
ginkgo and omega-3 fatty acids.

The most popular reason for taking 
the drugs was to improve concentra-
tion. Improving focus for a specific task 
(admittedly difficult to distinguish from 
concentration) ranked a close second 
and counteracting jet lag ranked fourth, 

Poll results: look who’s doping
In January, Nature launched an informal survey into readers’ use of cognition-enhancing drugs. Brendan 
Maher has waded through the results and found large-scale use and a mix of attitudes towards the drugs.

behind ‘other’ which received a few interesting 
reasons, such as “party”, “house cleaning” and 
“to actually see if there was any validity to the 
afore-mentioned article”.

Our question on frequency of use, for those 
who took drugs for non-medical purposes, 
revealed an even split between those who took 
them daily, weekly, monthly, or no more than 
once a year. Roughly half reported unpleasant 
side effects, and some discontinued use because 
of them. Some might expect that negative side 
effects would correlate positively with a low 
frequency of use, but that doesn’t seem to be 
the case in our sample (see bar graph, below). 

Reported side effects included headaches, jit-
teriness, anxiety and sleeplessness. 

Neuroscientist Anjan Chatterjee of the 
University of Pennsylvania in Philadelphia 
predicts a rise in the use of these drugs and 

other neuroenhancing products and proce-
dures as they become available (A. Chatterjee 
Cam. Q. Healthc. Ethics 16, 129–137; 2007). 
Like the rise in cosmetic surgery, use of cogni-
tive enhancers is likely to increase as bioethical 
and psychological concerns are overcome (see 
‘Worrying words’) and as the products gain 
cultural acceptance. One difference, Chatterjee 
says, is that use of cognitive enhancers doesn’t 
rely on training of medical specialists such as 
surgeons. Internet availability will also greatly 
accelerate use, he says.

Our poll found that one-third of the drugs 
being used for non-medical purposes were 
purchased over the Internet (see pie chart). The 
rest were obtained from pharmacies or on pre-
scription. It is unclear whether the prescribed 
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“One in five respondents said 
they had used drugs for non-
medical reasons to stimulate 
their focus, concentration or 
memory. Use did not differ 
greatly across age-groups..., 
which will surprise some. “

case it would prevent a valid measure of the 
competency of the examinee and would 
therefore be unfair. But if it were to enhance 
long-term learning, we may be more willing 
to accept enhancement. After all, unlike ath-
letic competitions, in many cases cognitive 
enhancements are not zero-sum games. Cog-
nitive enhancement, unlike enhancement for 
sports competitions, could lead to substantive 
improvements in the world.

Fairness in cognitive enhancements has a 
dimension beyond the individual. If cognitive 
enhancements are costly, they may become the 
province of the rich, adding to the educational 
advantages they already enjoy. One could miti-
gate this inequity by giving every exam-taker 
free access to cognitive enhancements, as some 
schools provide computers during exam week 
to all students. This would help level the play-
ing field. 

Policy governing the use of cognitive 
enhancement in competitive situations should 
avoid exacerbating socioeconomic inequali-
ties, and should take into account the validity 
of enhanced test performance. In developing 
policy for this purpose, problems of enforce-
ment must also be considered. In spite of strin-
gent regulation, athletes continue to use, and be 
caught using, banned performance-enhancing 
drugs.

We call for enforceable policies concern-
ing the use of cognitive-enhancing drugs to 
support fairness, protect individuals from 
coercion and minimize enhancement-related 
socioeconomic disparities.

Maximum benefit, minimum harm
The new methods of cognitive enhance-
ment are ‘disruptive technologies’ 
that could have a profound 
effect on human life in the 
twenty-first century. A 
laissez-faire approach 
to these methods will 
leave us at the mercy 
of powerful market 
forces that are bound 
to be unleashed by the 
promise of increased 
productivity and competi-
tive advantage. The concerns 
about safety, freedom and fair-
ness, just reviewed, may well 
seem less important than the 
attractions of enhancement, 
for sellers and users alike. 

Motivated by some of the same considera-
tions, Fukuyama21 has proposed the formation 
of new laws and regulatory structures to protect 
against the harms of unrestrained biotechno-
logical enhancement. In contrast, we suggest a 

policy that is neither laissez-faire nor prima-
rily legislative. We propose to use a variety of 
scientific, professional, educational and social 
resources, in addition to legislation, to shape 
a rational, evidence-based policy informed 
by a wide array of relevant experts and stake-
holders. Specifically, we propose four types of 
policy mechanism.

The first mechanism is an accelerated 
programme of research to build a knowledge 
base concerning the usage, benefits and asso-
ciated risks of cognitive enhancements. Good 
policy is based on good information, and there 
is currently much we do not know about the 
short- and long-term benefits and risks of the 
cognitive-enhancement drugs currently being 
used, and about who is using them and why. For 
example, what are the patterns of use outside of 
the United States and outside of college commu-
nities? What are the risks of dependence when 
used for cognitive enhancement? What special 
risks arise with the enhancement of children’s 
cognition? How big are the effects of currently 
available enhancers? Do they change ‘cogni-
tive style’, as well as increasing how quickly 
and accurately we think? And given that most 
research so far has focused on simple laboratory 
tasks, how do they affect cognition in the real 
world? Do they increase the total knowledge 
and understanding that students take with 
them from a course? How do they affect various 
aspects of occupational performance?

We call for a programme of research into the 
use and impacts of cognitive-enhancing drugs 
by healthy individuals.

The second mechanism is the participa-
tion of relevant professional organizations 

in formulating guidelines for their 
members in relation to cognitive 

enhancement. Many dif-
ferent professions have a 

role in dispensing, using 
or working with peo-
ple who use cognitive 
enhancers. By creating 
policy at the level of 
professional societies, 
it will be informed by 

the expertise of these 
professionals, and their 

commitment to the goals of 
their profession.

One group to which this 
recommendation applies is 
physicians, particularly in 
primary care, paediatrics and 

psychiatry, who are most likely to be asked for 
cognitive enhancers. These physicians are some-
times asked to prescribe for enhancement by 
patients who exaggerate or fabricate symptoms 
of ADHD, but they also receive frank requests, 

as when a patient says “I know I don’t meet diag-
nostic criteria for ADHD, but I sometimes have 
trouble concentrating and staying organized, 
and it would help me to have some Ritalin on 
hand for days when I really need to be on top of 
things at work.” Physicians who view medicine 
as devoted to healing will view such prescribing 
as inappropriate, whereas those who view medi-
cine more broadly as helping patients live better 
or achieve their goals would be open to consid-
ering such a request22. There is certainly a prec-
edent for this broader view in certain branches 
of medicine, including plastic surgery, derma-
tology, sports medicine and fertility medicine.

Because physicians are the gatekeepers to 
medications discussed here, society looks to 
them for guidance on the use of these medica-
tions and devices, and guidelines from other 
professional groups will need to take into 
account the gatekeepers’ policies. For this rea-
son, the responsibilities that physicians bear for 
the consequences of their decisions are particu-
larly sensitive, being effectively decisions for all 
of us. It would therefore be helpful if physicians 
as a profession gave serious consideration to 
the ethics of appropriate prescribing of cogni-
tive enhancers, and consulted widely as to how 
to strike the balance of limits for patient benefit 
and protection in a liberal democracy. Exam-
ples of such limits in other areas of enhancement 
medicine include the psychological screening of 
candidates for cosmetic surgery or tubal ligation, 
and upper bounds on maternal age or number 
of embryos transferred in fertility treatments. 
These examples of limits may not be specified by 
law, but rather by professional standards.

Other professional groups to which this 
recommendation applies include educators 
and human-resource professionals. In differ-
ent ways, each of these professions has respon-
sibility for fostering and evaluating cognitive 
performance and for advising individuals who 
are seeking to improve their performance, and 
some responsibility also for protecting the 
interests of those in their charge. In contrast 
to physicians, these professionals have direct 
conflicts of interest that must be addressed in 
whatever guidelines they recommend: liberal 
use of cognitive enhancers would be expected 
to encourage classroom order and raise stand-
ardized measures of student achievement, both 
of which are in the interests of schools; it would 
also be expected to promote workplace produc-
tivity, which is in the interests of employers.

Educators, academic admissions officers and 
credentials evaluators are normally responsible 
for ensuring the validity and integrity of their 
examinations, and should be tasked with for-
mulating policies concerning enhancement by 
test-takers. Laws pertaining to testing accom-
modations for people with disabilities provide 
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Towards responsible use of cognitive-
enhancing drugs by the healthy
Society must respond to the growing demand for cognitive enhancement. That response must start by 
rejecting the idea that ‘enhancement’ is a dirty word, argue Henry Greely and colleagues.

Today, on university campuses around 
the world, students are striking deals to 
buy and sell prescription drugs such as 

Adderall and Ritalin — not to get high, but to 
get higher grades, to provide an edge over their 
fellow students or to increase in some meas-
urable way their capacity for learning. These 
transactions are crimes in the United States, 
punishable by prison. 

Many people see such penalties as appro-
priate, and consider the use of such drugs to 
be cheating, unnatural or dangerous. Yet one 
survey1 estimated that almost 7% of students in 
US universities have used prescription stimu-
lants in this way, and that on some campuses, 
up to 25% of students had used them in the 
past year. These students are early adopters of 
a trend that is likely to grow, and indications 
suggest that they’re not alone2. 

In this article, we propose actions that will 
help society accept the benefits of enhance-
ment, given appropriate research and evolved 
regulation. Prescription drugs are regulated as 
such not for their enhancing properties but pri-
marily for considerations of safety and potential 
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ments available while managing their risks.
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phenidate) and Adderall (mixed amphetamine 
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criteria4, and stimulant medication the stand-
ard therapy, there are plenty of these drugs on 
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be proven safe and effective, but if one is it will 
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have moral relevance. For example, the ben-
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Adderall is one of several drugs 
increasingly used to enhance 
cognitive function.
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FIG. 2: Persistent growth of team size in patents The cumulative probability distribution (cdf) of the number of coinventors per patent over
consecutive non-overlapping 3-year periods across the 30-year period 1979–2008. (Right panels) For each 3-year period we plot the mean of
the distribution hai, the standard deviation �a, and the value Q95 corresponding to the 95th percentile.

FIG. 3: Increasing complexity with team size. a denotes the number of team members (nodes), N the number of “associations” (links),
and the ratio a/N is a simple measure for the transparency of the contributions of the team’s members. The maximum number of links in a
network with a members is N = a(a � 1)/2

Team Ethics: Credit distribution in large team science

Cutting the “credit pie” fairly: 
Who gets credit? “Who’s on first”?

Citation (impact) credit:
- Is it shared equally amongst a 
coauthors?

Fraud/Retraction anti-credit:
- can impact all a coauthors
- If credit is shared equally then should 
blame also?

a = 30, N = 138
2008-2012

NEJM (Medicine),   P ( ≥ 30) = 0.065 
PRL (Physics),        P ( ≥ 30) = 0.040
Cell (Biology),        P ( ≥ 30) = 0.017

~ factor of 20 increase in retractions from 2000 - 2010
The retraction penalty: Evidence from the web of science.   
Lu SF, Jin GZ, Uzzi B, Jones B. Scientific Reports 3, 3146 (2013).

The reward system in science developed during a period when teams were 
relatively small. Hence, there is an inherent difficulty in distributing fairly 
sliced credits in large modular teams comprised of heterogenous members
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FIG. 1: Longitudinal analysis of publication and citation growth patterns. (a,b) Growth curves, appropriately rescaled to start from
unity, show the characteristic career trajectories of the scientists in each cohort. The characteristic ↵ and ⇣ exponents shown in each legend
are calculated over the growth phase of the career, in (a) over the first 30 years and in (b) over the first 20 years. The mathematicians [E]
have distinct career trajectories, with ↵ ⇡ 1 since collaboration spillovers play a smaller role in their production growth. (c) Schematic
illustration of the multiplex scientific network surrounding career i. Links in the upper network represent the dynamic collaborations between
scientists (nodes); links within the lower network represent the citation network between papers (nodes); the cross-links between the networks
represent the association between individual careers and the corresponding publication portfolio, serving as a platform for reputation signaling
[14, 21, 23].

principal
investigator

• Collaboration (attractive)

• Competition for priority (repulsive)

• Knowledge (an “exchange particle”)

Interactions mediated by social “forces”:

What makes science special (complex)?
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• Collaboration (attractive)

• Competition for priority (repulsive)

• Knowledge (an “exchange particle”)

Interactions mediated by social “forces”:

* Michael Stuart Brown 
* Joseph L. Goldstein 
Recipients of the 1985 Nobel Prize in Physiology or 
Medicine for describing the regulation of cholesterol 
metabolism.

458 
publications

451 
publications

434
(95%)

   

* Marilyn Kozak 
   N = 70, Nsolo = 59 (84%) 

Solo-artist strategy:

Watson-Crick strategy:

Diverse collaboration strategies

﹛diverse collaboration 
strategies even within the 

same field!
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[14, 21, 23].

• coevolutionary system: 
• knowledge 
• institutions 
• careers

• social processes:
• behavioral aspects
• economic incentives
• cumulative advantage mechanisms 
• collaboration / competition

Complexity

Science: a co-evolving network of networks
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ball Association (NBA) careers during the 63-year period
1946–2008.

We model the career as an aggregation of output op-
portunities which arrive at the variable rate ni(t). Since
the reputation of a scientist is typically a cumulative rep-
resentation of his/her contributions, we consider the cu-
mulative production Ni(t) ⇥

Pt
t0=1 ni(t0) as a proxy for

career achievement. Fig. 1 shows the cumulative produc-
tion Ni(t) of six notable careers which display a scaling
relation Ni(t) ⌅ Ait�i . However, there are also cases of
Ni(t), see Fig. S1, which do not exhibit such regular-
ity, instead displaying marked non-stationarity and non-
linearity arising from significant exogenous career shocks.
We justify this 2-parameter model in the SI text using
scaling methods and data collapse (see Figs. S2 and S3)
to show that most Ni(t) can be modeled by this common
functional form. Careers with �i ⌅ 1 have relatively
constant ni(t), whereas careers with �i > 1 show accel-
erated growth which reflects the benefits of learning and
collaboration spillovers which constitute a portion of the
cumulative advantage held by experienced and reputable
individuals [7]. Fig. S4 shows the distribution P (�i)
with average exponent ⇧�⌃ > 1. For each dataset, we
calculate ⇧�i⌃ = 1.42 ± 0.29 (s. d.) [A], 1.44 ± 0.26 [B],
and 1.30± 0.31 [C].

Individuals are constantly entering and exiting the pro-
fessional market, with birth and death rates depending
on complex economic and institutional factors. Due to
the high level of competition and risk, early carer perfor-
mance has long lasting consequences [7, 10]. By analyz-
ing the careers that survive the highly competitive entry
and turnover process, we search for statistical patterns
that can give insight into the relative roles of persistency
and career shocks in the growth of careers. To better
understand career uncertainty portrayed by the common
saying “publish or perish,” we analyze the outcome fluc-
tuation

ri(t) ⇥ ni(t)� ni(t��t) (1)

of career i in year t over the time interval �t = 1 year.
Output fluctuations arise naturally from the lulls and
bursts in both the mental and physical capabilities of
humans [11].

We define for each scientific career the normalized pro-
duction change

r0
i(t) ⇥ [ri(t)� ⇧ri⌃]/⇥i(r) , (2)

which is measured in units of a fluctuation scale ⇥i(r)
that is unique to each individual. We calculate the av-
erage ⇧ri⌃ and standard deviation ⇥i(r) using the first
Li available years for each scientist i. r0

i(t) is a better
measure for comparing career uncertainty, since individ-
uals have production factors that depend on the type of
research, the size of the collaboration team, and the po-
sition within the team. Figs. S5 and S6 show that the
distribution P (r0) is well approximated by a Gaussian
distribution. In academics, the production of scientific

publications depends on many factors, such as cumula-
tive advantage [7, 9, 12], which is an external institu-
tional mechanism, and the “sacred spark,” which is an
internal e⇥ect that represents an individual’s ambitious
internal drive for success [13, 14]. For instance, a re-
cent case study on the impact trajectories of nobel prize
winners has found that “scientific shocks” marked by the
publication of an individual’s “magnum opus” work(s)
can trigger future recognition and reward, resembling the
cascading dynamics of earthquakes [15].

Collaboration is a strong factor underlying the vary-
ing fluctuation scales ⇥i(r) in career growth. In science,
the ability to attract future opportunities is strongly re-
lated to production spillovers and knowledge spillovers
[16–18] that are mediated by the collaboration network
[4, 5, 19, 20]. One reason to collaboration is the credibil-
ity signal associated with working with a leading scien-
tists, which can increase an individual’s reputation above
the track record of accomplishment [3]. But possibly the
most value in collaborations, which also applies to the
case for long-term employment, comes from increase re-
turns on investment, since it is over time and through
the scientific network that an individual benefits from
the spillovers she generates that can further accelerate
her career trajectory. In this sense, there is a tipping
point in a scientific career that occurs when (i) a scien-
tist becomes an attractor (as opposed to a pursuer) of
new collaboration-production opportunities and (ii) the
knowledge investment reaches a critical mass. To account
for production spillover via collaboration, we calculate
for each author the number ki(t) of distinct coauthors
per year and relate this fundamental input factor to the
annual output ni(t).

Fig. 2(a) shows the relation between the average an-
nual production ⇧ni⌃ and median annual coauthorship
Si ⇥ Med[ki] used here as a proxy for the size Si of
each scientific career. This measure is more statistically
stable than the average ki(t) because there can be ex-
tremely large outlier ki(t) values in high-energy and as-
tronomy collaborations. For dataset [A] scientists we
find an input-output scaling relation ⇧ni⌃ ⇤ S⇥

i with
⇤ = 0.74 ± 0.04 (s.e.m.), which shows the increasing
economies of scale � > 1 for these prolific scientists may
be largely due to a relatively high collaboration e⇤ciency.
In Fig. 2(b) we further test the growth fluctuation scaling
relation

⇥2
i (r) ⌅ V S⇥

i (3)

and calculate the scaling exponents ⇤/2 ⌅ 0.40 ± 0.03
(R = 0.77) for dataset [A], ⇤/2 ⌅ 0.22± 0.04 (R = 0.51)
[B], and ⇤/2 ⌅ 0.26 ± 0.05 (R = 0.45) [C]. The agree-
ment of the ⇤ values calculated in Fig. 2 (a) and (b) in-
dicates that the two consecutive n(t) values constituting
each r(t) value are drawn from an approximately stable
underling distribution Pi(n) with sequential production
values ni(t) and ni(t + 1) that are largely independent,
resulting in the empirical observation that ⇥2

i (n) ⇤ ⇥2
i (r).

Professional athletes attract future opportunities
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point in a scientific career that occurs when (i) a scien-
tist becomes an attractor (as opposed to a pursuer) of
new collaboration-production opportunities and (ii) the
knowledge investment reaches a critical mass. To account
for production spillover via collaboration, we calculate
for each author the number ki(t) of distinct coauthors
per year and relate this fundamental input factor to the
annual output ni(t).

Fig. 2(a) shows the relation between the average an-
nual production ⇧ni⌃ and median annual coauthorship
Si ⇥ Med[ki] used here as a proxy for the size Si of
each scientific career. This measure is more statistically
stable than the average ki(t) because there can be ex-
tremely large outlier ki(t) values in high-energy and as-
tronomy collaborations. For dataset [A] scientists we
find an input-output scaling relation ⇧ni⌃ ⇤ S⇥

i with
⇤ = 0.74 ± 0.04 (s.e.m.), which shows the increasing
economies of scale � > 1 for these prolific scientists may
be largely due to a relatively high collaboration e⇤ciency.
In Fig. 2(b) we further test the growth fluctuation scaling
relation

⇥2
i (r) ⌅ V S⇥

i (3)

and calculate the scaling exponents ⇤/2 ⌅ 0.40 ± 0.03
(R = 0.77) for dataset [A], ⇤/2 ⌅ 0.22± 0.04 (R = 0.51)
[B], and ⇤/2 ⌅ 0.26 ± 0.05 (R = 0.45) [C]. The agree-
ment of the ⇤ values calculated in Fig. 2 (a) and (b) in-
dicates that the two consecutive n(t) values constituting
each r(t) value are drawn from an approximately stable
underling distribution Pi(n) with sequential production
values ni(t) and ni(t + 1) that are largely independent,
resulting in the empirical observation that ⇥2

i (n) ⇤ ⇥2
i (r).

Professional athletes attract future opportunities

number of publications in year t
Cumulative production, a proxy for career reputation

Annual production of individual i

for many 
prolific careers!

αi > 1 : knowledge, reputation, and collaboration spillovers 
contribute to sustainable growth across the academic career

Persistence and Uncertainty in the Academic Career,      
A. M. Petersen, M. Riccaboni, H. E. Stanley, F. Pammolli. 
Proc. Natl. Acad. Sci. USA 109, 5213-5218 (2012).
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Common growth patterns observed across discipline
The data: 

longitudinal Web of Science publication 
and citation data for 450 top scientists; 

83,693 papers, 7,577,084 citations 
tracked over 387,103 years

Set A: 100 most-cited physicists, average 
h-index〈h〉= 61 ± 21 

Set B: 100 additional highly-prolific 
physicists,〈h〉 = 44 ± 15 

Set C: 100 current assistant professors 
from 50 US physics depts.,〈h〉 = 15 ± 7 

Set D: 100 most-cited cell biologists,〈h〉 
= 98 ± 35 

Set E: 50 highly-cited pure 
mathematicians,〈h〉 = 20 ± 10



A) microscopic reputation mechanisms
B) cumulative advantage mechanism
C) competition for limited opportunities

Models of science



A) Reputation flows in the collaboration-citation network

What is the role of the network? 
It constitutes the channels for reputation signaling, a 

mechanism used to overcome problems associated with 
incomplete information / reproducibility / and the “agency 

problem” in Science  [P. Stephan, J. Econ. Lit 34. 1996]

⇒ Author-specific factors matter!
⇒ evidence is in the citation rates (            )

2

i

Citation networkCollaboration network

j⇆k

j⇆i

p⇆q

p⇆i

i

FIG. 1: Schematic illustration of the multiple scientific networks surrounding the central career i. Links j � k in the collaboration network
represent the dynamic coauthorship patterns between the nodes which are scientists; links p � q in the citation network represent references
between the nodes which are papers; the cross-links p � i between the networks represent the association between individual careers and the
corresponding publication portfolio, together serving as a platform for reputation signaling [14, 21, 22].

II. RESULTS

A. Reputation signaling

Academic career growth is a complex process emerging
from the structural, social, and cognitive aspects of science.
Figure 1 is a schematic illustration of a generic career i em-
bedded in the interacting networks of collaborators and cita-
tions. The links within each network are collaborations in the
pool of scientists and citations in the pool of publications, and
the cross-links represent the associations between individuals
and their publication outputs. While previous studies have fo-
cused on the citation network and the collaboration network
separately, here we profit from their interdependency.

Since these networks are dynamic, it is difficult to fully un-
derstand for any given individual, let alone the entire system,
the complex information contained by all the associations. As
a result, reputation has emerged as a key signaling mechanism
to address the dilemma of excessive information that arises,
for example, in the task of evaluating and comparing careers.
Reputation signals can flow between scientists j � k, be-
tween publications p � q, and between a publication and a
scientist, p � i. The latter relation corresponding to the repu-
tation flow from a scientist to a publication, i ⇥ p is the focus
of our analysis whereby author reputation can impact the ci-
tation rate of publications with a subsequent feedback upon
author reputation. To measure this relation we first account
for obsolescence features of the citation life-cycle as well as
patterns of publication growth within a career.

B. Variability in the citation life-cycle

To isolate the effect of author reputation upon the citation
dynamics of individual papers it is important to first have an

understanding of the general citation dynamics of papers. To
this end, we first present results on general citation dynamics
that justify the components of our final model which accounts
for the finite citation life time of a publication. However, in
studying citation dynamics several additional specific obser-
vations can be made regarding the relative obsolescence of
high and low impact publications.

Important scientific discoveries can cause paradigm shifts
and significantly boost the reputation of scientists associated
with the discovery [18]. However, most publications are not
seminal contributions but rather incremental advances with
relatively short-term relevance. In general, this means that the
long-term citation rate of individual papers decays according
to a characteristic time scale. The relation between the de-
cay time scale and the cumulative citation impact of a pub-
lication remains poorly understood, especially at the disag-
gregated level of individual publication portfolios. Hence, in
this section we analyze the dynamics of the citation trajectory
�cp(�), the number of new citations received in paper year � ,
where � is the number of years since the paper was first cited.

We analyze �cp(�) at two levels of aggregation: (i) For
each discipline, we calculate an averaged �cp(�) calculated
by collecting papers with similar total citation counts cp. To
achieve a scaled trajectory that is better suited for averag-
ing we normalize each individual �cp(�) by its peak citation
value, �c⇥p(�) � �cp(�)/Max[�cp(�)]. The top panels in
Fig. 2 show the characteristic citation trajectory of papers be-
longing to each of the top 5 quintiles of the aggregate cita-
tion distribution. Each curve represents the average trajectory
⇤�c⇥(�)⌅ � N�1

q

�
p �c⇥p(�) calculated from the Nq papers

in quintile q. (ii) For each career i, we calculate ⇤�c⇥i(�)⌅ by
averaging over groups of ranked citation sets within the pub-
lication portfolio. The bottom panels in Fig. 2 show that even
within top careers, there is a significant variation in the publi-
cation life cycle.

A) Reputation flows in the collaboration-citation network



1. preferential attachment 
2. citation life-cycles  
3. author reputation effect

Reputation effect citation model
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FIG. 3: Quantifying the life-cycle of both papers and stellar ca-
reers. (A) Relation between ⇤1/2 and cumulative citations cp. (B,C)
Growth trajectories of the cumulative publications N(t) and citations
C(t), appropriately rescaled to start from unity in each ordinate, cap-
ture the persistence of career growth in top careers. The characteris-
tic � and ⇥ exponents shown in each legend are calculated over the
growth phase of the career, in (B) over the first 30 years and in (C)
over the first 20 years. The mathematicians [E] have distinct career
trajectories, with � � 1 since collaboration spillovers via division of
labor likely play a smaller role in publication rate growth. See Tables
S1–S9 for �i and ⇥i values calculated for individual careers.

Ci(t) ⌅
�Ni(t)

p=1 ci,p(t) for a large part of a scientist’s “growth
phase,” which we find to be ⌥ 30 years after their first publi-
cation. Figures 3(B) and 3(C) show the characteristic growth
trajectories ↵N ⇤(t)� ⌃ t� and ↵C ⇤(t)� ⌃ t⌅ , calculated by
an appropriate average over individual Ni(t) and Ci(t), re-
spectively, using arbitrary normalized ordinate units (see the
methods described in the SI) so that each longitudinal curve

starts from the same point, namely ↵N ⇤(1)� = ↵C ⇤(1)� ⌅ 1.
The growth trajectories are characterized by superlinear al-
gebraic growth, with � � 1 and ⇤ > � (values shown in
Fig. 3). Individual exponents �i and ⇤i are also calculated
for the Ni(t) and Ci(t) of each author, and they are listed
along with many other quantitative measures for each career
in Tables S1–S9 of the SI. We averaged both �i and ⇤i within
each dataset and confirm that ↵�i� ⌃= �, and ↵⇤i� ⌃= ⇤. Thus
the aggregate patterns hold at the individual scale. Figure 4
shows the evolution of the publication portfolio quantified by
the Zipf distribution of the papers ranked in decreasing order
ci(1) ⇧ ci(2) ⇧ · · · ⇧ ci(Ni) of rank r. The curve ci(r)
belongs to the class of the discrete generalized beta distribu-
tions (DGBD), c(r)  r�⇥(N + 1� r)⇤ . We use ⇤i and ⇥i as
quantitative benchmarks to confirm that our stochastic model
matches to values observed for real careers [4].

D. Measuring the reputation effect

The interacting networks illustrated in Fig. 1 serve as a
platform for reputation signaling, a process used to overcome
information asymmetries between scientists and other aca-
demic agents [14, 21, 22]. We measure author reputation
by Ci(t), which possibly discounts the role of mentor repu-
tation effects early in the career [23]. Nevertheless, because
we analyze top scientists, the signaling advantage they re-
ceive early in their careers by working with prestigious men-
tors/coauthors should be negligible over the long run [22].
Furthermore, by analyzing top scientists, we reduce the com-
pound reputation effect occurring when two or more highly
reputable scientists are coauthors on a publication, a scenario
where it may be difficult to estimate the differential impact of
these scientists on the citation rate. Hence, we assume that a
majority of the reputation signal is attributable to the central
scientist i. Also, by analyzing top-cited cohorts, we can es-
tablish an upper bound to the strength of the reputation effect.

To measure the role of author reputation vis-à-vis paper im-
pact, we use a regression model that simultaneously accounts
for three factors: (i) the paper citation effect ⇥p(t) ⌅ [cp(t)]⇧ ,
(ii) the life cycle effect Ap(⌥) ⌅ exp[�⌥p/⌥ ], and (iii) the au-
thor reputation effect Ri(t) ⌅ [Ci(t)]⌃. Again, we note that
the reputation factor R(t) ⌥

�
j Rj should conceivably ag-

gregate the cumulative reputations measures of all coauthors
j, however due to data limitations requiring disambiguation
and career data for all coauthors, we make the approximation
R(t) ⌥ Ri(t). We perform a multiple regression to estimate
the ⇧, ⌥ , and ⌃ values which parameterize the citation model,

�ci,p(t + 1) ⌅ ⌅ ⇤⇥p(t)⇤Ap(⌥)⇤Ri(t) , (1)

with the additional multiplicative noise term ⌅.
To test for basic mechanistic differences between the cita-

tion dynamics of highly-cited papers and less-cited papers, we
first analyze the relation between �cp(t + 1) and cp(t) (cor-
responding to the limit ⌥ � ⌦ and ⌃ = 0). This analysis
shown in Fig. S8 indicates that papers with citations above a
slow but substantial citation crossover value c⇥ obey a distinct
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FIG. 3: Quantifying the life-cycle of both papers and stellar ca-
reers. (A) Relation between ⇤1/2 and cumulative citations cp. (B,C)
Growth trajectories of the cumulative publications N(t) and citations
C(t), appropriately rescaled to start from unity in each ordinate, cap-
ture the persistence of career growth in top careers. The characteris-
tic � and ⇥ exponents shown in each legend are calculated over the
growth phase of the career, in (B) over the first 30 years and in (C)
over the first 20 years. The mathematicians [E] have distinct career
trajectories, with � � 1 since collaboration spillovers via division of
labor likely play a smaller role in publication rate growth. See Tables
S1–S9 for �i and ⇥i values calculated for individual careers.

Ci(t) ⌅
�Ni(t)

p=1 ci,p(t) for a large part of a scientist’s “growth
phase,” which we find to be ⌥ 30 years after their first publi-
cation. Figures 3(B) and 3(C) show the characteristic growth
trajectories ↵N ⇤(t)� ⌃ t� and ↵C ⇤(t)� ⌃ t⌅ , calculated by
an appropriate average over individual Ni(t) and Ci(t), re-
spectively, using arbitrary normalized ordinate units (see the
methods described in the SI) so that each longitudinal curve

starts from the same point, namely ↵N ⇤(1)� = ↵C ⇤(1)� ⌅ 1.
The growth trajectories are characterized by superlinear al-
gebraic growth, with � � 1 and ⇤ > � (values shown in
Fig. 3). Individual exponents �i and ⇤i are also calculated
for the Ni(t) and Ci(t) of each author, and they are listed
along with many other quantitative measures for each career
in Tables S1–S9 of the SI. We averaged both �i and ⇤i within
each dataset and confirm that ↵�i� ⌃= �, and ↵⇤i� ⌃= ⇤. Thus
the aggregate patterns hold at the individual scale. Figure 4
shows the evolution of the publication portfolio quantified by
the Zipf distribution of the papers ranked in decreasing order
ci(1) ⇧ ci(2) ⇧ · · · ⇧ ci(Ni) of rank r. The curve ci(r)
belongs to the class of the discrete generalized beta distribu-
tions (DGBD), c(r)  r�⇥(N + 1� r)⇤ . We use ⇤i and ⇥i as
quantitative benchmarks to confirm that our stochastic model
matches to values observed for real careers [4].

D. Measuring the reputation effect

The interacting networks illustrated in Fig. 1 serve as a
platform for reputation signaling, a process used to overcome
information asymmetries between scientists and other aca-
demic agents [14, 21, 22]. We measure author reputation
by Ci(t), which possibly discounts the role of mentor repu-
tation effects early in the career [23]. Nevertheless, because
we analyze top scientists, the signaling advantage they re-
ceive early in their careers by working with prestigious men-
tors/coauthors should be negligible over the long run [22].
Furthermore, by analyzing top scientists, we reduce the com-
pound reputation effect occurring when two or more highly
reputable scientists are coauthors on a publication, a scenario
where it may be difficult to estimate the differential impact of
these scientists on the citation rate. Hence, we assume that a
majority of the reputation signal is attributable to the central
scientist i. Also, by analyzing top-cited cohorts, we can es-
tablish an upper bound to the strength of the reputation effect.

To measure the role of author reputation vis-à-vis paper im-
pact, we use a regression model that simultaneously accounts
for three factors: (i) the paper citation effect ⇥p(t) ⌅ [cp(t)]⇧ ,
(ii) the life cycle effect Ap(⌥) ⌅ exp[�⌥p/⌥ ], and (iii) the au-
thor reputation effect Ri(t) ⌅ [Ci(t)]⌃. Again, we note that
the reputation factor R(t) ⌥

�
j Rj should conceivably ag-

gregate the cumulative reputations measures of all coauthors
j, however due to data limitations requiring disambiguation
and career data for all coauthors, we make the approximation
R(t) ⌥ Ri(t). We perform a multiple regression to estimate
the ⇧, ⌥ , and ⌃ values which parameterize the citation model,

�ci,p(t + 1) ⌅ ⌅ ⇤⇥p(t)⇤Ap(⌥)⇤Ri(t) , (1)

with the additional multiplicative noise term ⌅.
To test for basic mechanistic differences between the cita-

tion dynamics of highly-cited papers and less-cited papers, we
first analyze the relation between �cp(t + 1) and cp(t) (cor-
responding to the limit ⌥ � ⌦ and ⌃ = 0). This analysis
shown in Fig. S8 indicates that papers with citations above a
slow but substantial citation crossover value c⇥ obey a distinct
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FIG. 3: Quantifying the life-cycle of both papers and stellar ca-
reers. (A) Relation between ⇤1/2 and cumulative citations cp. (B,C)
Growth trajectories of the cumulative publications N(t) and citations
C(t), appropriately rescaled to start from unity in each ordinate, cap-
ture the persistence of career growth in top careers. The characteris-
tic � and ⇥ exponents shown in each legend are calculated over the
growth phase of the career, in (B) over the first 30 years and in (C)
over the first 20 years. The mathematicians [E] have distinct career
trajectories, with � � 1 since collaboration spillovers via division of
labor likely play a smaller role in publication rate growth. See Tables
S1–S9 for �i and ⇥i values calculated for individual careers.

Ci(t) ⌅
�Ni(t)

p=1 ci,p(t) for a large part of a scientist’s “growth
phase,” which we find to be ⌥ 30 years after their first publi-
cation. Figures 3(B) and 3(C) show the characteristic growth
trajectories ↵N ⇤(t)� ⌃ t� and ↵C ⇤(t)� ⌃ t⌅ , calculated by
an appropriate average over individual Ni(t) and Ci(t), re-
spectively, using arbitrary normalized ordinate units (see the
methods described in the SI) so that each longitudinal curve

starts from the same point, namely ↵N ⇤(1)� = ↵C ⇤(1)� ⌅ 1.
The growth trajectories are characterized by superlinear al-
gebraic growth, with � � 1 and ⇤ > � (values shown in
Fig. 3). Individual exponents �i and ⇤i are also calculated
for the Ni(t) and Ci(t) of each author, and they are listed
along with many other quantitative measures for each career
in Tables S1–S9 of the SI. We averaged both �i and ⇤i within
each dataset and confirm that ↵�i� ⌃= �, and ↵⇤i� ⌃= ⇤. Thus
the aggregate patterns hold at the individual scale. Figure 4
shows the evolution of the publication portfolio quantified by
the Zipf distribution of the papers ranked in decreasing order
ci(1) ⇧ ci(2) ⇧ · · · ⇧ ci(Ni) of rank r. The curve ci(r)
belongs to the class of the discrete generalized beta distribu-
tions (DGBD), c(r)  r�⇥(N + 1� r)⇤ . We use ⇤i and ⇥i as
quantitative benchmarks to confirm that our stochastic model
matches to values observed for real careers [4].

D. Measuring the reputation effect

The interacting networks illustrated in Fig. 1 serve as a
platform for reputation signaling, a process used to overcome
information asymmetries between scientists and other aca-
demic agents [14, 21, 22]. We measure author reputation
by Ci(t), which possibly discounts the role of mentor repu-
tation effects early in the career [23]. Nevertheless, because
we analyze top scientists, the signaling advantage they re-
ceive early in their careers by working with prestigious men-
tors/coauthors should be negligible over the long run [22].
Furthermore, by analyzing top scientists, we reduce the com-
pound reputation effect occurring when two or more highly
reputable scientists are coauthors on a publication, a scenario
where it may be difficult to estimate the differential impact of
these scientists on the citation rate. Hence, we assume that a
majority of the reputation signal is attributable to the central
scientist i. Also, by analyzing top-cited cohorts, we can es-
tablish an upper bound to the strength of the reputation effect.

To measure the role of author reputation vis-à-vis paper im-
pact, we use a regression model that simultaneously accounts
for three factors: (i) the paper citation effect ⇥p(t) ⌅ [cp(t)]⇧ ,
(ii) the life cycle effect Ap(⌥) ⌅ exp[�⌥p/⌥ ], and (iii) the au-
thor reputation effect Ri(t) ⌅ [Ci(t)]⌃. Again, we note that
the reputation factor R(t) ⌥

�
j Rj should conceivably ag-

gregate the cumulative reputations measures of all coauthors
j, however due to data limitations requiring disambiguation
and career data for all coauthors, we make the approximation
R(t) ⌥ Ri(t). We perform a multiple regression to estimate
the ⇧, ⌥ , and ⌃ values which parameterize the citation model,

�ci,p(t + 1) ⌅ ⌅ ⇤⇥p(t)⇤Ap(⌥)⇤Ri(t) , (1)

with the additional multiplicative noise term ⌅.
To test for basic mechanistic differences between the cita-

tion dynamics of highly-cited papers and less-cited papers, we
first analyze the relation between �cp(t + 1) and cp(t) (cor-
responding to the limit ⌥ � ⌦ and ⌃ = 0). This analysis
shown in Fig. S8 indicates that papers with citations above a
slow but substantial citation crossover value c⇥ obey a distinct
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FIG. 3: Quantifying the life-cycle of both papers and stellar ca-
reers. (A) Relation between ⇤1/2 and cumulative citations cp. (B,C)
Growth trajectories of the cumulative publications N(t) and citations
C(t), appropriately rescaled to start from unity in each ordinate, cap-
ture the persistence of career growth in top careers. The characteris-
tic � and ⇥ exponents shown in each legend are calculated over the
growth phase of the career, in (B) over the first 30 years and in (C)
over the first 20 years. The mathematicians [E] have distinct career
trajectories, with � � 1 since collaboration spillovers via division of
labor likely play a smaller role in publication rate growth. See Tables
S1–S9 for �i and ⇥i values calculated for individual careers.

Ci(t) ⌅
�Ni(t)

p=1 ci,p(t) for a large part of a scientist’s “growth
phase,” which we find to be ⌥ 30 years after their first publi-
cation. Figures 3(B) and 3(C) show the characteristic growth
trajectories ↵N ⇤(t)� ⌃ t� and ↵C ⇤(t)� ⌃ t⌅ , calculated by
an appropriate average over individual Ni(t) and Ci(t), re-
spectively, using arbitrary normalized ordinate units (see the
methods described in the SI) so that each longitudinal curve

starts from the same point, namely ↵N ⇤(1)� = ↵C ⇤(1)� ⌅ 1.
The growth trajectories are characterized by superlinear al-
gebraic growth, with � � 1 and ⇤ > � (values shown in
Fig. 3). Individual exponents �i and ⇤i are also calculated
for the Ni(t) and Ci(t) of each author, and they are listed
along with many other quantitative measures for each career
in Tables S1–S9 of the SI. We averaged both �i and ⇤i within
each dataset and confirm that ↵�i� ⌃= �, and ↵⇤i� ⌃= ⇤. Thus
the aggregate patterns hold at the individual scale. Figure 4
shows the evolution of the publication portfolio quantified by
the Zipf distribution of the papers ranked in decreasing order
ci(1) ⇧ ci(2) ⇧ · · · ⇧ ci(Ni) of rank r. The curve ci(r)
belongs to the class of the discrete generalized beta distribu-
tions (DGBD), c(r)  r�⇥(N + 1� r)⇤ . We use ⇤i and ⇥i as
quantitative benchmarks to confirm that our stochastic model
matches to values observed for real careers [4].

D. Measuring the reputation effect

The interacting networks illustrated in Fig. 1 serve as a
platform for reputation signaling, a process used to overcome
information asymmetries between scientists and other aca-
demic agents [14, 21, 22]. We measure author reputation
by Ci(t), which possibly discounts the role of mentor repu-
tation effects early in the career [23]. Nevertheless, because
we analyze top scientists, the signaling advantage they re-
ceive early in their careers by working with prestigious men-
tors/coauthors should be negligible over the long run [22].
Furthermore, by analyzing top scientists, we reduce the com-
pound reputation effect occurring when two or more highly
reputable scientists are coauthors on a publication, a scenario
where it may be difficult to estimate the differential impact of
these scientists on the citation rate. Hence, we assume that a
majority of the reputation signal is attributable to the central
scientist i. Also, by analyzing top-cited cohorts, we can es-
tablish an upper bound to the strength of the reputation effect.

To measure the role of author reputation vis-à-vis paper im-
pact, we use a regression model that simultaneously accounts
for three factors: (i) the paper citation effect ⇥p(t) ⌅ [cp(t)]⇧ ,
(ii) the life cycle effect Ap(⌥) ⌅ exp[�⌥p/⌥ ], and (iii) the au-
thor reputation effect Ri(t) ⌅ [Ci(t)]⌃. Again, we note that
the reputation factor R(t) ⌥

�
j Rj should conceivably ag-

gregate the cumulative reputations measures of all coauthors
j, however due to data limitations requiring disambiguation
and career data for all coauthors, we make the approximation
R(t) ⌥ Ri(t). We perform a multiple regression to estimate
the ⇧, ⌥ , and ⌃ values which parameterize the citation model,

�ci,p(t + 1) ⌅ ⌅ ⇤⇥p(t)⇤Ap(⌥)⇤Ri(t) , (1)

with the additional multiplicative noise term ⌅.
To test for basic mechanistic differences between the cita-

tion dynamics of highly-cited papers and less-cited papers, we
first analyze the relation between �cp(t + 1) and cp(t) (cor-
responding to the limit ⌥ � ⌦ and ⌃ = 0). This analysis
shown in Fig. S8 indicates that papers with citations above a
slow but substantial citation crossover value c⇥ obey a distinct

# of new citations in year t+1 = 

Variability in the citation life-cycle. To isolate the effect of author
reputation upon the citation dynamics of individual papers it is impor-
tant to first have an understanding of the general citation dynamics of
papers. To this end, we first present results on general citation dynam-
ics that justify the components of our final model which accounts for
the finite citation life time of a publication. However, in studying ci-
tation dynamics several additional specific observations can be made
regarding the relative obsolescence of high and low impact publica-
tions.

Important scientific discoveries can cause paradigm shifts and sig-
nificantly boost the reputation of scientists associated with the discov-
ery [18]. However, most publications are not seminal contributions
but rather incremental advances with relatively short-term relevance.
In general, this means that the long-term citation rate of individual
papers decays according to a characteristic time scale. The relation
between the decay time scale and the cumulative citation impact of
a publication remains poorly understood, especially at the disaggre-
gated level of individual publication portfolios. Hence, in this section
we analyze the dynamics of the citation trajectory �cp(⌧), the num-
ber of new citations received in paper year ⌧ , where ⌧ is the number
of years since the paper was first cited.

We analyze �cp(⌧) at two levels of aggregation: (i) For each
discipline, we calculate an averaged �cp(⌧) calculated by collecting
papers with similar total citation counts cp. To achieve a scaled trajec-
tory that is better suited for averaging we normalize each individual
�cp(⌧) by its peak citation value, �c

0

p(⌧) ⌘ �cp(⌧)/Max[�cp(⌧)].
The top panels in Fig. 2 show the characteristic citation trajectory
of papers belonging to each of the top 5 quintiles of the aggregate
citation distribution. Each curve represents the average trajectory
h�c
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q
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0

p(⌧) calculated from the Nq papers in quin-
tile q. (ii) For each career i, we calculate h�c

0

i(⌧)i by averaging over
groups of ranked citation sets within the publication portfolio. The
bottom panels in Fig. 2 show that even within top careers, there is a
significant variation in the publication life cycle.

At both levels of aggregation, the impact life cycle typically peaks
before paper age ⌧ ⇡ 5 years, except in cases where the paper is con-
ceivably ahead of its time and does not receive peak attention until
a later time (e.g., experimental validation of a previous theoretical
prediction, and vice versa). We define the half-life ⌧1/2 as the time to
reach half the peak citation rate, �c

0

(⌧1/2) = 1/2 in the decay phase.
Papers in the theoretical domains of mathematics and physics can have
extremely long ⌧1/2 > 40 years. Remarkably, some top mathematics
papers even have ⌧1/2 that span nearly the entire data sample dura-
tion 100 years for some papers, reflecting the foundational nature of
“progress by proof.” This is in contrast to top-cited cell biology pa-
pers in the last 50 years: even in the top 10% of most cited works
the value ⌧1/2 ⇡ 10 years, possibly reflecting a significantly higher
discovery rate, and in a related sense, a relatively faster obsolescence
rate.

Fig. 3(A) shows the scaling relation ⌧1/2 ⇠ c

⌦
p calculated for pa-

pers grouped into logarithmic bins of cp. Physics and biology differ
mainly for the highly cited papers, cp & 40, whereas mathematics
shows larger variation in ⌧1/2 per citation. For papers of varying im-
pact, the obsolescence rate can vary dramatically, and is quantified
by the ⌦ value which provides an approximate relation between cita-
tions and time. In mathematics ⌧1/2 / cp, indicating that the impact
is distributed roughly uniformly across time. However, for biology
papers the sub-linear relation with ⌦ ⇡ 0.30 indicates that for two
papers, one with twice the citation impact as the other, the more cited
paper gained twice the number of citations over a ⌧1/2 that was less
than twice as large as the ⌧1/2 of the less-cited paper. These differ-
ences in citation bursting across field are possibly related to the role
of bursty technological advancement, bursty funding initiatives, and
other social aspects of science that can give rise to non-linearities in
scientific advancement.

Patterns of growth for longitudinal reputation measures. Life-
cycle patterns of top scientists serve as a benchmarks characteristic
of sufficiently founded careers in that they are insignificantly affected
by negative productivity shocks across the career. Many top scien-
tists become directors of large labs, and so their creative endeavors
consist of parallel research efforts [19], where each production stream
requires a significant investment with uncertain “payoff ” and “payout
date”. Because of this uncertainty over the horizon of the investment,
especially in the context of finite lifetime of the scientist, theoretical
models predict a decrease in research productivity with age for scien-
tists who are more motivated by investment incentives as opposed to
problem-solving incentives [20]. These steadily increasing patterns
for top scientists suggest that the problem-solving attribute is a key
driver of extremely ambitious individuals. In this section we inves-
tigate the patterns of productivity and reputation growth across the
career, and use these patterns as statistical benchmarks for a career
portfolio model developed in the final section.

One of the most striking statistical patterns of all careers analyzed
in our top scientists dataset is the faster than linear growth in time,
both in cumulative publication number Ni(t) ⌘

Pt
t0=1 ni(t

0

) and
in cumulative citation count Ci(t) ⌘

PNi(t)
p=1 ci,p(t) for a large part

of a scientist’s “growth phase,” which we find to be ⇡ 30 years after
their first publication. Figures 3(B) and 3(C) show the characteristic
growth trajectories hN 0

(t)i ⇠ t

↵ and hC0

(t)i ⇠ t

⇣ , calculated by
an appropriate average over individual Ni(t) and Ci(t), respectively,
using arbitrary normalized ordinate units (see the methods described
in the SI) so that each longitudinal curve starts from the same point,
namely hN 0

(1)i = hC0

(1)i ⌘ 1. The growth trajectories are char-
acterized by superlinear algebraic growth, with ↵ & 1 and ⇣ > ↵

(values shown in Fig. 3). Individual exponents ↵i and ⇣i are also
calculated for the Ni(t) and Ci(t) of each author, and they are listed
along with many other quantitative measures for each career in Ta-
bles S1–S9 of the SI. We averaged both ↵i and ⇣i within each dataset
and confirm that h↵ii ⇠= ↵, and h⇣ii ⇠= ⇣. Thus the aggregate pat-
terns hold at the individual scale. Figure 4 shows the evolution of the
publication portfolio quantified by the Zipf distribution of the papers
ranked in decreasing order ci(1) � ci(2) � · · · � ci(Ni) of rank r.
The curve ci(r) belongs to the class of the discrete generalized beta
distributions (DGBD), c(r) / r
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(N +1�r)

� . We use ⇣i and �i as
quantitative benchmarks to confirm that our stochastic model matches
to values observed for real careers [4].

Measuring the reputation effect. The interacting networks illus-
trated in Fig. 1 serve as a platform for reputation signaling, a process
used to overcome information asymmetries between scientists and
other academic agents [14, 21, 22]. We measure author reputation
by Ci(t), which possibly discounts the role of mentor reputation ef-
fects early in the career [23]. Nevertheless, because we analyze top
scientists, the signaling advantage they receive early in their careers
by working with prestigious mentors/coauthors should be negligible
over the long run [22]. Furthermore, by analyzing top scientists, we
reduce the compound reputation effect occurring when two or more
highly reputable scientists are coauthors on a publication, a scenario
where it may be difficult to estimate the differential impact of these
scientists on the citation rate. Hence, we assume that a majority of
the reputation signal is attributable to the central scientist i. Also, by
analyzing top-cited cohorts, we can establish an upper bound to the
strength of the reputation effect.

To measure the role of author reputation vis-à-vis paper impact,
we use a regression model that simultaneously accounts for three
factors: (i) the paper citation effect ⇧p(t) ⌘ [cp(t)]

⇡ , (ii) the life
cycle effect Ap(⌧) ⌘ exp[�⌧p/⌧ ], and (iii) the author reputation
effect Ri(t) ⌘ [Ci(t)]

⇢. Again, we note that the reputation factor
R(t) ⇡

P
j Rj should conceivably aggregate the cumulative repu-

tations measures of all coauthors j, however due to data limitations
requiring disambiguation and career data for all coauthors, we make
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Variability in the citation life-cycle. To isolate the effect of author
reputation upon the citation dynamics of individual papers it is impor-
tant to first have an understanding of the general citation dynamics of
papers. To this end, we first present results on general citation dynam-
ics that justify the components of our final model which accounts for
the finite citation life time of a publication. However, in studying ci-
tation dynamics several additional specific observations can be made
regarding the relative obsolescence of high and low impact publica-
tions.

Important scientific discoveries can cause paradigm shifts and sig-
nificantly boost the reputation of scientists associated with the discov-
ery [18]. However, most publications are not seminal contributions
but rather incremental advances with relatively short-term relevance.
In general, this means that the long-term citation rate of individual
papers decays according to a characteristic time scale. The relation
between the decay time scale and the cumulative citation impact of
a publication remains poorly understood, especially at the disaggre-
gated level of individual publication portfolios. Hence, in this section
we analyze the dynamics of the citation trajectory �cp(⌧), the num-
ber of new citations received in paper year ⌧ , where ⌧ is the number
of years since the paper was first cited.

We analyze �cp(⌧) at two levels of aggregation: (i) For each
discipline, we calculate an averaged �cp(⌧) calculated by collecting
papers with similar total citation counts cp. To achieve a scaled trajec-
tory that is better suited for averaging we normalize each individual
�cp(⌧) by its peak citation value, �c

0

p(⌧) ⌘ �cp(⌧)/Max[�cp(⌧)].
The top panels in Fig. 2 show the characteristic citation trajectory
of papers belonging to each of the top 5 quintiles of the aggregate
citation distribution. Each curve represents the average trajectory
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p(⌧) calculated from the Nq papers in quin-
tile q. (ii) For each career i, we calculate h�c

0

i(⌧)i by averaging over
groups of ranked citation sets within the publication portfolio. The
bottom panels in Fig. 2 show that even within top careers, there is a
significant variation in the publication life cycle.

At both levels of aggregation, the impact life cycle typically peaks
before paper age ⌧ ⇡ 5 years, except in cases where the paper is con-
ceivably ahead of its time and does not receive peak attention until
a later time (e.g., experimental validation of a previous theoretical
prediction, and vice versa). We define the half-life ⌧1/2 as the time to
reach half the peak citation rate, �c

0

(⌧1/2) = 1/2 in the decay phase.
Papers in the theoretical domains of mathematics and physics can have
extremely long ⌧1/2 > 40 years. Remarkably, some top mathematics
papers even have ⌧1/2 that span nearly the entire data sample dura-
tion 100 years for some papers, reflecting the foundational nature of
“progress by proof.” This is in contrast to top-cited cell biology pa-
pers in the last 50 years: even in the top 10% of most cited works
the value ⌧1/2 ⇡ 10 years, possibly reflecting a significantly higher
discovery rate, and in a related sense, a relatively faster obsolescence
rate.

Fig. 3(A) shows the scaling relation ⌧1/2 ⇠ c

⌦
p calculated for pa-

pers grouped into logarithmic bins of cp. Physics and biology differ
mainly for the highly cited papers, cp & 40, whereas mathematics
shows larger variation in ⌧1/2 per citation. For papers of varying im-
pact, the obsolescence rate can vary dramatically, and is quantified
by the ⌦ value which provides an approximate relation between cita-
tions and time. In mathematics ⌧1/2 / cp, indicating that the impact
is distributed roughly uniformly across time. However, for biology
papers the sub-linear relation with ⌦ ⇡ 0.30 indicates that for two
papers, one with twice the citation impact as the other, the more cited
paper gained twice the number of citations over a ⌧1/2 that was less
than twice as large as the ⌧1/2 of the less-cited paper. These differ-
ences in citation bursting across field are possibly related to the role
of bursty technological advancement, bursty funding initiatives, and
other social aspects of science that can give rise to non-linearities in
scientific advancement.

Patterns of growth for longitudinal reputation measures. Life-
cycle patterns of top scientists serve as a benchmarks characteristic
of sufficiently founded careers in that they are insignificantly affected
by negative productivity shocks across the career. Many top scien-
tists become directors of large labs, and so their creative endeavors
consist of parallel research efforts [19], where each production stream
requires a significant investment with uncertain “payoff ” and “payout
date”. Because of this uncertainty over the horizon of the investment,
especially in the context of finite lifetime of the scientist, theoretical
models predict a decrease in research productivity with age for scien-
tists who are more motivated by investment incentives as opposed to
problem-solving incentives [20]. These steadily increasing patterns
for top scientists suggest that the problem-solving attribute is a key
driver of extremely ambitious individuals. In this section we inves-
tigate the patterns of productivity and reputation growth across the
career, and use these patterns as statistical benchmarks for a career
portfolio model developed in the final section.

One of the most striking statistical patterns of all careers analyzed
in our top scientists dataset is the faster than linear growth in time,
both in cumulative publication number Ni(t) ⌘

Pt
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) and
in cumulative citation count Ci(t) ⌘

PNi(t)
p=1 ci,p(t) for a large part

of a scientist’s “growth phase,” which we find to be ⇡ 30 years after
their first publication. Figures 3(B) and 3(C) show the characteristic
growth trajectories hN 0

(t)i ⇠ t

↵ and hC0

(t)i ⇠ t

⇣ , calculated by
an appropriate average over individual Ni(t) and Ci(t), respectively,
using arbitrary normalized ordinate units (see the methods described
in the SI) so that each longitudinal curve starts from the same point,
namely hN 0

(1)i = hC0

(1)i ⌘ 1. The growth trajectories are char-
acterized by superlinear algebraic growth, with ↵ & 1 and ⇣ > ↵

(values shown in Fig. 3). Individual exponents ↵i and ⇣i are also
calculated for the Ni(t) and Ci(t) of each author, and they are listed
along with many other quantitative measures for each career in Ta-
bles S1–S9 of the SI. We averaged both ↵i and ⇣i within each dataset
and confirm that h↵ii ⇠= ↵, and h⇣ii ⇠= ⇣. Thus the aggregate pat-
terns hold at the individual scale. Figure 4 shows the evolution of the
publication portfolio quantified by the Zipf distribution of the papers
ranked in decreasing order ci(1) � ci(2) � · · · � ci(Ni) of rank r.
The curve ci(r) belongs to the class of the discrete generalized beta
distributions (DGBD), c(r) / r
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� . We use ⇣i and �i as
quantitative benchmarks to confirm that our stochastic model matches
to values observed for real careers [4].

Measuring the reputation effect. The interacting networks illus-
trated in Fig. 1 serve as a platform for reputation signaling, a process
used to overcome information asymmetries between scientists and
other academic agents [14, 21, 22]. We measure author reputation
by Ci(t), which possibly discounts the role of mentor reputation ef-
fects early in the career [23]. Nevertheless, because we analyze top
scientists, the signaling advantage they receive early in their careers
by working with prestigious mentors/coauthors should be negligible
over the long run [22]. Furthermore, by analyzing top scientists, we
reduce the compound reputation effect occurring when two or more
highly reputable scientists are coauthors on a publication, a scenario
where it may be difficult to estimate the differential impact of these
scientists on the citation rate. Hence, we assume that a majority of
the reputation signal is attributable to the central scientist i. Also, by
analyzing top-cited cohorts, we can establish an upper bound to the
strength of the reputation effect.

To measure the role of author reputation vis-à-vis paper impact,
we use a regression model that simultaneously accounts for three
factors: (i) the paper citation effect ⇧p(t) ⌘ [cp(t)]

⇡ , (ii) the life
cycle effect Ap(⌧) ⌘ exp[�⌧p/⌧ ], and (iii) the author reputation
effect Ri(t) ⌘ [Ci(t)]

⇢. Again, we note that the reputation factor
R(t) ⇡

P
j Rj should conceivably aggregate the cumulative repu-

tations measures of all coauthors j, however due to data limitations
requiring disambiguation and career data for all coauthors, we make
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Variability in the citation life-cycle. To isolate the effect of author
reputation upon the citation dynamics of individual papers it is impor-
tant to first have an understanding of the general citation dynamics of
papers. To this end, we first present results on general citation dynam-
ics that justify the components of our final model which accounts for
the finite citation life time of a publication. However, in studying ci-
tation dynamics several additional specific observations can be made
regarding the relative obsolescence of high and low impact publica-
tions.

Important scientific discoveries can cause paradigm shifts and sig-
nificantly boost the reputation of scientists associated with the discov-
ery [18]. However, most publications are not seminal contributions
but rather incremental advances with relatively short-term relevance.
In general, this means that the long-term citation rate of individual
papers decays according to a characteristic time scale. The relation
between the decay time scale and the cumulative citation impact of
a publication remains poorly understood, especially at the disaggre-
gated level of individual publication portfolios. Hence, in this section
we analyze the dynamics of the citation trajectory �cp(⌧), the num-
ber of new citations received in paper year ⌧ , where ⌧ is the number
of years since the paper was first cited.

We analyze �cp(⌧) at two levels of aggregation: (i) For each
discipline, we calculate an averaged �cp(⌧) calculated by collecting
papers with similar total citation counts cp. To achieve a scaled trajec-
tory that is better suited for averaging we normalize each individual
�cp(⌧) by its peak citation value, �c
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p(⌧) ⌘ �cp(⌧)/Max[�cp(⌧)].
The top panels in Fig. 2 show the characteristic citation trajectory
of papers belonging to each of the top 5 quintiles of the aggregate
citation distribution. Each curve represents the average trajectory
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p(⌧) calculated from the Nq papers in quin-
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i(⌧)i by averaging over
groups of ranked citation sets within the publication portfolio. The
bottom panels in Fig. 2 show that even within top careers, there is a
significant variation in the publication life cycle.

At both levels of aggregation, the impact life cycle typically peaks
before paper age ⌧ ⇡ 5 years, except in cases where the paper is con-
ceivably ahead of its time and does not receive peak attention until
a later time (e.g., experimental validation of a previous theoretical
prediction, and vice versa). We define the half-life ⌧1/2 as the time to
reach half the peak citation rate, �c

0

(⌧1/2) = 1/2 in the decay phase.
Papers in the theoretical domains of mathematics and physics can have
extremely long ⌧1/2 > 40 years. Remarkably, some top mathematics
papers even have ⌧1/2 that span nearly the entire data sample dura-
tion 100 years for some papers, reflecting the foundational nature of
“progress by proof.” This is in contrast to top-cited cell biology pa-
pers in the last 50 years: even in the top 10% of most cited works
the value ⌧1/2 ⇡ 10 years, possibly reflecting a significantly higher
discovery rate, and in a related sense, a relatively faster obsolescence
rate.

Fig. 3(A) shows the scaling relation ⌧1/2 ⇠ c
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p calculated for pa-

pers grouped into logarithmic bins of cp. Physics and biology differ
mainly for the highly cited papers, cp & 40, whereas mathematics
shows larger variation in ⌧1/2 per citation. For papers of varying im-
pact, the obsolescence rate can vary dramatically, and is quantified
by the ⌦ value which provides an approximate relation between cita-
tions and time. In mathematics ⌧1/2 / cp, indicating that the impact
is distributed roughly uniformly across time. However, for biology
papers the sub-linear relation with ⌦ ⇡ 0.30 indicates that for two
papers, one with twice the citation impact as the other, the more cited
paper gained twice the number of citations over a ⌧1/2 that was less
than twice as large as the ⌧1/2 of the less-cited paper. These differ-
ences in citation bursting across field are possibly related to the role
of bursty technological advancement, bursty funding initiatives, and
other social aspects of science that can give rise to non-linearities in
scientific advancement.

Patterns of growth for longitudinal reputation measures. Life-
cycle patterns of top scientists serve as a benchmarks characteristic
of sufficiently founded careers in that they are insignificantly affected
by negative productivity shocks across the career. Many top scien-
tists become directors of large labs, and so their creative endeavors
consist of parallel research efforts [19], where each production stream
requires a significant investment with uncertain “payoff ” and “payout
date”. Because of this uncertainty over the horizon of the investment,
especially in the context of finite lifetime of the scientist, theoretical
models predict a decrease in research productivity with age for scien-
tists who are more motivated by investment incentives as opposed to
problem-solving incentives [20]. These steadily increasing patterns
for top scientists suggest that the problem-solving attribute is a key
driver of extremely ambitious individuals. In this section we inves-
tigate the patterns of productivity and reputation growth across the
career, and use these patterns as statistical benchmarks for a career
portfolio model developed in the final section.

One of the most striking statistical patterns of all careers analyzed
in our top scientists dataset is the faster than linear growth in time,
both in cumulative publication number Ni(t) ⌘
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) and
in cumulative citation count Ci(t) ⌘
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of a scientist’s “growth phase,” which we find to be ⇡ 30 years after
their first publication. Figures 3(B) and 3(C) show the characteristic
growth trajectories hN 0
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↵ and hC0
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⇣ , calculated by
an appropriate average over individual Ni(t) and Ci(t), respectively,
using arbitrary normalized ordinate units (see the methods described
in the SI) so that each longitudinal curve starts from the same point,
namely hN 0

(1)i = hC0

(1)i ⌘ 1. The growth trajectories are char-
acterized by superlinear algebraic growth, with ↵ & 1 and ⇣ > ↵

(values shown in Fig. 3). Individual exponents ↵i and ⇣i are also
calculated for the Ni(t) and Ci(t) of each author, and they are listed
along with many other quantitative measures for each career in Ta-
bles S1–S9 of the SI. We averaged both ↵i and ⇣i within each dataset
and confirm that h↵ii ⇠= ↵, and h⇣ii ⇠= ⇣. Thus the aggregate pat-
terns hold at the individual scale. Figure 4 shows the evolution of the
publication portfolio quantified by the Zipf distribution of the papers
ranked in decreasing order ci(1) � ci(2) � · · · � ci(Ni) of rank r.
The curve ci(r) belongs to the class of the discrete generalized beta
distributions (DGBD), c(r) / r
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� . We use ⇣i and �i as
quantitative benchmarks to confirm that our stochastic model matches
to values observed for real careers [4].

Measuring the reputation effect. The interacting networks illus-
trated in Fig. 1 serve as a platform for reputation signaling, a process
used to overcome information asymmetries between scientists and
other academic agents [14, 21, 22]. We measure author reputation
by Ci(t), which possibly discounts the role of mentor reputation ef-
fects early in the career [23]. Nevertheless, because we analyze top
scientists, the signaling advantage they receive early in their careers
by working with prestigious mentors/coauthors should be negligible
over the long run [22]. Furthermore, by analyzing top scientists, we
reduce the compound reputation effect occurring when two or more
highly reputable scientists are coauthors on a publication, a scenario
where it may be difficult to estimate the differential impact of these
scientists on the citation rate. Hence, we assume that a majority of
the reputation signal is attributable to the central scientist i. Also, by
analyzing top-cited cohorts, we can establish an upper bound to the
strength of the reputation effect.

To measure the role of author reputation vis-à-vis paper impact,
we use a regression model that simultaneously accounts for three
factors: (i) the paper citation effect ⇧p(t) ⌘ [cp(t)]

⇡ , (ii) the life
cycle effect Ap(⌧) ⌘ exp[�⌧p/⌧ ], and (iii) the author reputation
effect Ri(t) ⌘ [Ci(t)]

⇢. Again, we note that the reputation factor
R(t) ⇡

P
j Rj should conceivably aggregate the cumulative repu-

tations measures of all coauthors j, however due to data limitations
requiring disambiguation and career data for all coauthors, we make
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strong for papers not yet highly cited

2) The citation rate of highly-cited 
papers is largely independent of 
the author reputation 
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TABLE I: Best-fit parameters for individual careers and the average values within disciplinary datasets. The three features of the citation model
are parameterized by �, the paper citation effect, ⇤ , the life-cycle effect, and ⇥, the reputation effect.

c(t� 1) < c� c(t� 1) ⇤ c�
Name �i ⇤ i ⇥i �i ⇤ i ⇥i

GOSSARD, AC 0.34± 0.027 4.92± 0.261 0.25± 0.008 0.80± 0.048 4.73± 0.184 0.09± 0.024

BARABÁSI, AL 0.42± 0.036 3.00± 0.155 0.29± 0.010 1.06± 0.016 3.65± 0.111 0.01± 0.011
Ave. ± Std. Dev. [A] 0.43± 0.14 5.67± 2.52 0.22± 0.06 0.96± 0.19 8.93± 4.09 �0.07± 0.11

BALTIMORE, D 0.32± 0.018 4.64± 0.148 0.28± 0.006 0.62± 0.047 5.92± 0.250 0.15± 0.026
LAEMMLI, UK 0.54± 0.036 5.09± 0.297 0.21± 0.014 1.09± 0.025 6.40± 0.255 �0.12± 0.019
Ave. ± Std. Dev. [D] 0.40± 0.14 6.64± 6.24 0.26± 0.05 0.99± 0.22 9.55± 26.30 �0.06± 0.14

SERRE, JP 0.33± 0.095 15.90± 3.724 0.14± 0.026 0.66± 0.065 20.50± 3.862 �0.03± 0.039
WILES, A 0.56± 0.208 5.23± 1.187 0.24± 0.052 0.70± 0.059 9.04± 0.633 0.10± 0.042
Ave. ± Std. Dev. [E] 0.27± 0.17 30.60± 56.80 0.14± 0.07 0.54± 0.25 21.40± 54.30 0.01± 0.11

scaling law that matches to sub-linear (though nearly linear)
preferential attachment model with ⇤ � 1. Based upon the as-
sessment of the growth dynamics elaborated in Figs. S8 and
S9 we choose the crossover value c� � 40 [A/B], c� � 100
[C], and c� � 20 [E]; the general results are not strongly de-
pendent on reasonable variations in our choice of c�. We next
analyze the reputation effect by comparing the growth dynam-
ics of papers with cp(⇧) ⇥ c� versus papers with cp(⇧) < c�.

We observe a robust pattern of role switching by author-
and paper-specific effects, namely ⌅(c < c�) > ⌅(c ⇥ c�)
and ⇤(c < c�) < ⇤(c ⇥ c�). These two inequalities indi-
cate that papers are initially boosted by author reputation to
ci,p ⌅ c�, after which the citation rate is sustained in large
by paper reputation. This constitutes one of our main results,
finding that c� serves as a “tipping point” for the strength of
the reputation effect. For example, for established physicists
in [A] and [B] we calculate ⌅(c < 40) ⌅ 0.2, ⌅(c ⇥ 40) ⌅ 0,
⇤(c < 40) ⌅ 0.4, and ⇤(c ⇥ 40) ⌅ 1. Table I shows the
⇤i, ⇧i, and ⌅i estimates, above and below c�, for the indi-
vidual careers highlighted in Figs. 2 and 4. Mathematicians
exhibit relatively high life-cycle exponents ⇧i as compared to
physicists and biologists. However, the reputation effect ⌅i

is less prominent in mathematics, possibly related to features
of small team sizes and axiomatic discoveries which may de-
crease the role of reputation effects in conveying prestige sig-
nals. The estimated model values are consistent when com-
paring between aggregated and individual career datasets. Ta-
bles S10–S13 list the regression values aggregating over all
careers in each dataset, and Tables S14 – S22 list the values
for all 450 scientists analyzed.

These findings show how reputation contributes to generate
the cumulative “rich-get-richer” processes predicted for scien-
tific careers [9], since it conveys unconditional citation boosts
for new papers of already established scientists. This feature
is anecdotally consistent with the common behavior of check-
ing author names in the preliminary steps of evaluating the
relevance of a newly-found paper.

E. Validation of the reputation model by simulating synthetic
Monte Carlo careers

We analyze four variants (i-iv) of a career growth model
using Monte Carlo (MC) evolution to simulate the dynamics
of �ci,p(t+1) for each paper p in each time period t of the ca-
reer of synthetic author i. With each variant we introduce pro-
gressively a new feature of paper citation trajectories. (i) We
begin with a basic Poisson null model for the unconditional
citation dynamics, �ci,p(t+1) ⇧ Poisson(⇥) where ⇥ is the
mean citation rate, independent of ⇧p and other author-specific
factors. (ii) The next model we simulate is a preferential at-
tachment model (PA model) in which �ci,p(t + 1) ⇧ ci,p(t).
(iii) In the third version of the model we incrementally modify
the PA model by adding a multiplicative exponential obsoles-
cence factor (PA-LC model) imposing the inherent life-cycle.
We then compare model (i-iii) with the reputation model (iv)
given by Eq. 1.

Fig. 5 shows MC careers characteristic of each model. A
qualitative assessment of each model’s performance is as fol-
lows. The Poisson model (i) and the PA model (ii) fail to
reproduce the characteristic trajectories of real papers, since
there is a clear first-mover advantage [24] for the first pa-
pers published in the career; also the extreme acceleration of
Ci(t) in model (ii) does not appear to obey a proper power-law
growth.

Next we use quantitative patterns demonstrated for real ca-
reers in Figs. 2–4, and demonstrated more extensively in the
SI, as empirical benchmarks to distinguish models (iii) and
(iv). Comparing models (iii) and (iv), we confirm that the
reputation model (iv) satisfies the characteristics of the empir-
ical benchmark in all 3 graphical categories. We confirm for
model (iv), but not for model (iii), that there is a clear distinc-
tion when comparing the citation trajectories ⌃�c⇥(⇧p)⌥ of dif-
ferent sets of ranked papers. Furthermore, we quantitatively
confirm that C(t) ⇤ t� with 2 � � � 3. And for large t
we confirm that the rank-citation profile c(r, t) belongs to the
class of DGBD distributions. We provide more details about
our MC models and methods in the SI text.

the approximation R(t) ⇡ Ri(t). We perform a multiple regression
to estimate the ⇡, ⌧ , and ⇢ values which parameterize the citation
model,

�ci,p(t + 1) ⌘ ⌘ ⇥⇧p(t)⇥Ap(⌧)⇥Ri(t) , [1]

with the additional multiplicative noise term ⌘.
To test for basic mechanistic differences between the citation dy-

namics of highly-cited papers and less-cited papers, we first analyze
the relation between �cp(t+1) and cp(t) (corresponding to the limit
⌧ ! 1 and ⇢ = 0). This analysis shown in Fig. S8 indicates that
papers with citations above a slow but substantial citation crossover
value c

⇥

obey a distinct scaling law that matches to sub-linear (though
nearly linear) preferential attachment model with ⇡ . 1. Based upon
the assessment of the growth dynamics elaborated in Figs. S8 and S9
we choose the crossover value c

⇥

⌘ 40 [A/B], c

⇥

⌘ 100 [C], and
c

⇥

⌘ 20 [E]; the general results are not strongly dependent on rea-
sonable variations in our choice of c

⇥

. We next analyze the reputation
effect by comparing the growth dynamics of papers with cp(⌧) � c

⇥

versus papers with cp(⌧) < c

⇥

.
We observe a robust pattern of role switching by author- and

paper-specific effects, namely ⇢(c < c

⇥

) > ⇢(c � c

⇥

) and
⇡(c < c

⇥

) < ⇡(c � c

⇥

). These two inequalities indicate that
papers are initially boosted by author reputation to ci,p ⇡ c

⇥

, after
which the citation rate is sustained in large by paper reputation. This
constitutes one of our main results, finding that c

⇥

serves as a “tip-
ping point” for the strength of the reputation effect. For example, for
established physicists in [A] and [B] we calculate ⇢(c < 40) ⇡ 0.2,
⇢(c � 40) ⇡ 0, ⇡(c < 40) ⇡ 0.4, and ⇡(c � 40) ⇡ 1. Table
1 shows the ⇡i, ⌧i, and ⇢i estimates, above and below c

⇥

, for the
individual careers highlighted in Figs. 2 and 4. Mathematicians ex-
hibit relatively high life-cycle exponents ⌧i as compared to physicists
and biologists. However, the reputation effect ⇢i is less prominent
in mathematics, possibly related to features of small team sizes and
axiomatic discoveries which may decrease the role of reputation ef-
fects in conveying prestige signals. The estimated model values are
consistent when comparing between aggregated and individual career
datasets. Tables S10–S13 list the regression values aggregating over
all careers in each dataset, and Tables S14 – S22 list the values for all
450 scientists analyzed.

These findings show how reputation contributes to generate the
cumulative “rich-get-richer” processes predicted for scientific careers
[9], since it conveys unconditional citation boosts for new papers of
already established scientists. This feature is anecdotally consistent
with the common behavior of checking author names in the prelimi-
nary steps of evaluating the relevance of a newly-found paper.

Validation of the reputation model by simulating synthetic Monte
Carlo careers. We analyze four variants (i-iv) of a career growth
model using Monte Carlo (MC) evolution to simulate the dynam-
ics of �ci,p(t + 1) for each paper p in each time period t of the
career of synthetic author i. With each variant we introduce progres-
sively a new feature of paper citation trajectories. (i) We begin with
a basic Poisson null model for the unconditional citation dynamics,
�ci,p(t + 1) / Poisson(�) where � is the mean citation rate, inde-
pendent of ⌧p and other author-specific factors. (ii) The next model
we simulate is a preferential attachment model (PA model) in which
�ci,p(t + 1) / ci,p(t). (iii) In the third version of the model we
incrementally modify the PA model by adding a multiplicative ex-
ponential obsolescence factor (PA-LC model) imposing the inherent
life-cycle. We then compare model (i-iii) with the reputation model
(iv) given by Eq. 1.

Fig. 5 shows MC careers characteristic of each model. A qual-
itative assessment of each model’s performance is as follows. The
Poisson model (i) and the PA model (ii) fail to reproduce the char-
acteristic trajectories of real papers, since there is a clear first-mover
advantage [24] for the first papers published in the career; also the

extreme acceleration of Ci(t) in model (ii) does not appear to obey a
proper power-law growth.

Next we use quantitative patterns demonstrated for real careers
in Figs. 2–4, and demonstrated more extensively in the SI, as em-
pirical benchmarks to distinguish models (iii) and (iv). Comparing
models (iii) and (iv), we confirm that the reputation model (iv) satis-
fies the characteristics of the empirical benchmark in all 3 graphical
categories. We confirm for model (iv), but not for model (iii), that
there is a clear distinction when comparing the citation trajectories
h�c

0

(⌧p)i of different sets of ranked papers. Furthermore, we quan-
titatively confirm that C(t) ⇠ t

⇣ with 2 . ⇣ . 3. And for large t

we confirm that the rank-citation profile c(r, t) belongs to the class of
DGBD distributions. We provide more details about our MC models
and methods in the SI text.

Discussion
Social networks in science are characterized by heterogeneous struc-
ture [25] that provides opportunities for intellectual and social capital
investment at the individual level [26], and influence scientists’ re-
search strategies [21]. In this paper we analyze the role of reputation
on the micro-level processes underlying the dynamics of a scientist’s
research impact towards the broader goal to understand better career
growth and the increasingly difficult task of career evaluation [16].

Patterns of career growth are important for establishing (i) bench-
marks for career trajectory models, and (ii) a quantitative evaluation
framework that does not oversimplify or discount the complex so-
cial processes underlying scientific careers. Along these lines we
observe for top scientists a robust pattern of super-linear growth for
two cumulative reputation measures, Ni(t) and Ci(t), giving support
to amplifying social processes which sustain growth via coevolution
of scientific collaboration and output [6, 27, 28, 29]. In a scientific
system increasingly characterized by team endeavors, multiple levels
of hierarchy, and division of labor [30], it will be important to develop
both financial and prestige incentives that sustain lifetime productivity
for scientists at every level of the scientific enterprise.

As reputable teams start to dominate the scientific landscape, it
will further become important to disentangle the reputation effect as-
sociated with elite labs in order to assess individual contributions. To
this end, quantitative measures are becoming more prevalent in the
evaluation of projects, labs, and various hiring and promotion sce-
narios affecting individual careers in science. It is also increasingly
important to understand the relation between scientific inputs (money,
labor, knowledge, reputation, etc.) and scientific outputs [6, 15, 17],
the evolution of these dependencies across career stage, and the role
of career uncertainty [6]. Concerning careers, an institutional set-
ting based on quantitative appraisal that neglects these features may
paradoxically go against the goal of sustaining the careers of talented
and diligent young academics, especially considering the role that lab
and mentor reputation play in the hiring process. Indeed, our find-
ing of a crossover behavior around c

⇥

shows how young scientists
lacking reputation can be negatively affected by social stratification
in science, since there is a competitive advantage working with a pres-
tigious mentor which is countered with the possibility that it is not the
ideal mentor-advisee match. In light of the value of online visibility,
strategies of self-promotion may also emerge as scientists “game” the
system, which may be hard to disentangle from other dimensions of
science, such as the tendency for scientists to self-cite, possibly with
the intention of signaling reputation, when crossing disciplinary lines
[31]. Reputation will also become increasingly important in light of
the preferential treatment based on citation measures given to search
query results, e.g. Google Scholar, which may further strengthen the
reputation effect between paper and author.

Our framework motivates future research to inspire institutional
and funding body evaluation schemes to appropriately account for the
roles that reputation and social context play in science. For example,
our results can be used in support of the double-blind review system
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the approximation R(t) ⇡ Ri(t). We perform a multiple regression
to estimate the ⇡, ⌧ , and ⇢ values which parameterize the citation
model,

�ci,p(t + 1) ⌘ ⌘ ⇥⇧p(t)⇥Ap(⌧)⇥Ri(t) , [1]

with the additional multiplicative noise term ⌘.
To test for basic mechanistic differences between the citation dy-

namics of highly-cited papers and less-cited papers, we first analyze
the relation between �cp(t+1) and cp(t) (corresponding to the limit
⌧ ! 1 and ⇢ = 0). This analysis shown in Fig. S8 indicates that
papers with citations above a slow but substantial citation crossover
value c

⇥

obey a distinct scaling law that matches to sub-linear (though
nearly linear) preferential attachment model with ⇡ . 1. Based upon
the assessment of the growth dynamics elaborated in Figs. S8 and S9
we choose the crossover value c

⇥

⌘ 40 [A/B], c

⇥

⌘ 100 [C], and
c

⇥

⌘ 20 [E]; the general results are not strongly dependent on rea-
sonable variations in our choice of c

⇥

. We next analyze the reputation
effect by comparing the growth dynamics of papers with cp(⌧) � c

⇥

versus papers with cp(⌧) < c
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.
We observe a robust pattern of role switching by author- and

paper-specific effects, namely ⇢(c < c
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) and
⇡(c < c

⇥
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⇥

). These two inequalities indicate that
papers are initially boosted by author reputation to ci,p ⇡ c

⇥

, after
which the citation rate is sustained in large by paper reputation. This
constitutes one of our main results, finding that c

⇥

serves as a “tip-
ping point” for the strength of the reputation effect. For example, for
established physicists in [A] and [B] we calculate ⇢(c < 40) ⇡ 0.2,
⇢(c � 40) ⇡ 0, ⇡(c < 40) ⇡ 0.4, and ⇡(c � 40) ⇡ 1. Table
1 shows the ⇡i, ⌧i, and ⇢i estimates, above and below c

⇥

, for the
individual careers highlighted in Figs. 2 and 4. Mathematicians ex-
hibit relatively high life-cycle exponents ⌧i as compared to physicists
and biologists. However, the reputation effect ⇢i is less prominent
in mathematics, possibly related to features of small team sizes and
axiomatic discoveries which may decrease the role of reputation ef-
fects in conveying prestige signals. The estimated model values are
consistent when comparing between aggregated and individual career
datasets. Tables S10–S13 list the regression values aggregating over
all careers in each dataset, and Tables S14 – S22 list the values for all
450 scientists analyzed.

These findings show how reputation contributes to generate the
cumulative “rich-get-richer” processes predicted for scientific careers
[9], since it conveys unconditional citation boosts for new papers of
already established scientists. This feature is anecdotally consistent
with the common behavior of checking author names in the prelimi-
nary steps of evaluating the relevance of a newly-found paper.

Validation of the reputation model by simulating synthetic Monte
Carlo careers. We analyze four variants (i-iv) of a career growth
model using Monte Carlo (MC) evolution to simulate the dynam-
ics of �ci,p(t + 1) for each paper p in each time period t of the
career of synthetic author i. With each variant we introduce progres-
sively a new feature of paper citation trajectories. (i) We begin with
a basic Poisson null model for the unconditional citation dynamics,
�ci,p(t + 1) / Poisson(�) where � is the mean citation rate, inde-
pendent of ⌧p and other author-specific factors. (ii) The next model
we simulate is a preferential attachment model (PA model) in which
�ci,p(t + 1) / ci,p(t). (iii) In the third version of the model we
incrementally modify the PA model by adding a multiplicative ex-
ponential obsolescence factor (PA-LC model) imposing the inherent
life-cycle. We then compare model (i-iii) with the reputation model
(iv) given by Eq. 1.

Fig. 5 shows MC careers characteristic of each model. A qual-
itative assessment of each model’s performance is as follows. The
Poisson model (i) and the PA model (ii) fail to reproduce the char-
acteristic trajectories of real papers, since there is a clear first-mover
advantage [24] for the first papers published in the career; also the

extreme acceleration of Ci(t) in model (ii) does not appear to obey a
proper power-law growth.

Next we use quantitative patterns demonstrated for real careers
in Figs. 2–4, and demonstrated more extensively in the SI, as em-
pirical benchmarks to distinguish models (iii) and (iv). Comparing
models (iii) and (iv), we confirm that the reputation model (iv) satis-
fies the characteristics of the empirical benchmark in all 3 graphical
categories. We confirm for model (iv), but not for model (iii), that
there is a clear distinction when comparing the citation trajectories
h�c

0

(⌧p)i of different sets of ranked papers. Furthermore, we quan-
titatively confirm that C(t) ⇠ t

⇣ with 2 . ⇣ . 3. And for large t

we confirm that the rank-citation profile c(r, t) belongs to the class of
DGBD distributions. We provide more details about our MC models
and methods in the SI text.

Discussion
Social networks in science are characterized by heterogeneous struc-
ture [25] that provides opportunities for intellectual and social capital
investment at the individual level [26], and influence scientists’ re-
search strategies [21]. In this paper we analyze the role of reputation
on the micro-level processes underlying the dynamics of a scientist’s
research impact towards the broader goal to understand better career
growth and the increasingly difficult task of career evaluation [16].

Patterns of career growth are important for establishing (i) bench-
marks for career trajectory models, and (ii) a quantitative evaluation
framework that does not oversimplify or discount the complex so-
cial processes underlying scientific careers. Along these lines we
observe for top scientists a robust pattern of super-linear growth for
two cumulative reputation measures, Ni(t) and Ci(t), giving support
to amplifying social processes which sustain growth via coevolution
of scientific collaboration and output [6, 27, 28, 29]. In a scientific
system increasingly characterized by team endeavors, multiple levels
of hierarchy, and division of labor [30], it will be important to develop
both financial and prestige incentives that sustain lifetime productivity
for scientists at every level of the scientific enterprise.

As reputable teams start to dominate the scientific landscape, it
will further become important to disentangle the reputation effect as-
sociated with elite labs in order to assess individual contributions. To
this end, quantitative measures are becoming more prevalent in the
evaluation of projects, labs, and various hiring and promotion sce-
narios affecting individual careers in science. It is also increasingly
important to understand the relation between scientific inputs (money,
labor, knowledge, reputation, etc.) and scientific outputs [6, 15, 17],
the evolution of these dependencies across career stage, and the role
of career uncertainty [6]. Concerning careers, an institutional set-
ting based on quantitative appraisal that neglects these features may
paradoxically go against the goal of sustaining the careers of talented
and diligent young academics, especially considering the role that lab
and mentor reputation play in the hiring process. Indeed, our find-
ing of a crossover behavior around c

⇥

shows how young scientists
lacking reputation can be negatively affected by social stratification
in science, since there is a competitive advantage working with a pres-
tigious mentor which is countered with the possibility that it is not the
ideal mentor-advisee match. In light of the value of online visibility,
strategies of self-promotion may also emerge as scientists “game” the
system, which may be hard to disentangle from other dimensions of
science, such as the tendency for scientists to self-cite, possibly with
the intention of signaling reputation, when crossing disciplinary lines
[31]. Reputation will also become increasingly important in light of
the preferential treatment based on citation measures given to search
query results, e.g. Google Scholar, which may further strengthen the
reputation effect between paper and author.

Our framework motivates future research to inspire institutional
and funding body evaluation schemes to appropriately account for the
roles that reputation and social context play in science. For example,
our results can be used in support of the double-blind review system
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the approximation R(t) ⇡ Ri(t). We perform a multiple regression
to estimate the ⇡, ⌧ , and ⇢ values which parameterize the citation
model,

�ci,p(t + 1) ⌘ ⌘ ⇥⇧p(t)⇥Ap(⌧)⇥Ri(t) , [1]

with the additional multiplicative noise term ⌘.
To test for basic mechanistic differences between the citation dy-

namics of highly-cited papers and less-cited papers, we first analyze
the relation between �cp(t+1) and cp(t) (corresponding to the limit
⌧ ! 1 and ⇢ = 0). This analysis shown in Fig. S8 indicates that
papers with citations above a slow but substantial citation crossover
value c

⇥

obey a distinct scaling law that matches to sub-linear (though
nearly linear) preferential attachment model with ⇡ . 1. Based upon
the assessment of the growth dynamics elaborated in Figs. S8 and S9
we choose the crossover value c
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⌘ 40 [A/B], c
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⌘ 100 [C], and
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⌘ 20 [E]; the general results are not strongly dependent on rea-
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. We next analyze the reputation
effect by comparing the growth dynamics of papers with cp(⌧) � c
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). These two inequalities indicate that
papers are initially boosted by author reputation to ci,p ⇡ c
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, after
which the citation rate is sustained in large by paper reputation. This
constitutes one of our main results, finding that c

⇥

serves as a “tip-
ping point” for the strength of the reputation effect. For example, for
established physicists in [A] and [B] we calculate ⇢(c < 40) ⇡ 0.2,
⇢(c � 40) ⇡ 0, ⇡(c < 40) ⇡ 0.4, and ⇡(c � 40) ⇡ 1. Table
1 shows the ⇡i, ⌧i, and ⇢i estimates, above and below c

⇥

, for the
individual careers highlighted in Figs. 2 and 4. Mathematicians ex-
hibit relatively high life-cycle exponents ⌧i as compared to physicists
and biologists. However, the reputation effect ⇢i is less prominent
in mathematics, possibly related to features of small team sizes and
axiomatic discoveries which may decrease the role of reputation ef-
fects in conveying prestige signals. The estimated model values are
consistent when comparing between aggregated and individual career
datasets. Tables S10–S13 list the regression values aggregating over
all careers in each dataset, and Tables S14 – S22 list the values for all
450 scientists analyzed.

These findings show how reputation contributes to generate the
cumulative “rich-get-richer” processes predicted for scientific careers
[9], since it conveys unconditional citation boosts for new papers of
already established scientists. This feature is anecdotally consistent
with the common behavior of checking author names in the prelimi-
nary steps of evaluating the relevance of a newly-found paper.

Validation of the reputation model by simulating synthetic Monte
Carlo careers. We analyze four variants (i-iv) of a career growth
model using Monte Carlo (MC) evolution to simulate the dynam-
ics of �ci,p(t + 1) for each paper p in each time period t of the
career of synthetic author i. With each variant we introduce progres-
sively a new feature of paper citation trajectories. (i) We begin with
a basic Poisson null model for the unconditional citation dynamics,
�ci,p(t + 1) / Poisson(�) where � is the mean citation rate, inde-
pendent of ⌧p and other author-specific factors. (ii) The next model
we simulate is a preferential attachment model (PA model) in which
�ci,p(t + 1) / ci,p(t). (iii) In the third version of the model we
incrementally modify the PA model by adding a multiplicative ex-
ponential obsolescence factor (PA-LC model) imposing the inherent
life-cycle. We then compare model (i-iii) with the reputation model
(iv) given by Eq. 1.

Fig. 5 shows MC careers characteristic of each model. A qual-
itative assessment of each model’s performance is as follows. The
Poisson model (i) and the PA model (ii) fail to reproduce the char-
acteristic trajectories of real papers, since there is a clear first-mover
advantage [24] for the first papers published in the career; also the

extreme acceleration of Ci(t) in model (ii) does not appear to obey a
proper power-law growth.

Next we use quantitative patterns demonstrated for real careers
in Figs. 2–4, and demonstrated more extensively in the SI, as em-
pirical benchmarks to distinguish models (iii) and (iv). Comparing
models (iii) and (iv), we confirm that the reputation model (iv) satis-
fies the characteristics of the empirical benchmark in all 3 graphical
categories. We confirm for model (iv), but not for model (iii), that
there is a clear distinction when comparing the citation trajectories
h�c
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(⌧p)i of different sets of ranked papers. Furthermore, we quan-
titatively confirm that C(t) ⇠ t

⇣ with 2 . ⇣ . 3. And for large t

we confirm that the rank-citation profile c(r, t) belongs to the class of
DGBD distributions. We provide more details about our MC models
and methods in the SI text.

Discussion
Social networks in science are characterized by heterogeneous struc-
ture [25] that provides opportunities for intellectual and social capital
investment at the individual level [26], and influence scientists’ re-
search strategies [21]. In this paper we analyze the role of reputation
on the micro-level processes underlying the dynamics of a scientist’s
research impact towards the broader goal to understand better career
growth and the increasingly difficult task of career evaluation [16].

Patterns of career growth are important for establishing (i) bench-
marks for career trajectory models, and (ii) a quantitative evaluation
framework that does not oversimplify or discount the complex so-
cial processes underlying scientific careers. Along these lines we
observe for top scientists a robust pattern of super-linear growth for
two cumulative reputation measures, Ni(t) and Ci(t), giving support
to amplifying social processes which sustain growth via coevolution
of scientific collaboration and output [6, 27, 28, 29]. In a scientific
system increasingly characterized by team endeavors, multiple levels
of hierarchy, and division of labor [30], it will be important to develop
both financial and prestige incentives that sustain lifetime productivity
for scientists at every level of the scientific enterprise.

As reputable teams start to dominate the scientific landscape, it
will further become important to disentangle the reputation effect as-
sociated with elite labs in order to assess individual contributions. To
this end, quantitative measures are becoming more prevalent in the
evaluation of projects, labs, and various hiring and promotion sce-
narios affecting individual careers in science. It is also increasingly
important to understand the relation between scientific inputs (money,
labor, knowledge, reputation, etc.) and scientific outputs [6, 15, 17],
the evolution of these dependencies across career stage, and the role
of career uncertainty [6]. Concerning careers, an institutional set-
ting based on quantitative appraisal that neglects these features may
paradoxically go against the goal of sustaining the careers of talented
and diligent young academics, especially considering the role that lab
and mentor reputation play in the hiring process. Indeed, our find-
ing of a crossover behavior around c

⇥

shows how young scientists
lacking reputation can be negatively affected by social stratification
in science, since there is a competitive advantage working with a pres-
tigious mentor which is countered with the possibility that it is not the
ideal mentor-advisee match. In light of the value of online visibility,
strategies of self-promotion may also emerge as scientists “game” the
system, which may be hard to disentangle from other dimensions of
science, such as the tendency for scientists to self-cite, possibly with
the intention of signaling reputation, when crossing disciplinary lines
[31]. Reputation will also become increasingly important in light of
the preferential treatment based on citation measures given to search
query results, e.g. Google Scholar, which may further strengthen the
reputation effect between paper and author.

Our framework motivates future research to inspire institutional
and funding body evaluation schemes to appropriately account for the
roles that reputation and social context play in science. For example,
our results can be used in support of the double-blind review system
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the approximation R(t) ⇡ Ri(t). We perform a multiple regression
to estimate the ⇡, ⌧ , and ⇢ values which parameterize the citation
model,

�ci,p(t + 1) ⌘ ⌘ ⇥⇧p(t)⇥Ap(⌧)⇥Ri(t) , [1]

with the additional multiplicative noise term ⌘.
To test for basic mechanistic differences between the citation dy-

namics of highly-cited papers and less-cited papers, we first analyze
the relation between �cp(t+1) and cp(t) (corresponding to the limit
⌧ ! 1 and ⇢ = 0). This analysis shown in Fig. S8 indicates that
papers with citations above a slow but substantial citation crossover
value c

⇥

obey a distinct scaling law that matches to sub-linear (though
nearly linear) preferential attachment model with ⇡ . 1. Based upon
the assessment of the growth dynamics elaborated in Figs. S8 and S9
we choose the crossover value c

⇥

⌘ 40 [A/B], c

⇥

⌘ 100 [C], and
c

⇥

⌘ 20 [E]; the general results are not strongly dependent on rea-
sonable variations in our choice of c

⇥

. We next analyze the reputation
effect by comparing the growth dynamics of papers with cp(⌧) � c

⇥

versus papers with cp(⌧) < c

⇥

.
We observe a robust pattern of role switching by author- and

paper-specific effects, namely ⇢(c < c

⇥

) > ⇢(c � c

⇥

) and
⇡(c < c

⇥

) < ⇡(c � c

⇥

). These two inequalities indicate that
papers are initially boosted by author reputation to ci,p ⇡ c

⇥

, after
which the citation rate is sustained in large by paper reputation. This
constitutes one of our main results, finding that c

⇥

serves as a “tip-
ping point” for the strength of the reputation effect. For example, for
established physicists in [A] and [B] we calculate ⇢(c < 40) ⇡ 0.2,
⇢(c � 40) ⇡ 0, ⇡(c < 40) ⇡ 0.4, and ⇡(c � 40) ⇡ 1. Table
1 shows the ⇡i, ⌧i, and ⇢i estimates, above and below c

⇥

, for the
individual careers highlighted in Figs. 2 and 4. Mathematicians ex-
hibit relatively high life-cycle exponents ⌧i as compared to physicists
and biologists. However, the reputation effect ⇢i is less prominent
in mathematics, possibly related to features of small team sizes and
axiomatic discoveries which may decrease the role of reputation ef-
fects in conveying prestige signals. The estimated model values are
consistent when comparing between aggregated and individual career
datasets. Tables S10–S13 list the regression values aggregating over
all careers in each dataset, and Tables S14 – S22 list the values for all
450 scientists analyzed.

These findings show how reputation contributes to generate the
cumulative “rich-get-richer” processes predicted for scientific careers
[9], since it conveys unconditional citation boosts for new papers of
already established scientists. This feature is anecdotally consistent
with the common behavior of checking author names in the prelimi-
nary steps of evaluating the relevance of a newly-found paper.

Validation of the reputation model by simulating synthetic Monte
Carlo careers. We analyze four variants (i-iv) of a career growth
model using Monte Carlo (MC) evolution to simulate the dynam-
ics of �ci,p(t + 1) for each paper p in each time period t of the
career of synthetic author i. With each variant we introduce progres-
sively a new feature of paper citation trajectories. (i) We begin with
a basic Poisson null model for the unconditional citation dynamics,
�ci,p(t + 1) / Poisson(�) where � is the mean citation rate, inde-
pendent of ⌧p and other author-specific factors. (ii) The next model
we simulate is a preferential attachment model (PA model) in which
�ci,p(t + 1) / ci,p(t). (iii) In the third version of the model we
incrementally modify the PA model by adding a multiplicative ex-
ponential obsolescence factor (PA-LC model) imposing the inherent
life-cycle. We then compare model (i-iii) with the reputation model
(iv) given by Eq. 1.

Fig. 5 shows MC careers characteristic of each model. A qual-
itative assessment of each model’s performance is as follows. The
Poisson model (i) and the PA model (ii) fail to reproduce the char-
acteristic trajectories of real papers, since there is a clear first-mover
advantage [24] for the first papers published in the career; also the

extreme acceleration of Ci(t) in model (ii) does not appear to obey a
proper power-law growth.

Next we use quantitative patterns demonstrated for real careers
in Figs. 2–4, and demonstrated more extensively in the SI, as em-
pirical benchmarks to distinguish models (iii) and (iv). Comparing
models (iii) and (iv), we confirm that the reputation model (iv) satis-
fies the characteristics of the empirical benchmark in all 3 graphical
categories. We confirm for model (iv), but not for model (iii), that
there is a clear distinction when comparing the citation trajectories
h�c

0

(⌧p)i of different sets of ranked papers. Furthermore, we quan-
titatively confirm that C(t) ⇠ t

⇣ with 2 . ⇣ . 3. And for large t

we confirm that the rank-citation profile c(r, t) belongs to the class of
DGBD distributions. We provide more details about our MC models
and methods in the SI text.

Discussion
Social networks in science are characterized by heterogeneous struc-
ture [25] that provides opportunities for intellectual and social capital
investment at the individual level [26], and influence scientists’ re-
search strategies [21]. In this paper we analyze the role of reputation
on the micro-level processes underlying the dynamics of a scientist’s
research impact towards the broader goal to understand better career
growth and the increasingly difficult task of career evaluation [16].

Patterns of career growth are important for establishing (i) bench-
marks for career trajectory models, and (ii) a quantitative evaluation
framework that does not oversimplify or discount the complex so-
cial processes underlying scientific careers. Along these lines we
observe for top scientists a robust pattern of super-linear growth for
two cumulative reputation measures, Ni(t) and Ci(t), giving support
to amplifying social processes which sustain growth via coevolution
of scientific collaboration and output [6, 27, 28, 29]. In a scientific
system increasingly characterized by team endeavors, multiple levels
of hierarchy, and division of labor [30], it will be important to develop
both financial and prestige incentives that sustain lifetime productivity
for scientists at every level of the scientific enterprise.

As reputable teams start to dominate the scientific landscape, it
will further become important to disentangle the reputation effect as-
sociated with elite labs in order to assess individual contributions. To
this end, quantitative measures are becoming more prevalent in the
evaluation of projects, labs, and various hiring and promotion sce-
narios affecting individual careers in science. It is also increasingly
important to understand the relation between scientific inputs (money,
labor, knowledge, reputation, etc.) and scientific outputs [6, 15, 17],
the evolution of these dependencies across career stage, and the role
of career uncertainty [6]. Concerning careers, an institutional set-
ting based on quantitative appraisal that neglects these features may
paradoxically go against the goal of sustaining the careers of talented
and diligent young academics, especially considering the role that lab
and mentor reputation play in the hiring process. Indeed, our find-
ing of a crossover behavior around c

⇥

shows how young scientists
lacking reputation can be negatively affected by social stratification
in science, since there is a competitive advantage working with a pres-
tigious mentor which is countered with the possibility that it is not the
ideal mentor-advisee match. In light of the value of online visibility,
strategies of self-promotion may also emerge as scientists “game” the
system, which may be hard to disentangle from other dimensions of
science, such as the tendency for scientists to self-cite, possibly with
the intention of signaling reputation, when crossing disciplinary lines
[31]. Reputation will also become increasingly important in light of
the preferential treatment based on citation measures given to search
query results, e.g. Google Scholar, which may further strengthen the
reputation effect between paper and author.

Our framework motivates future research to inspire institutional
and funding body evaluation schemes to appropriately account for the
roles that reputation and social context play in science. For example,
our results can be used in support of the double-blind review system
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the approximation R(t) ⇡ Ri(t). We perform a multiple regression
to estimate the ⇡, ⌧ , and ⇢ values which parameterize the citation
model,

�ci,p(t + 1) ⌘ ⌘ ⇥⇧p(t)⇥Ap(⌧)⇥Ri(t) , [1]

with the additional multiplicative noise term ⌘.
To test for basic mechanistic differences between the citation dy-

namics of highly-cited papers and less-cited papers, we first analyze
the relation between �cp(t+1) and cp(t) (corresponding to the limit
⌧ ! 1 and ⇢ = 0). This analysis shown in Fig. S8 indicates that
papers with citations above a slow but substantial citation crossover
value c

⇥

obey a distinct scaling law that matches to sub-linear (though
nearly linear) preferential attachment model with ⇡ . 1. Based upon
the assessment of the growth dynamics elaborated in Figs. S8 and S9
we choose the crossover value c

⇥

⌘ 40 [A/B], c

⇥

⌘ 100 [C], and
c

⇥

⌘ 20 [E]; the general results are not strongly dependent on rea-
sonable variations in our choice of c

⇥

. We next analyze the reputation
effect by comparing the growth dynamics of papers with cp(⌧) � c

⇥

versus papers with cp(⌧) < c

⇥

.
We observe a robust pattern of role switching by author- and

paper-specific effects, namely ⇢(c < c

⇥

) > ⇢(c � c

⇥

) and
⇡(c < c

⇥

) < ⇡(c � c

⇥

). These two inequalities indicate that
papers are initially boosted by author reputation to ci,p ⇡ c

⇥

, after
which the citation rate is sustained in large by paper reputation. This
constitutes one of our main results, finding that c

⇥

serves as a “tip-
ping point” for the strength of the reputation effect. For example, for
established physicists in [A] and [B] we calculate ⇢(c < 40) ⇡ 0.2,
⇢(c � 40) ⇡ 0, ⇡(c < 40) ⇡ 0.4, and ⇡(c � 40) ⇡ 1. Table
1 shows the ⇡i, ⌧i, and ⇢i estimates, above and below c

⇥

, for the
individual careers highlighted in Figs. 2 and 4. Mathematicians ex-
hibit relatively high life-cycle exponents ⌧i as compared to physicists
and biologists. However, the reputation effect ⇢i is less prominent
in mathematics, possibly related to features of small team sizes and
axiomatic discoveries which may decrease the role of reputation ef-
fects in conveying prestige signals. The estimated model values are
consistent when comparing between aggregated and individual career
datasets. Tables S10–S13 list the regression values aggregating over
all careers in each dataset, and Tables S14 – S22 list the values for all
450 scientists analyzed.

These findings show how reputation contributes to generate the
cumulative “rich-get-richer” processes predicted for scientific careers
[9], since it conveys unconditional citation boosts for new papers of
already established scientists. This feature is anecdotally consistent
with the common behavior of checking author names in the prelimi-
nary steps of evaluating the relevance of a newly-found paper.

Validation of the reputation model by simulating synthetic Monte
Carlo careers. We analyze four variants (i-iv) of a career growth
model using Monte Carlo (MC) evolution to simulate the dynam-
ics of �ci,p(t + 1) for each paper p in each time period t of the
career of synthetic author i. With each variant we introduce progres-
sively a new feature of paper citation trajectories. (i) We begin with
a basic Poisson null model for the unconditional citation dynamics,
�ci,p(t + 1) / Poisson(�) where � is the mean citation rate, inde-
pendent of ⌧p and other author-specific factors. (ii) The next model
we simulate is a preferential attachment model (PA model) in which
�ci,p(t + 1) / ci,p(t). (iii) In the third version of the model we
incrementally modify the PA model by adding a multiplicative ex-
ponential obsolescence factor (PA-LC model) imposing the inherent
life-cycle. We then compare model (i-iii) with the reputation model
(iv) given by Eq. 1.

Fig. 5 shows MC careers characteristic of each model. A qual-
itative assessment of each model’s performance is as follows. The
Poisson model (i) and the PA model (ii) fail to reproduce the char-
acteristic trajectories of real papers, since there is a clear first-mover
advantage [24] for the first papers published in the career; also the

extreme acceleration of Ci(t) in model (ii) does not appear to obey a
proper power-law growth.

Next we use quantitative patterns demonstrated for real careers
in Figs. 2–4, and demonstrated more extensively in the SI, as em-
pirical benchmarks to distinguish models (iii) and (iv). Comparing
models (iii) and (iv), we confirm that the reputation model (iv) satis-
fies the characteristics of the empirical benchmark in all 3 graphical
categories. We confirm for model (iv), but not for model (iii), that
there is a clear distinction when comparing the citation trajectories
h�c

0

(⌧p)i of different sets of ranked papers. Furthermore, we quan-
titatively confirm that C(t) ⇠ t

⇣ with 2 . ⇣ . 3. And for large t

we confirm that the rank-citation profile c(r, t) belongs to the class of
DGBD distributions. We provide more details about our MC models
and methods in the SI text.

Discussion
Social networks in science are characterized by heterogeneous struc-
ture [25] that provides opportunities for intellectual and social capital
investment at the individual level [26], and influence scientists’ re-
search strategies [21]. In this paper we analyze the role of reputation
on the micro-level processes underlying the dynamics of a scientist’s
research impact towards the broader goal to understand better career
growth and the increasingly difficult task of career evaluation [16].

Patterns of career growth are important for establishing (i) bench-
marks for career trajectory models, and (ii) a quantitative evaluation
framework that does not oversimplify or discount the complex so-
cial processes underlying scientific careers. Along these lines we
observe for top scientists a robust pattern of super-linear growth for
two cumulative reputation measures, Ni(t) and Ci(t), giving support
to amplifying social processes which sustain growth via coevolution
of scientific collaboration and output [6, 27, 28, 29]. In a scientific
system increasingly characterized by team endeavors, multiple levels
of hierarchy, and division of labor [30], it will be important to develop
both financial and prestige incentives that sustain lifetime productivity
for scientists at every level of the scientific enterprise.

As reputable teams start to dominate the scientific landscape, it
will further become important to disentangle the reputation effect as-
sociated with elite labs in order to assess individual contributions. To
this end, quantitative measures are becoming more prevalent in the
evaluation of projects, labs, and various hiring and promotion sce-
narios affecting individual careers in science. It is also increasingly
important to understand the relation between scientific inputs (money,
labor, knowledge, reputation, etc.) and scientific outputs [6, 15, 17],
the evolution of these dependencies across career stage, and the role
of career uncertainty [6]. Concerning careers, an institutional set-
ting based on quantitative appraisal that neglects these features may
paradoxically go against the goal of sustaining the careers of talented
and diligent young academics, especially considering the role that lab
and mentor reputation play in the hiring process. Indeed, our find-
ing of a crossover behavior around c

⇥

shows how young scientists
lacking reputation can be negatively affected by social stratification
in science, since there is a competitive advantage working with a pres-
tigious mentor which is countered with the possibility that it is not the
ideal mentor-advisee match. In light of the value of online visibility,
strategies of self-promotion may also emerge as scientists “game” the
system, which may be hard to disentangle from other dimensions of
science, such as the tendency for scientists to self-cite, possibly with
the intention of signaling reputation, when crossing disciplinary lines
[31]. Reputation will also become increasingly important in light of
the preferential treatment based on citation measures given to search
query results, e.g. Google Scholar, which may further strengthen the
reputation effect between paper and author.

Our framework motivates future research to inspire institutional
and funding body evaluation schemes to appropriately account for the
roles that reputation and social context play in science. For example,
our results can be used in support of the double-blind review system
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the approximation R(t) ⇡ Ri(t). We perform a multiple regression
to estimate the ⇡, ⌧ , and ⇢ values which parameterize the citation
model,

�ci,p(t + 1) ⌘ ⌘ ⇥⇧p(t)⇥Ap(⌧)⇥Ri(t) , [1]

with the additional multiplicative noise term ⌘.
To test for basic mechanistic differences between the citation dy-

namics of highly-cited papers and less-cited papers, we first analyze
the relation between �cp(t+1) and cp(t) (corresponding to the limit
⌧ ! 1 and ⇢ = 0). This analysis shown in Fig. S8 indicates that
papers with citations above a slow but substantial citation crossover
value c

⇥

obey a distinct scaling law that matches to sub-linear (though
nearly linear) preferential attachment model with ⇡ . 1. Based upon
the assessment of the growth dynamics elaborated in Figs. S8 and S9
we choose the crossover value c

⇥

⌘ 40 [A/B], c

⇥

⌘ 100 [C], and
c

⇥

⌘ 20 [E]; the general results are not strongly dependent on rea-
sonable variations in our choice of c

⇥

. We next analyze the reputation
effect by comparing the growth dynamics of papers with cp(⌧) � c

⇥

versus papers with cp(⌧) < c

⇥

.
We observe a robust pattern of role switching by author- and

paper-specific effects, namely ⇢(c < c

⇥

) > ⇢(c � c

⇥

) and
⇡(c < c

⇥

) < ⇡(c � c

⇥

). These two inequalities indicate that
papers are initially boosted by author reputation to ci,p ⇡ c

⇥

, after
which the citation rate is sustained in large by paper reputation. This
constitutes one of our main results, finding that c

⇥

serves as a “tip-
ping point” for the strength of the reputation effect. For example, for
established physicists in [A] and [B] we calculate ⇢(c < 40) ⇡ 0.2,
⇢(c � 40) ⇡ 0, ⇡(c < 40) ⇡ 0.4, and ⇡(c � 40) ⇡ 1. Table
1 shows the ⇡i, ⌧i, and ⇢i estimates, above and below c

⇥

, for the
individual careers highlighted in Figs. 2 and 4. Mathematicians ex-
hibit relatively high life-cycle exponents ⌧i as compared to physicists
and biologists. However, the reputation effect ⇢i is less prominent
in mathematics, possibly related to features of small team sizes and
axiomatic discoveries which may decrease the role of reputation ef-
fects in conveying prestige signals. The estimated model values are
consistent when comparing between aggregated and individual career
datasets. Tables S10–S13 list the regression values aggregating over
all careers in each dataset, and Tables S14 – S22 list the values for all
450 scientists analyzed.

These findings show how reputation contributes to generate the
cumulative “rich-get-richer” processes predicted for scientific careers
[9], since it conveys unconditional citation boosts for new papers of
already established scientists. This feature is anecdotally consistent
with the common behavior of checking author names in the prelimi-
nary steps of evaluating the relevance of a newly-found paper.

Validation of the reputation model by simulating synthetic Monte
Carlo careers. We analyze four variants (i-iv) of a career growth
model using Monte Carlo (MC) evolution to simulate the dynam-
ics of �ci,p(t + 1) for each paper p in each time period t of the
career of synthetic author i. With each variant we introduce progres-
sively a new feature of paper citation trajectories. (i) We begin with
a basic Poisson null model for the unconditional citation dynamics,
�ci,p(t + 1) / Poisson(�) where � is the mean citation rate, inde-
pendent of ⌧p and other author-specific factors. (ii) The next model
we simulate is a preferential attachment model (PA model) in which
�ci,p(t + 1) / ci,p(t). (iii) In the third version of the model we
incrementally modify the PA model by adding a multiplicative ex-
ponential obsolescence factor (PA-LC model) imposing the inherent
life-cycle. We then compare model (i-iii) with the reputation model
(iv) given by Eq. 1.

Fig. 5 shows MC careers characteristic of each model. A qual-
itative assessment of each model’s performance is as follows. The
Poisson model (i) and the PA model (ii) fail to reproduce the char-
acteristic trajectories of real papers, since there is a clear first-mover
advantage [24] for the first papers published in the career; also the

extreme acceleration of Ci(t) in model (ii) does not appear to obey a
proper power-law growth.

Next we use quantitative patterns demonstrated for real careers
in Figs. 2–4, and demonstrated more extensively in the SI, as em-
pirical benchmarks to distinguish models (iii) and (iv). Comparing
models (iii) and (iv), we confirm that the reputation model (iv) satis-
fies the characteristics of the empirical benchmark in all 3 graphical
categories. We confirm for model (iv), but not for model (iii), that
there is a clear distinction when comparing the citation trajectories
h�c

0

(⌧p)i of different sets of ranked papers. Furthermore, we quan-
titatively confirm that C(t) ⇠ t

⇣ with 2 . ⇣ . 3. And for large t

we confirm that the rank-citation profile c(r, t) belongs to the class of
DGBD distributions. We provide more details about our MC models
and methods in the SI text.

Discussion
Social networks in science are characterized by heterogeneous struc-
ture [25] that provides opportunities for intellectual and social capital
investment at the individual level [26], and influence scientists’ re-
search strategies [21]. In this paper we analyze the role of reputation
on the micro-level processes underlying the dynamics of a scientist’s
research impact towards the broader goal to understand better career
growth and the increasingly difficult task of career evaluation [16].

Patterns of career growth are important for establishing (i) bench-
marks for career trajectory models, and (ii) a quantitative evaluation
framework that does not oversimplify or discount the complex so-
cial processes underlying scientific careers. Along these lines we
observe for top scientists a robust pattern of super-linear growth for
two cumulative reputation measures, Ni(t) and Ci(t), giving support
to amplifying social processes which sustain growth via coevolution
of scientific collaboration and output [6, 27, 28, 29]. In a scientific
system increasingly characterized by team endeavors, multiple levels
of hierarchy, and division of labor [30], it will be important to develop
both financial and prestige incentives that sustain lifetime productivity
for scientists at every level of the scientific enterprise.

As reputable teams start to dominate the scientific landscape, it
will further become important to disentangle the reputation effect as-
sociated with elite labs in order to assess individual contributions. To
this end, quantitative measures are becoming more prevalent in the
evaluation of projects, labs, and various hiring and promotion sce-
narios affecting individual careers in science. It is also increasingly
important to understand the relation between scientific inputs (money,
labor, knowledge, reputation, etc.) and scientific outputs [6, 15, 17],
the evolution of these dependencies across career stage, and the role
of career uncertainty [6]. Concerning careers, an institutional set-
ting based on quantitative appraisal that neglects these features may
paradoxically go against the goal of sustaining the careers of talented
and diligent young academics, especially considering the role that lab
and mentor reputation play in the hiring process. Indeed, our find-
ing of a crossover behavior around c

⇥

shows how young scientists
lacking reputation can be negatively affected by social stratification
in science, since there is a competitive advantage working with a pres-
tigious mentor which is countered with the possibility that it is not the
ideal mentor-advisee match. In light of the value of online visibility,
strategies of self-promotion may also emerge as scientists “game” the
system, which may be hard to disentangle from other dimensions of
science, such as the tendency for scientists to self-cite, possibly with
the intention of signaling reputation, when crossing disciplinary lines
[31]. Reputation will also become increasingly important in light of
the preferential treatment based on citation measures given to search
query results, e.g. Google Scholar, which may further strengthen the
reputation effect between paper and author.

Our framework motivates future research to inspire institutional
and funding body evaluation schemes to appropriately account for the
roles that reputation and social context play in science. For example,
our results can be used in support of the double-blind review system
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Citation boosts attributable to author reputation 5

TABLE I: Best-fit parameters for individual careers and the average values within disciplinary datasets. The three features of the citation model
are parameterized by �, the paper citation effect, ⇤ , the life-cycle effect, and ⇥, the reputation effect.

c(t� 1) < c� c(t� 1) ⇤ c�
Name �i ⇤ i ⇥i �i ⇤ i ⇥i

GOSSARD, AC 0.34± 0.027 4.92± 0.261 0.25± 0.008 0.80± 0.048 4.73± 0.184 0.09± 0.024

BARABÁSI, AL 0.42± 0.036 3.00± 0.155 0.29± 0.010 1.06± 0.016 3.65± 0.111 0.01± 0.011
Ave. ± Std. Dev. [A] 0.43± 0.14 5.67± 2.52 0.22± 0.06 0.96± 0.19 8.93± 4.09 �0.07± 0.11

BALTIMORE, D 0.32± 0.018 4.64± 0.148 0.28± 0.006 0.62± 0.047 5.92± 0.250 0.15± 0.026
LAEMMLI, UK 0.54± 0.036 5.09± 0.297 0.21± 0.014 1.09± 0.025 6.40± 0.255 �0.12± 0.019
Ave. ± Std. Dev. [D] 0.40± 0.14 6.64± 6.24 0.26± 0.05 0.99± 0.22 9.55± 26.30 �0.06± 0.14

SERRE, JP 0.33± 0.095 15.90± 3.724 0.14± 0.026 0.66± 0.065 20.50± 3.862 �0.03± 0.039
WILES, A 0.56± 0.208 5.23± 1.187 0.24± 0.052 0.70± 0.059 9.04± 0.633 0.10± 0.042
Ave. ± Std. Dev. [E] 0.27± 0.17 30.60± 56.80 0.14± 0.07 0.54± 0.25 21.40± 54.30 0.01± 0.11

scaling law that matches to sub-linear (though nearly linear)
preferential attachment model with ⇤ � 1. Based upon the as-
sessment of the growth dynamics elaborated in Figs. S8 and
S9 we choose the crossover value c� � 40 [A/B], c� � 100
[C], and c� � 20 [E]; the general results are not strongly de-
pendent on reasonable variations in our choice of c�. We next
analyze the reputation effect by comparing the growth dynam-
ics of papers with cp(⇧) ⇥ c� versus papers with cp(⇧) < c�.

We observe a robust pattern of role switching by author-
and paper-specific effects, namely ⌅(c < c�) > ⌅(c ⇥ c�)
and ⇤(c < c�) < ⇤(c ⇥ c�). These two inequalities indi-
cate that papers are initially boosted by author reputation to
ci,p ⌅ c�, after which the citation rate is sustained in large
by paper reputation. This constitutes one of our main results,
finding that c� serves as a “tipping point” for the strength of
the reputation effect. For example, for established physicists
in [A] and [B] we calculate ⌅(c < 40) ⌅ 0.2, ⌅(c ⇥ 40) ⌅ 0,
⇤(c < 40) ⌅ 0.4, and ⇤(c ⇥ 40) ⌅ 1. Table I shows the
⇤i, ⇧i, and ⌅i estimates, above and below c�, for the indi-
vidual careers highlighted in Figs. 2 and 4. Mathematicians
exhibit relatively high life-cycle exponents ⇧i as compared to
physicists and biologists. However, the reputation effect ⌅i

is less prominent in mathematics, possibly related to features
of small team sizes and axiomatic discoveries which may de-
crease the role of reputation effects in conveying prestige sig-
nals. The estimated model values are consistent when com-
paring between aggregated and individual career datasets. Ta-
bles S10–S13 list the regression values aggregating over all
careers in each dataset, and Tables S14 – S22 list the values
for all 450 scientists analyzed.

These findings show how reputation contributes to generate
the cumulative “rich-get-richer” processes predicted for scien-
tific careers [9], since it conveys unconditional citation boosts
for new papers of already established scientists. This feature
is anecdotally consistent with the common behavior of check-
ing author names in the preliminary steps of evaluating the
relevance of a newly-found paper.

E. Validation of the reputation model by simulating synthetic
Monte Carlo careers

We analyze four variants (i-iv) of a career growth model
using Monte Carlo (MC) evolution to simulate the dynamics
of �ci,p(t+1) for each paper p in each time period t of the ca-
reer of synthetic author i. With each variant we introduce pro-
gressively a new feature of paper citation trajectories. (i) We
begin with a basic Poisson null model for the unconditional
citation dynamics, �ci,p(t+1) ⇧ Poisson(⇥) where ⇥ is the
mean citation rate, independent of ⇧p and other author-specific
factors. (ii) The next model we simulate is a preferential at-
tachment model (PA model) in which �ci,p(t + 1) ⇧ ci,p(t).
(iii) In the third version of the model we incrementally modify
the PA model by adding a multiplicative exponential obsoles-
cence factor (PA-LC model) imposing the inherent life-cycle.
We then compare model (i-iii) with the reputation model (iv)
given by Eq. 1.

Fig. 5 shows MC careers characteristic of each model. A
qualitative assessment of each model’s performance is as fol-
lows. The Poisson model (i) and the PA model (ii) fail to
reproduce the characteristic trajectories of real papers, since
there is a clear first-mover advantage [24] for the first pa-
pers published in the career; also the extreme acceleration of
Ci(t) in model (ii) does not appear to obey a proper power-law
growth.

Next we use quantitative patterns demonstrated for real ca-
reers in Figs. 2–4, and demonstrated more extensively in the
SI, as empirical benchmarks to distinguish models (iii) and
(iv). Comparing models (iii) and (iv), we confirm that the
reputation model (iv) satisfies the characteristics of the empir-
ical benchmark in all 3 graphical categories. We confirm for
model (iv), but not for model (iii), that there is a clear distinc-
tion when comparing the citation trajectories ⌃�c⇥(⇧p)⌥ of dif-
ferent sets of ranked papers. Furthermore, we quantitatively
confirm that C(t) ⇤ t� with 2 � � � 3. And for large t
we confirm that the rank-citation profile c(r, t) belongs to the
class of DGBD distributions. We provide more details about
our MC models and methods in the SI text.
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to estimate the ⇡, ⌧ , and ⇢ values which parameterize the citation
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, for the
individual careers highlighted in Figs. 2 and 4. Mathematicians ex-
hibit relatively high life-cycle exponents ⌧i as compared to physicists
and biologists. However, the reputation effect ⇢i is less prominent
in mathematics, possibly related to features of small team sizes and
axiomatic discoveries which may decrease the role of reputation ef-
fects in conveying prestige signals. The estimated model values are
consistent when comparing between aggregated and individual career
datasets. Tables S10–S13 list the regression values aggregating over
all careers in each dataset, and Tables S14 – S22 list the values for all
450 scientists analyzed.

These findings show how reputation contributes to generate the
cumulative “rich-get-richer” processes predicted for scientific careers
[9], since it conveys unconditional citation boosts for new papers of
already established scientists. This feature is anecdotally consistent
with the common behavior of checking author names in the prelimi-
nary steps of evaluating the relevance of a newly-found paper.
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Carlo careers. We analyze four variants (i-iv) of a career growth
model using Monte Carlo (MC) evolution to simulate the dynam-
ics of �ci,p(t + 1) for each paper p in each time period t of the
career of synthetic author i. With each variant we introduce progres-
sively a new feature of paper citation trajectories. (i) We begin with
a basic Poisson null model for the unconditional citation dynamics,
�ci,p(t + 1) / Poisson(�) where � is the mean citation rate, inde-
pendent of ⌧p and other author-specific factors. (ii) The next model
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�ci,p(t + 1) / ci,p(t). (iii) In the third version of the model we
incrementally modify the PA model by adding a multiplicative ex-
ponential obsolescence factor (PA-LC model) imposing the inherent
life-cycle. We then compare model (i-iii) with the reputation model
(iv) given by Eq. 1.

Fig. 5 shows MC careers characteristic of each model. A qual-
itative assessment of each model’s performance is as follows. The
Poisson model (i) and the PA model (ii) fail to reproduce the char-
acteristic trajectories of real papers, since there is a clear first-mover
advantage [24] for the first papers published in the career; also the

extreme acceleration of Ci(t) in model (ii) does not appear to obey a
proper power-law growth.

Next we use quantitative patterns demonstrated for real careers
in Figs. 2–4, and demonstrated more extensively in the SI, as em-
pirical benchmarks to distinguish models (iii) and (iv). Comparing
models (iii) and (iv), we confirm that the reputation model (iv) satis-
fies the characteristics of the empirical benchmark in all 3 graphical
categories. We confirm for model (iv), but not for model (iii), that
there is a clear distinction when comparing the citation trajectories
h�c

0

(⌧p)i of different sets of ranked papers. Furthermore, we quan-
titatively confirm that C(t) ⇠ t

⇣ with 2 . ⇣ . 3. And for large t

we confirm that the rank-citation profile c(r, t) belongs to the class of
DGBD distributions. We provide more details about our MC models
and methods in the SI text.

Discussion
Social networks in science are characterized by heterogeneous struc-
ture [25] that provides opportunities for intellectual and social capital
investment at the individual level [26], and influence scientists’ re-
search strategies [21]. In this paper we analyze the role of reputation
on the micro-level processes underlying the dynamics of a scientist’s
research impact towards the broader goal to understand better career
growth and the increasingly difficult task of career evaluation [16].

Patterns of career growth are important for establishing (i) bench-
marks for career trajectory models, and (ii) a quantitative evaluation
framework that does not oversimplify or discount the complex so-
cial processes underlying scientific careers. Along these lines we
observe for top scientists a robust pattern of super-linear growth for
two cumulative reputation measures, Ni(t) and Ci(t), giving support
to amplifying social processes which sustain growth via coevolution
of scientific collaboration and output [6, 27, 28, 29]. In a scientific
system increasingly characterized by team endeavors, multiple levels
of hierarchy, and division of labor [30], it will be important to develop
both financial and prestige incentives that sustain lifetime productivity
for scientists at every level of the scientific enterprise.

As reputable teams start to dominate the scientific landscape, it
will further become important to disentangle the reputation effect as-
sociated with elite labs in order to assess individual contributions. To
this end, quantitative measures are becoming more prevalent in the
evaluation of projects, labs, and various hiring and promotion sce-
narios affecting individual careers in science. It is also increasingly
important to understand the relation between scientific inputs (money,
labor, knowledge, reputation, etc.) and scientific outputs [6, 15, 17],
the evolution of these dependencies across career stage, and the role
of career uncertainty [6]. Concerning careers, an institutional set-
ting based on quantitative appraisal that neglects these features may
paradoxically go against the goal of sustaining the careers of talented
and diligent young academics, especially considering the role that lab
and mentor reputation play in the hiring process. Indeed, our find-
ing of a crossover behavior around c

⇥

shows how young scientists
lacking reputation can be negatively affected by social stratification
in science, since there is a competitive advantage working with a pres-
tigious mentor which is countered with the possibility that it is not the
ideal mentor-advisee match. In light of the value of online visibility,
strategies of self-promotion may also emerge as scientists “game” the
system, which may be hard to disentangle from other dimensions of
science, such as the tendency for scientists to self-cite, possibly with
the intention of signaling reputation, when crossing disciplinary lines
[31]. Reputation will also become increasingly important in light of
the preferential treatment based on citation measures given to search
query results, e.g. Google Scholar, which may further strengthen the
reputation effect between paper and author.

Our framework motivates future research to inspire institutional
and funding body evaluation schemes to appropriately account for the
roles that reputation and social context play in science. For example,
our results can be used in support of the double-blind review system
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life-cycle. We then compare model (i-iii) with the reputation model
(iv) given by Eq. 1.

Fig. 5 shows MC careers characteristic of each model. A qual-
itative assessment of each model’s performance is as follows. The
Poisson model (i) and the PA model (ii) fail to reproduce the char-
acteristic trajectories of real papers, since there is a clear first-mover
advantage [24] for the first papers published in the career; also the
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ture [25] that provides opportunities for intellectual and social capital
investment at the individual level [26], and influence scientists’ re-
search strategies [21]. In this paper we analyze the role of reputation
on the micro-level processes underlying the dynamics of a scientist’s
research impact towards the broader goal to understand better career
growth and the increasingly difficult task of career evaluation [16].
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marks for career trajectory models, and (ii) a quantitative evaluation
framework that does not oversimplify or discount the complex so-
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observe for top scientists a robust pattern of super-linear growth for
two cumulative reputation measures, Ni(t) and Ci(t), giving support
to amplifying social processes which sustain growth via coevolution
of scientific collaboration and output [6, 27, 28, 29]. In a scientific
system increasingly characterized by team endeavors, multiple levels
of hierarchy, and division of labor [30], it will be important to develop
both financial and prestige incentives that sustain lifetime productivity
for scientists at every level of the scientific enterprise.

As reputable teams start to dominate the scientific landscape, it
will further become important to disentangle the reputation effect as-
sociated with elite labs in order to assess individual contributions. To
this end, quantitative measures are becoming more prevalent in the
evaluation of projects, labs, and various hiring and promotion sce-
narios affecting individual careers in science. It is also increasingly
important to understand the relation between scientific inputs (money,
labor, knowledge, reputation, etc.) and scientific outputs [6, 15, 17],
the evolution of these dependencies across career stage, and the role
of career uncertainty [6]. Concerning careers, an institutional set-
ting based on quantitative appraisal that neglects these features may
paradoxically go against the goal of sustaining the careers of talented
and diligent young academics, especially considering the role that lab
and mentor reputation play in the hiring process. Indeed, our find-
ing of a crossover behavior around c
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shows how young scientists
lacking reputation can be negatively affected by social stratification
in science, since there is a competitive advantage working with a pres-
tigious mentor which is countered with the possibility that it is not the
ideal mentor-advisee match. In light of the value of online visibility,
strategies of self-promotion may also emerge as scientists “game” the
system, which may be hard to disentangle from other dimensions of
science, such as the tendency for scientists to self-cite, possibly with
the intention of signaling reputation, when crossing disciplinary lines
[31]. Reputation will also become increasingly important in light of
the preferential treatment based on citation measures given to search
query results, e.g. Google Scholar, which may further strengthen the
reputation effect between paper and author.

Our framework motivates future research to inspire institutional
and funding body evaluation schemes to appropriately account for the
roles that reputation and social context play in science. For example,
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Benchmark patterns of microscopic career growth dynamics
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paper, unless otherwise noted, we use T
i

= Min[30, l
i

] in order to restrict our analysis on the

“growth period” of the academic career.

Fig. 3(B) shows the characteristic production trajectory obtained by averaging together the

A individual trajectories ˜N
i

(t) belonging to each dataset, h ˜N(t)i ⌘ A�1
P

A

i=1 Ni

(t)/hn
i

i, We

rescale the characteristic trajectory by h ˜N(1)i,

hN 0
(t)i = h ˜N(t)i/h ˜N(1)i ⇠ t↵ (S1)

resulting in arbitrary ordinate units but a common starting point at (1, 1), which make it easier to

visually compare the scaling exponents ↵ across datasets in Fig. 3. We calculate ↵ using OLS

regression of lnhN 0
(t)i versus ln t over the range t 2 [1, 30]. We perform analogous OLS regres-

sion of individual N
i

(t) over the range t 2 [3, T
i

] to calculate individual ↵
i

(see Tables S1-S9).

These empirical facts demonstrate that accelerated career growth ↵
i

> 1 is a characteristic prop-

erty of the top cohort, consistent with increasing returns arising from knowledge and production

spillovers.

B. Longitudinal citation dynamics

The scientific impact of a paper p is universally measured by the cumulative number of citations

c
p

(⌧) =

tp,0+⌧�1X

x=tp,0

�c
p

(x) , (S2)

where we define �c
p

(t) as the number of citations received by the paper in career year t, with

the definition for paper age ⌧ = t � t
p,0 + 1 which defines the relation between the paper age ⌧ ,

the career age t, and the first year the paper was cited, t
p,0. Without loss of generality, the paper

index p can be replaced by a rank-ordered index r. Hence, the total number of citations to the

papers coauthored by individual i is calculated by integrating the rank-ordered citation distribution

c
i

(r, t),

C
i

(t) =

Ni(t)X

r=1

c
i

(r, t) . (S3)

Figures 4 and S1–S3 illustrate longitudinal citation profiles for 33 scientists, showing the citation

trajectories for their top papers as well as C
i

(t).

5

paper, unless otherwise noted, we use T
i

= Min[30, l
i

] in order to restrict our analysis on the

“growth period” of the academic career.

Fig. 3(B) shows the characteristic production trajectory obtained by averaging together the

A individual trajectories ˜N
i

(t) belonging to each dataset, h ˜N(t)i ⌘ A�1
P

A

i=1 Ni

(t)/hn
i

i, We

rescale the characteristic trajectory by h ˜N(1)i,

hN 0
(t)i = h ˜N(t)i/h ˜N(1)i ⇠ t↵ (S1)

resulting in arbitrary ordinate units but a common starting point at (1, 1), which make it easier to

visually compare the scaling exponents ↵ across datasets in Fig. 3. We calculate ↵ using OLS

regression of lnhN 0
(t)i versus ln t over the range t 2 [1, 30]. We perform analogous OLS regres-

sion of individual N
i

(t) over the range t 2 [3, T
i

] to calculate individual ↵
i

(see Tables S1-S9).

These empirical facts demonstrate that accelerated career growth ↵
i

> 1 is a characteristic prop-

erty of the top cohort, consistent with increasing returns arising from knowledge and production

spillovers.

B. Longitudinal citation dynamics

The scientific impact of a paper p is universally measured by the cumulative number of citations

c
p

(⌧) =

tp,0+⌧�1X

x=tp,0

�c
p

(x) , (S2)

where we define �c
p

(t) as the number of citations received by the paper in career year t, with

the definition for paper age ⌧ = t � t
p,0 + 1 which defines the relation between the paper age ⌧ ,

the career age t, and the first year the paper was cited, t
p,0. Without loss of generality, the paper

index p can be replaced by a rank-ordered index r. Hence, the total number of citations to the

papers coauthored by individual i is calculated by integrating the rank-ordered citation distribution

c
i

(r, t),

C
i

(t) =

Ni(t)X

r=1

c
i

(r, t) . (S3)

Figures 4 and S1–S3 illustrate longitudinal citation profiles for 33 scientists, showing the citation

trajectories for their top papers as well as C
i

(t).

5

tt cumulative # of citations at paper age τ

cumulative citations by career age t

The rank-citation profile illustrates
 the evolution of the publication-

impact portfolio

The Discrete Generalized Beta Distribution (DGBD) model for ci(r) 
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Scientific careers can be difficult to summarize since success and
the potential for future success are related to a large variety of
different factors. Here we analyze the complete publication ca-
reers of 200 scientists and find remarkable statistical regularity in
the functional form of the rank-citation profile ci(r) for each sci-
entist i. The quantifiable regularity suggests that there is a fun-
damental underlying mechanism for career development, which
presumably applies in general to many types of competitive ca-
reers. Specifically, we find that the rank-ordered citation distri-
bution ci(r) can be approximated by a discrete generalized beta
distribution (DGBD) over the entire range of ranks r, which allows
for the characterization and comparison of ci(r) using a common
framework. The functional form of the DGBD has two scaling ex-
ponents, �i and ⇥i, which determine the scaling behavior of ci(r)
for both small and large rank r. The crossover between two scal-
ing regimes suggests a complex relation between the success of
a scientist’s most famous papers and the success of their com-
plementary papers, together constituting their career publication
works. We use the analytic properties of the DGBD to derive an
exact expression for the crossover value r⇥ which highlights the
distinguished papers of a given author, characterized by the c-star
value ci(r⇥), in analogy to the h-index. We compare the c(r⇥), �,
⇥, and h-index values, and several other metrics, for 200 success-
ful scientists from the physics community. Furthermore, we also
develop a new function, the “gap index" G(�h), which has predic-
tive capability in estimating the future increase �h of the h-index
using the values of ci(r) for r � h.

socio-physics | productivity | Zipf law | legacy

A scientist’s career is subject over time to a myriad of random
factors. As a result, the path to success is neither simple nor

regular. The rank-citation profile ci(r), where ci(r) is the number
of citations of individual i to his/her paper r ranked in decreasing
order ci(1) ⌅ ci(2) ⌅ . . . ci(N), quantitatively summarizes the
publication career of a given scientist. In order to better understand
the statistical regularities of scientific careers, we analyze the career
citation data of 200 highly cited scientists.

We select a given scientist based upon the cumulative number of
citations he/she has obtained from his/her publications in the jour-
nal Physical Review Letters (PRL), comparing all scientists who have
published at least one article in PRL over the 50-year period 1958-
2008. Although all scientists analyzed here can be considered largely
successful, we separate the scientists into two data sets for compari-
son:

[A] The 100 most-cited scientists according to the citation shares met-
ric [1] (with a set average h-index ⌃h⌥ = 61 ± 21).

[B] 100 other “control" scientists, taken from the same PRL database
(with a set average h-index ⌃h⌥ = 44 ± 15).

We describe in more detail the selection procedure for these two sets
in the Methods section of the Supporting Information (SI) text.

There are many conceivable ways to quantify the impact of a
scientist’s N articles constituting ci(r). The h-index [2] is widely
acknowledged as a single number conveying an approximate quan-
tification of a scientist’s cumulative impact. The h-index of a given
scientist i is defined by a single point on the rank-citation profile ci(r)
satisfying

c(h) = h . [1]

In Fig. 1 we plot the number of citations ci(r) for the top 4 physi-
cists, ranked according to their h-indices. Additionally, we plot the
lines Hp(r) ⇥ p r for 5 values of p = {1, 2, 5, 20, 80}. We use the
“generalized h-index" hp, proposed in [3] and further analyzed in [4],
defined as the intersection of Hp(r) with ci(r),

c(hp) = php [2 ]

with the relation hp ⇤ hq for p > q. The value p ⇥ 1 recovers the
h-index proposed by Hirsch so that h = h1. We will use the gener-
alized h-index to establish quantitative indicators of scale invariance
in the citation profiles, as well as the mobility of the h index.

Model for c(r)
For each scientist i analyzed, we find that ci(r) can be approximated
by the discrete generalized beta distribution (DGBD) [5, 6],

c(r) ⇥ Ar��(N + 1� r)⇥ . [3]

The parameters A, �, and ⇥ and N are each defined for a given
ci(r) corresponding to an individual scientists i, however we suppress
the index i in equations to keep the notation concise. We estimate
the two scaling parameters � and ⇥ using multiple linear regression
of log ci(r), replacing N with r1, the largest value of r for which
c(r) ⌅ 1 (we find that r1/N ⇧ 0.84 ± 0.01 for all careers ana-
lyzed). Fig. 1 demonstrates the excellent approximation of ci(r) by
the DGBD, for both large and small r. The regression correlation
coefficient R > 0.97 for all log ci(r) profiles analyzed.

The DGBD proposed in [5] is an improvement over the Zipf-law
(power-law) model and the stretched exponential model [2] since it
reproduces the varying curvature in ci(r) for both small and large
r. The DGBD has been successfully used to model numerous rank-
ordering profiles analyzed in [5, 6] which arise in the natural and
socio-economic sciences. Typically, an exponential cutoff is imposed
in the power-law model, and justified as a finite-size effect. The
DGBD does not require this assumption, but rather, introduces a sec-
ond scaling exponent ⇥ which controls the curvature in ci(r) for large
r values. The relative values of the � and ⇥ exponents are thought
to capture two distinct scales that contribute to the evolution of ci(r)
[5, 6]. In the case of citation statistics analyzed here, there is likely a
rank-dependent dynamics that distinguishes between “heavy-weight”
papers and “newborn” papers in the time evolution of ci(r).

The exponent � defines an approximate scaling regime that is
truncated for rank values larger than a rank cutoff rc ⇥ (r1 + 1)/⇥.
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to highlight the power-law � scaling. (c) We plot the corresponding logarithmic derivative ⇤(z) of c(z) (solid black curve), which represents
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β

⇒ Hence, 

knowing both 
the

 h-index and C is 
≈ redundant

Ni = # of publications
βi = scaling slope of top papers
γi = truncation scaling of less-cited papers
Ci = total citations from all papers

Scaling 
relation 
between 

C, h, and β

C ~ h1+β

total citations C
i

and h
i

was shown to be

C
i

⇠ h1+�i
i

. (S12)

The DGBD is an improvement over the Zipf law (also called the generalized power-law or Lotka-

law) model and the stretched exponential model since it reproduces the varying curvature in c
i

(r)

for both small and large r. Instead of discarding the curvature in the large r regime as finite-size

effects, the DGBD accounts for the curvature using a second scaling exponent �
i

. The parameters

A
i

, �
i

, �
i

and N
i

are each defined for a given c
i

(r) corresponding to an individual scientists i.

We estimate the two scaling parameters �
i

and �
i

using Mathematica software to perform a

multiple linear regression of ln c
i

(r) = lnA
i

��
i

ln r+�
i

ln(N
i

+1� r) in the base functions ln r

and ln(N
i

+1� r). In our fitting procedure we replace N with r1, the largest value of r for which

c(r) � 1 (for example, we find that r1/Ni

⇡ 0.84 ± 0.01 for careers in datasets [A] and [B] for

which the regression correlation coefficient R
i

> 0.97 in all cases). To properly weight the data

points for better regression fit over the entire range, we use only 20 values of c
i

(r) data points that

are equally spaced on the logarithmic scale in the range r 2 [1, r1].

The �
i

value determines the relative change in the c
i

(r) values for the high-rank papers, and

thus it can be used to further distinguish the careers of two scientists with the same h-index. In

particular, smaller �
i

values characterize flat profiles with relatively low contrast between the high

and low-rank regions of any given profile, while larger �
i

values indicate a sharper separation

between the two regions.

In order to demonstrate the common functional form of the DGBD model, we collapse

all 200 c
i

(r) in datasets [C] and [D] along a universal scaling function c(r0) = 1/r0 by using

the rescaled rank values r0 ⌘ r�i defined for each curve. In Fig. S7 we plot the quantity

c
i

(r0) ⌘ c
i

(r)/A(r1 + 1 � r)� , using the best-fit �
i

and A
i

parameter values for each individual

c
i

(r) profile. While the c
i

(r) curves in the left panels are jumbled and distributed over a large

range of c(r) values, the rescaled c
i

(r) all lie approximately along the master curve c(r0) = 1/r0.
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 Q: What is the characteristic waiting 
time τi(n) between an author’s nth 

paper 
and (n+1)th paper?

 careers with
 L ≥ 5 and Np ≥ 10

paper n

 By the 10th paper, the waiting time 
between publications has decreased 

by ~ factor of 2!



Quantitative and empirical demonstration of the Matthew effect in a

study of career longevity
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Abstract

“One-hit wonders” and “Iron Horses”

Stochastic model for career progress: spatial Poisson process

The “Rich-get-richer” Matthew effect Career success metrics in sports

Decreasing inter-publication time !(n)
The Matthew effect refers to the adage written some two-thousand years ago in the Gospel of St.
Matthew: ``For to all those who have, more will be given". Even two millennia later, this idiom is
used by sociologists to qualitatively describe individual progress and the interplay between status
and reward. Quantitative studies of professional careers are traditionally limited by the difficulty in
measuring progress and the lack of data on individual careers. However, in some professions,
there are well-defined metrics that quantify career longevity, success, and prowess, which together
contribute to the overall success rating for an individual employee. Here we demonstrate  testable
evidence, inherent  in the remarkable statistical regularity of career longevity distributions, of the
age-old Matthew ``rich get richer"  effect, in which  longevity and past success lead to cumulative
advantage.  We develop an exactly solvable  stochastic model that quantitatively incorporates  the
Matthew  effect such that it can be validated in competitive professions. These results demonstrate
that statistical laws can exist at even the microscopic social level, where the collective behaviour of
individuals can lead to emergent phenomena. We test our model on the careers of 400,000
scientists using data from six high-impact journals. We further confirm our findings by testing the
model on the careers of more than 20,000 athletes in four sports leagues.
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We analyze the professional careers of:

• 400,000 scientists publishing in 6 high-impact journals: Nature, the Proceedings of the

National Academy of Science, Science, CELL, the New England Journal of Medicine,

and Physical Review Letters

• 20,000 professional athletes: Major League Baseball (1920-2004), Korean

Professional Baseball League 1982-2007, National Basketball Association 1946-2004,

English Premier League 1992-2007

Theoretical curves (solid green lines) derived from our stochastic model show excellent

agreement with empirical data. We define metrics for career longevity that are inherently

related to the time spent in the career, and according to the available data.

•  scientific longevity: x = y last - y first+1

 which is the time interval in years between a scientist’s first and last publication in a

given high-impact journal

• sports longevity: x = total number of in-game opportunities over the career

- Baseball: At-bats (AB), Innings Pitched in Outs (IPO)

- Basketball: minutes played

- Soccer: games played

We model progress in competitive professions as a random hopping process with two main ingredients:

• random forward progress up the career ladder

• random stopping times, terminating the career

We solve the corresponding master equation governing the evolution of P(x,t), the probability that an individual is at career

position x at time t. The progress rate parameter g(x) determines the relative difference in late-career progress versus

early-career progress. We choose a functional form for g(x) that increases with x, capturing the salient feature of the

Matthew effect that it becomes easier to make progress the further along is the career.

- ``For to all those who have, more will be given”
Matthew 25:29

For " > 1 :  P(x) is bimodal

For " < 1 :  P(x) is a truncated power-law,

We choose a functional form for the progress rate g(x) which is characterized by two parameters:

(1) " is a scaling exponent which quantifies the growth of g(x) for small values of x. For small x < xc  the progress rate g(x) ~ x"

Two different types of career longevity probability density function (pdf) emerge depending on the value of " :

(i) For convex " > 1 it is more difficult to make progress early in the career, and hence, P(x) is bimodal, with one group of stunted

careers grouped around small x < xc values and another group of successful careers grouped around larger x > xc values.

(ii) For concave " < 1 it is easier to make progress early in the career. This feature results in a remarkable statistical regularity

over several orders of magnitude captured by a truncated power-law with scaling exponent ".

(2)  xc is a career length scale which separates newcomers from veterans on the career ladder. The width xw of the “potential barrier”   

which newcomers must overcome scales as   xw / xc ! xc
-1/"

We observe " < 1 for all careers analyzed. The statistical regularity implies that the relative number of individuals with career longevity

x1and  x2 are given approximately by the ratio   P(x1)/P(x2) = (x2/x1)" which is quantified only by a scale-free ratio and the  scaling

exponent.

xw

Xc # 103

" = 0.40
In sports, successes are obtained in proportion to the total number of opportunities.

Hence, the probability density function P(z) of career successes z is also a truncated

power law with the same scaling exponent " as the corresponding longevity

distribution.

•  (A) MLB Baseball: xc
Hits ! 1200, xc

RBI ! 600.

  One hit wonders: 5% of all fielders 1920-Present finish career with only 1 hit !

3% of all pitchers finish career with less than an inning pitched!

•  (B) NBA Basketball: xc
Points ! 8000, xc

Rebounds ! 3500

Furthermore, we approximate P(z) with the Gamma pdf, and use the extreme
statistics of the Gamma distribution to estimate benchmarks which distinguish stellar
careers (e.g. Hall of Fame). See [1] and [2] for a discussion of establishing statistically
significant milestones for HR, K, RBI, and W in professional baseball.

See Ref. [1,2,4] for more details.

See Ref. [1] for more details.

See Ref. [3] for more details.
See Ref. [1] for more details.

.

.

.

See Ref. [1,2,3,4] for more details.

We analyze the inter-publication waiting time !(n) between an author’s paper n and

paper n+1 in a given journal. The quantity !(n) is inversely proportional to the

progress probability g(x) used in the stochastic model. We find that the average

inter-publication time ‹ !(n) › decreases with increasing number publications,

consistent with the Matthew effect. The values of ‹ !(1) › are 2.2 (CELL, PRE), 3.0

(Nature, PNAS, Science), and 3.5 (NEJM) years.

‹ !(n) › = 1 / g(n)

Lou Gehrig HOF plaque

g(x) = 1 / ⟨τ(x)⟩
The progress probability g is the 

inverse of the mean waiting time τ

n and the paper n+1. The values of !!"1#$ for each journal
are 2.2 "CELL, PRL#, 3.0 "Nature, PNAS, Science# and 3.5
"NEJM# years. The decrease in waiting time between publi-
cations is a signature of the cumulative advantage mecha-
nism qualitatively described in %19& and quantitatively ana-
lyzed in %16,18&. To avoid presenting statistical fluctuations
arising from the small size of data sets, we only present
!!"n#$ computed for data sets exceeding 75 observations.

To explain the steady decline of the curve for PRL we
mention that PRL has many authors with many articles
"n"100#. A possible explanation is that a significant number
of these authors are involved in large particle accelerator
experiments with multiple collaborating groups. These mul-
tilateral projects contribute significantly to the heavy tail ob-
served in the pdf of the number of authors per paper "Fig. 3#.
Hence, the decay in the curve for PRL which approaches
zero might be due to the project leaders at large experimental

institutions which produce over many years many significant
results per year. Furthermore, the organization of the curves
in Fig. 7 suggests that it is more difficult at the beginning of
a career to repeatedly publish in CELL than PRL. Reaching a
crossover point along the career ladder is a generic phenom-
enon observed in many professions. Accordingly, surmount-
ing this abstract crossover is motivated by significant per-
sonal incentives, such as salary increase, job security, and
managerial responsibility.

IV. DISCUSSION

Scientific careers share many qualities with other com-
petitive careers, such as the careers of professional sports
players, inventors, entertainers, actors, and musicians
%15,32,33&. Limited resources such as employment, salary,
creativity, equipment, events, data samples, and even indi-
vidual lifetime contribute to the formation of generic arenas
for competition. Hence, of interest here is the distribution of
success and productivity in high-impact journals which in
principle have high standards of excellence.

In science, there are unwritten guides to success requiring
ingenuity, longevity, and publication. We observe a quantifi-
able statistical regularity describing publication careers of
individual scientists across both time and discipline. Interest-
ingly, we find that the scaling exponent for individual papers
"#'3# is larger than the scaling exponent for total citation
shares "$'2.5# and the scaling exponent for total paper
shares "$'2.6#, which indicates that there is a higher fre-
quency of stellar careers than stellar papers. This is consis-
tent with the observation that a stellar career can result from
an arbitrary combination of stellar papers and consistent suc-
cess, as demonstrated in Table III. In all, the statistical regu-
larity found in the distributions for both citation shares and
paper shares lend naturally to methods based on extreme
statistics in order to distinguishing stellar careers. Such
methods have been developed for Hall of Fame candidacy in
baseball %16,34&, where statistical benchmarks are estab-
lished using the distribution of success.

Statistical physicists have long been interested in complex
interacting systems, and are beginning to succeed in describ-
ing social dynamics using models that were developed in the
context of concrete physical systems %35&. This study is in-
spired by the long term goal of using quantitative methods
from statistical physics to answer traditional questions rooted
in social science %36&, such as the nature of competition,
success, productivity, and the universal features of human
activity. Many studies begin as empirical descriptions, such
as the studies of common mobility patterns %37&, sexuality
%38,39&, and financial fluctuations %40&, and lead to a better
understanding of the underlying mechanics. It is possible that
the empirical laws reported here will motivate useful descrip-
tive theories of success and productivity in competitive en-
vironments.
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TABLE IV. Summary of paper shares for “completed” careers.
The value of the log-normal fit parameters % and & correspond to
the pdf before the cutoff value of Ps

c'2 paper shares. The values of
$ are calculated using a data values after the cutoff Ps

c(1 paper
shares, which corresponds to approximately 8% of the total data for
each journal.

Journal % & $

CELL −1.7'0.1 0.7'0.1 2.60'0.05
NEJM −1.7'0.1 1.0'0.1 2.60'0.02
Nature −1.3'0.1 1.0'0.1 2.74'0.05
PNAS −1.6'0.1 0.7'0.1 2.56'0.02
PRL −1.1'0.1 1.0'0.1 2.35'0.02
Science −1.4'0.1 0.9'0.1 2.61'0.02
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FIG. 7. "Color online# A decreasing waiting time !"n# between
publications in a given journal suggests that a longer publication
career "larger n# facilitates future publications, as predicted by the
Matthew effect. We plot !!"n#$ / !!"1#$, the average waiting time
!!"n#$ between paper n and paper n+1, rescaled by the average
waiting time between the first and second publication, !!"1#$. The
values of !!"1#$ are 2.2 "CELL, PRL#, 3.0 "Nature, PNAS, Science#,
and 3.5 "NEJM# years. Physical Review Letters exhibits a more
rapid decline in !"n#, reflecting the rapidity of successive publica-
tions "often by large high-energy experiment collaborations#, which
is possible in this high-impact letters journal.
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productivity of scientists across time and 
discipline, A. M. Petersen, F. Wang, H. E. 
Stanley. Phys. Rev. E 81, 036114 (2010). 

Quantitative and empirical demonstration of the 
Matthew effect in a study of career longevity. A. M. 
Petersen, W.-S. Jung, J.-S. Yang, H. E. Stanley. 
Proc. Natl. Acad. Sci. USA 108, 18-23 (2011).

Two main ingredients of the model
1) Forward progress follows a stochastic “progress rate” g(x). Cumulative 
advantage corresponds to g(x) increasing with career position x 

2) Random termination of the career due to hazards (e.g. decreased work 
performance, economic down, economic downturn, health, retirement, etc.)



Statistical regularities in the career longevity distribution

opportunities ~ time duration

• 130+ years of player 
statistics, ~ 15,000 careers

Major League Baseball

• 3% of all fielders finish their 
career with ONE at-bat!

• 3% of all pitchers finish their 
career with less than one 
inning pitched!

``One-hit wonders”

``Iron horses”

• Lou Gehrig (the Iron Horse): NY 
Yankees (1923-1939)

• Played in 2,130 consecutive games in 
15 seasons! 8001 career at-bats!

• Career & life stunted by the fatal 
neuromuscular disease, amyotrophic 
lateral sclerosis (ALS), aka Lou 
Gehrig’s Disease
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C) Competition and contract length

I = finite labor
   force size

Persistence and Uncertainty in the Academic Career,
 A. M. Petersen, M. Riccaboni, H. E. Stanley, F. Pammolli. 
Proc. Natl. Acad. Sci. USA 109, 5213-5218 (2012).
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2) We run the Monte Carlo (MC) simulation for T ⇤ 100 time periods and all agents are by construction from the
same age cohort (born at same time).

3) Each time period corresponds to the allocation of P ⇤
�I

i=1 n0,i opportunities, sequentially one at a time, to
randomly assigned agents i, where n0,i ⇤ 1 is the potential production capacity of a given individual.

4) The assignment of a given opportunity is proportional to the time-dependent weight (capture rate) wi(t) of each
agent. Hence, the assignment of 1 opportunity to agent i at period t results in the production (achievement)
ni(t) to increase by one unit: ni(t)⌃ ni(t) + 1. In the next time period t + 1, we update the weight wi(t + 1)
to include the performance ni(t) in the current period.

B. Initial Condition

The initial weight at the beginning of the simulation is wi(t = 0) ⇤ nc for each agent i with nc ⇤ 1. The value
nc > 0 ensures that competitors begin with a non-zero production potential, and corresponds to a homogenous system
where all agents begin with the same production capacity. Hence, we do not analyze the more complicated model
wherein external factors (i.e. collaboration factors) can result in a heterogeneous production capacity across scientists.
By construction, each agent begins with one unit of achievement ni(t = 1) ⇤ 1.

C. System Dynamics

1) In each Monte Carlo step we allocate one opportunity to a randomly chosen individual i so that ni(t)⌃ ni(t)+1

2) The individual i is chosen with probability Pi(t) proportional to [wi(t)]�

Pi(t) =
wi(t)�

�I
i=1 wi(t)�

(S16)

where the value wi(t) is given by an exponentially weighted sum over the entire achievement history

wi(t) ⇤
t�1⇥

�t=1

ni(t��t)e�c�t . (S17)

The parameter c ⌅ 0 is a memory parameter which determines how the record of accomplishments in the past
a⇥ect the ability to obtain new opportunities in the current period, and therefore, the future. The limit c = 0
rewards long-term accomplishment by equally weighting the entire history of accomplishments. Conversely, when
c⇧ 1 the value of wi(t) is largely dominated by the performance ni(t�1) in the previous period, corresponding
to increased emphasis on short-term accomplishment in the immediate past. Intermediate values 0 < c < 1
weight more equally the immediate past and the entire history of accomplishment.

3) The exponent � determines how the relative ability to attract opportunities Pi/Pj = [wi(t)/wj(t)]� depends
on the weights wi(t) and wj(t) between two individuals i and j. The linear capture case follows from � = 1,
uniform capture � = 0, super linear capture � > 1, and sub-linear capture � < 1.

4) At the end of each time period, the weight wi(t) is recalculated and used for the entirety of the next MC time
period corresponding to the allocation of the next I ⇥ nc achievement opportunities.

D. Model Results

We simulate this system for a realistic labor force size I = 1000 with the assumption that in any given period,
an individual has the capacity for one unit of production (nc ⇤ 1). We evolve the system for T = 100 periods
corresponding to I⇥nc⇥T Monte Carlo time steps. The timescale T represents the (production) lifetime of individuals
with finite longevity. In this model we do not include exogenous shocks (career hazards) that can result in career
death [16]. Here we analyze four quantities:

1) The distribution P (N) of the total number of opportunities Ni(T ) ⇤
�T

t=1 ni(t) captured by agent i over the
course of the T� period simulation.

Achievement measured by , the number of opportunities 
(ex. publications) captured in time period t

Agent-based competition model with cumulative 
achievement appraisal (evaluation)



Appraising prior achievement

c → 0 : appraisal over all lifetime achievements ( ~ tenure system)
c >1 : appraisal over only recent achievements (short-term contract system)

The cohort of I agents compete for a fixed number of opportunities in 
each period over a lifespan of  t = 1... T periods. 

In each period, the capture rate of a given individual i is calculated by an 
appraisal of the achievement history

5

100 101

Number of coauthors, ki(t)

100

101

N
um

be
r o

f p
ub

lic
at

io
ns

, n
i(t
)

A: ! = 0.68(1)
B: ! = 0.52(1)
C: ! = 0.51(2)

! 

C

100

101

A
ve

. a
nn

ua
l o

ut
pu

t, 
<

 n
i > Dataset A

Dataset B

! = 0.74(4)

A

100 101 102

Median # of coauthors per year, Si = Med [ki]
100

101

St
d.

 D
ev

. a
nn

ua
l c

ha
ng

e,
 !

i (r
 )

Dataset A
Dataset B

" / 2 = 0.40(3)

B

FIG. 3: Quantitative relations between career growth, career
risk, and collaboration e⇥ciency. The fluctuations in produc-
tion reflect the unpredictable horizon of “career shocks” which
can a�ect the ability of a scientists to access new creative op-
portunities. (A) Relation between average annual production
⇤ni⌅ and collaboration radius Si � Med[ki] shows a decreasing
marginal output per collaborator as demonstrated by sublin-
ear ⌅ < 1. Interestingly, dataset [A] scientists have on average
a larger output-to-input e⇥ciency. (B) The production fluc-
tuation scale ⇤i(r) is a quantitative measure for uncertainty

in academic careers, with scaling relation ⇤i(r) ⇥ S�/2
i . (C)

Over time, there is an increasing returns evident in the annual
production ni(t) since � > 1. Management, coordination, and
training ine⇥ciencies can result in a ⇥ < 1 corresponding to a
decreasing marginal return with each additional coauthor in-
put. The significantly larger ⇥ value for dataset [A] scientists
seems to suggest that managerial abilities related to output
e⇥ciency is a common attribute of top scientists.

D. A Proportional growth model for scientific
output

We develop a stochastic model as a heuristic tool to
better understand the e⇥ects of long-term versus short-
term contracts. In this competition model, opportunities
(i.e. new scientific publications) are captured according
to a general mechanism whereby the capture rate Pi(t)
depends on the appraisal wi(t) of an individual’s record
of achievement over a prescribed history. We define the
appraisal to be an exponentially weighted average over a
given individual’s history of production

wi(t) ⇥
t�1⇥

�t=1

ni(t��t)e�c�t , (8)

which is characterized by the appraisal horizon 1/c. We
use the value c = 0 to represent a long-term appraisal
(tenure) system and a value c ⇧ 1 to represent a short-
term appraisal system. Each agent i = 1...I simultane-
ously attracts new opportunities at a rate

Pi(t) =
wi(t)�

�I
i=1 wi(t)�

. (9)

until all P opportunities for a given period t are allo-
cated. We assume that each agent has the production
potential of one unit per period, and so the total number
of opportunities allocated per period P is equal to the
number of competing agents, P ⇥ I.

We use Monte Carlo (MC) simulation to analyze this
2-parameter model over the course of t = 1...T sequen-
tial periods. In each production period (representing a
timescale on the order of half a human year), a fixed
number of P production units are captured by the com-
peting agents. At the end of each period, we update each
wi(t) and then proceed to simulate the next preferential
capture period t + 1. Since Pi(t) depends on the relative
achievements of every agent, the relative competitive ad-
vantage of one individual over another is determined by
the parameter ⇤. In the SI Appendix text we elaborate
in more detail the results of our simulation of synthetic
careers dynamics. We vary ⇤ and c for a labor force of
size I ⇥ 1000 and maximum lifetime T ⇥ 100 periods as
a representative size and duration of a real labor cohort.
Our results are general, and for su⇤ciently large system
size, the qualitative features of the results do not depend
significantly on the choice of I or T .

The case with ⇤ = 0 corresponds to a random capture
model that has (i) no appraisal and (ii) no preferential
capture. Hence, in this null model, opportunities are cap-
tured at a Poisson rate ⇥p = 1 per period. The results
of this model (see Fig. S13) shows that almost all ca-
reers obtain the maximum career length T with a typical
career trajectory exponent ⌥�i� ⌅ 1. Comparing to sim-
ulations with ⇤ > 0 and c ⇤ 0, the null model is similar
to a “long-term” appraisal system (c ⌃ 0) with sublin-
ear preferential capture (⇤ < 1). In such systems, the
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2) We run the Monte Carlo (MC) simulation for T ⇤ 100 time periods and all agents are by construction from the
same age cohort (born at same time).

3) Each time period corresponds to the allocation of P ⇤
�I

i=1 n0,i opportunities, sequentially one at a time, to
randomly assigned agents i, where n0,i ⇤ 1 is the potential production capacity of a given individual.

4) The assignment of a given opportunity is proportional to the time-dependent weight (capture rate) wi(t) of each
agent. Hence, the assignment of 1 opportunity to agent i at period t results in the production (achievement)
ni(t) to increase by one unit: ni(t)⌃ ni(t) + 1. In the next time period t + 1, we update the weight wi(t + 1)
to include the performance ni(t) in the current period.

B. Initial Condition

The initial weight at the beginning of the simulation is wi(t = 0) ⇤ nc for each agent i with nc ⇤ 1. The value
nc > 0 ensures that competitors begin with a non-zero production potential, and corresponds to a homogenous system
where all agents begin with the same production capacity. Hence, we do not analyze the more complicated model
wherein external factors (i.e. collaboration factors) can result in a heterogeneous production capacity across scientists.
By construction, each agent begins with one unit of achievement ni(t = 1) ⇤ 1.

C. System Dynamics

1) In each Monte Carlo step we allocate one opportunity to a randomly chosen individual i so that ni(t)⌃ ni(t)+1

2) The individual i is chosen with probability Pi(t) proportional to [wi(t)]�

Pi(t) =
wi(t)�

�I
i=1 wi(t)�

(S16)

where the value wi(t) is given by an exponentially weighted sum over the entire achievement history

wi(t) ⇤
t�1⇥

�t=1

ni(t��t)e�c�t . (S17)

The parameter c ⌅ 0 is a memory parameter which determines how the record of accomplishments in the past
a⇥ect the ability to obtain new opportunities in the current period, and therefore, the future. The limit c = 0
rewards long-term accomplishment by equally weighting the entire history of accomplishments. Conversely, when
c⇧ 1 the value of wi(t) is largely dominated by the performance ni(t�1) in the previous period, corresponding
to increased emphasis on short-term accomplishment in the immediate past. Intermediate values 0 < c < 1
weight more equally the immediate past and the entire history of accomplishment.

3) The exponent � determines how the relative ability to attract opportunities Pi/Pj = [wi(t)/wj(t)]� depends
on the weights wi(t) and wj(t) between two individuals i and j. The linear capture case follows from � = 1,
uniform capture � = 0, super linear capture � > 1, and sub-linear capture � < 1.

4) At the end of each time period, the weight wi(t) is recalculated and used for the entirety of the next MC time
period corresponding to the allocation of the next I ⇥ nc achievement opportunities.

D. Model Results

We simulate this system for a realistic labor force size I = 1000 with the assumption that in any given period,
an individual has the capacity for one unit of production (nc ⇤ 1). We evolve the system for T = 100 periods
corresponding to I⇥nc⇥T Monte Carlo time steps. The timescale T represents the (production) lifetime of individuals
with finite longevity. In this model we do not include exogenous shocks (career hazards) that can result in career
death [16]. Here we analyze four quantities:

1) The distribution P (N) of the total number of opportunities Ni(T ) ⇤
�T

t=1 ni(t) captured by agent i over the
course of the T� period simulation.

Achievement measured by , the number of opportunities captured  
in time period t

exponential 
discount factor

{capture rate ∝

Appraisal 
timescale 1/c



Crowding out by “kingpins”

before reaching age 0.01T, and 25% of the labor population dies
before reaching age 0.02T (see SI Appendix: Table S1). Hence,
in model short contract systems, the longevity, output, and impact
of careers are largely determined by fluctuations and not by per-
sistence.

Fig. 4 shows the MC results for π ¼ 1. For c ≥ 1 we observe a
drastic shift in the career longevity distribution PðLÞ, which
becomes heavily right-skewed with most careers terminating ex-
tremely early. This observation is consistent with the predictions
of an analytically solvable Matthew effect model (16) which de-
monstrates that many careers have difficulty making forward pro-
gress due to the relative disadvantage associated with early career
inexperience. However, due to the nature of zero-sum competi-
tion, there are a few “big winners” who survive for the entire
duration T and who acquire a majority of the opportunities al-
located during the evolution of the system. Quantitatively, the
distribution PðNÞ becomes extremely heavy-tailed due to agents
with α > 2 corresponding to extreme accelerating career growth.
Despite the fact that all the agents are endowed initially with the
same production potential, some agents emerge as superstars
following stochastic fluctuations at relatively early stages of the
career, thus reaping the full benefits of cumulative advantage.

Discussion
An ongoing debate involving academics, university administra-
tion, and educational policy makers concerns the definition
of professorship and the case for lifetime tenure, as changes
in the economics of university growth have now placed tenure

under the review process (3, 6). Critics of tenure argue that te-
nure places too much financial risk burden on the modern com-
petitive research university and diminishes the ability to adapt to
shifting economic, employment, and scientific markets. To ad-
dress these changes, universities and other research institutes
have shifted away from tenure at all levels of academia in the last
thirty years towards meeting staff needs with short-term and non-
tenure track positions (3).

For knowledge intensive domains, production is characterized
by long-term spillovers both through time and through the knowl-
edge network of associated ideas and agents. A potential draw-
back of professions designed around short-term contracts is that
there is an implicit expectation of sustained annual production
that effectively discounts the cumulative achievements of the in-
dividual. Consequently, there is a possibility that short-term con-
tracts may reduce the incentives for a young scientist to invest in
human and social capital accumulation. Moreover, we highlight
the importance of an employment relationship that is able to
combine positive competitive pressure with adequate safeguards
to protect against career hazards and endogenous production un-
certainty an individual is likely to encounter in his/her career.

In an attempt to render a more objective review process
for tenure and other lifetime achievement awards, quantitative
measures for scientific publication impact are increasing in use
and variety (17–20, 24, 27, 46, 47). However, many quantifiable
benchmarks such as the h-index (17) do not take into account
collaboration size or discipline specific factors. Measures for
the comparison of scientific achievement should at least account
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2,000 4,000 6,000 8,000 10,000 12,000

3,000 4,000 5,000

Fig. 4. MC simulation of the linear preferential capture model (π ¼ 1) for varying contract length parametrized by c. We plot the probability distributions for
(i) Ni , the total number of opportunities captured by the end period T , (ii) the growth acceleration exponent αi , (iii) the single period growth fluctuation riðtÞ
including for comparison the Laplace (solid green) and Gaussian (dashed red) best-fit distributions calculated using the respective MLE estimator, and (iv) the
career longevity Li defined as the time difference between an agent’s first and last captured opportunity. Results for c → 0 systems shows that for a “long-term
appraisal” scenario careers are less vulnerable to low-production phases, and as a result, most agents sustain production throughout the career. Conversely,
results for c ≥ 1 systems show that for a “short-term appraisal” scenario the labor system is driven by fluctuations that can cause career “sudden death” for a
large fraction of the population. In this short-term appraisal model, there are typically a small number of agents who are able to capture the majority of the
production opportunities with remarkably accelerating career growth reflected by significantly large αi ≥ 1. Thus, a few “lucky” agents are able to survive the
initial fluctuations and end up dominating the system. In SI Appendix: and Figs. S12–S16, we further show that systems with increased levels of competition
(π > 1) mimic systems with short-term contracts, resulting in productivity “death traps” whereby most careers stagnate and terminate early.
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before reaching age 0.01T, and 25% of the labor population dies
before reaching age 0.02T (see SI Appendix: Table S1). Hence,
in model short contract systems, the longevity, output, and impact
of careers are largely determined by fluctuations and not by per-
sistence.

Fig. 4 shows the MC results for π ¼ 1. For c ≥ 1 we observe a
drastic shift in the career longevity distribution PðLÞ, which
becomes heavily right-skewed with most careers terminating ex-
tremely early. This observation is consistent with the predictions
of an analytically solvable Matthew effect model (16) which de-
monstrates that many careers have difficulty making forward pro-
gress due to the relative disadvantage associated with early career
inexperience. However, due to the nature of zero-sum competi-
tion, there are a few “big winners” who survive for the entire
duration T and who acquire a majority of the opportunities al-
located during the evolution of the system. Quantitatively, the
distribution PðNÞ becomes extremely heavy-tailed due to agents
with α > 2 corresponding to extreme accelerating career growth.
Despite the fact that all the agents are endowed initially with the
same production potential, some agents emerge as superstars
following stochastic fluctuations at relatively early stages of the
career, thus reaping the full benefits of cumulative advantage.

Discussion
An ongoing debate involving academics, university administra-
tion, and educational policy makers concerns the definition
of professorship and the case for lifetime tenure, as changes
in the economics of university growth have now placed tenure

under the review process (3, 6). Critics of tenure argue that te-
nure places too much financial risk burden on the modern com-
petitive research university and diminishes the ability to adapt to
shifting economic, employment, and scientific markets. To ad-
dress these changes, universities and other research institutes
have shifted away from tenure at all levels of academia in the last
thirty years towards meeting staff needs with short-term and non-
tenure track positions (3).

For knowledge intensive domains, production is characterized
by long-term spillovers both through time and through the knowl-
edge network of associated ideas and agents. A potential draw-
back of professions designed around short-term contracts is that
there is an implicit expectation of sustained annual production
that effectively discounts the cumulative achievements of the in-
dividual. Consequently, there is a possibility that short-term con-
tracts may reduce the incentives for a young scientist to invest in
human and social capital accumulation. Moreover, we highlight
the importance of an employment relationship that is able to
combine positive competitive pressure with adequate safeguards
to protect against career hazards and endogenous production un-
certainty an individual is likely to encounter in his/her career.

In an attempt to render a more objective review process
for tenure and other lifetime achievement awards, quantitative
measures for scientific publication impact are increasing in use
and variety (17–20, 24, 27, 46, 47). However, many quantifiable
benchmarks such as the h-index (17) do not take into account
collaboration size or discipline specific factors. Measures for
the comparison of scientific achievement should at least account
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Fig. 4. MC simulation of the linear preferential capture model (π ¼ 1) for varying contract length parametrized by c. We plot the probability distributions for
(i) Ni , the total number of opportunities captured by the end period T , (ii) the growth acceleration exponent αi , (iii) the single period growth fluctuation riðtÞ
including for comparison the Laplace (solid green) and Gaussian (dashed red) best-fit distributions calculated using the respective MLE estimator, and (iv) the
career longevity Li defined as the time difference between an agent’s first and last captured opportunity. Results for c → 0 systems shows that for a “long-term
appraisal” scenario careers are less vulnerable to low-production phases, and as a result, most agents sustain production throughout the career. Conversely,
results for c ≥ 1 systems show that for a “short-term appraisal” scenario the labor system is driven by fluctuations that can cause career “sudden death” for a
large fraction of the population. In this short-term appraisal model, there are typically a small number of agents who are able to capture the majority of the
production opportunities with remarkably accelerating career growth reflected by significantly large αi ≥ 1. Thus, a few “lucky” agents are able to survive the
initial fluctuations and end up dominating the system. In SI Appendix: and Figs. S12–S16, we further show that systems with increased levels of competition
(π > 1) mimic systems with short-term contracts, resulting in productivity “death traps” whereby most careers stagnate and terminate early.
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Our theoretical model suggests that

short-term appraisal systems: 

* can amplify the effects of competition and 
uncertainty making careers more vulnerable to early 
termination, not necessarily due to lack of individual 
talent and persistence, but because of random 
negative production shocks.

* effectively discount the cumulative achievements of 
the individual.

* may reduce the incentives for a young scientist to 
invest in human and social capital accumulation. 
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c = 0.1 (~ long term appraisal)

Q: Is there an optimal appraisal (contract) length?
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for production spillovers in the 5–8% decrease in output
by scientists who were close collaborators with a “super-
star” scientists who died suddenly [28].

We now formalize the quantitative link between scien-
tific collaboration [38, 39] and career growth given by the
size-variance scaling relation in Eq. [5] visualized in the
scatter plot in Fig. 3(B). Using ordinary least squares
(OLS) regression of the data on log-log scale, we cal-
culate � � 2 ⌃ 0� 40 ± 0 � 03 (� = 0 � 77) for dataset [A],
� � 2 ⌃ 0� 22± 0 � 04 (� = 0� 51) [B], and � � 2 ⌃ 0 � 26± 0� 05
(� = 0� 45) [C]. Interdependent tasks characteristic of
group collaborations typically involve partially overlap-
ping e⇥orts. Hence, the empirical � values are signifi-
cantly less than the value � = 1 that one would expect
from the sum of � i independent random variables with
approximately equal variance � . Collectively, these em-
pirical evidences serve as coherent motivations for the the
preferential capture growth model that we propose in the
following section.

Alternatively, it is also possible to estimate � using
the relation between the average annual production ↵� i�
and the collaboration radius � i. The input-output re-
lation ↵� i� ⇧ � ⇤

i quantifies the collaboration e⇧ciency,
with � = 0� 74 ± 0 � 04 ( � = 0� 87) for dataset [A] and
� = 0� 25±0� 04 (� = 0� 37) for dataset [B]. If the autocor-
relation between sequential production values � i(� ) and
� i(� + 1) is relatively small, then we expect the scaling
exponents calculated for ↵� i� and � 2

i (� ) to be approxi-
mately equal. This result follows from considering � i(� )
as the convolution of an underlying production distribu-
tion Pi(� ) for each scientist that is approximately stable.
Interestingly, the larger � values calculated for dataset
[A] scientists suggests that prestige is related to the in-
creasing returns in the scientific production function [45].

Next we use an alternative method to estimate the
annual collaboration e⇧ciency by relating the number
of publications � i(� ) in a given year to the number of
distinct coauthors � i(� ) over the same year. We use a
single-factor production function,

� i(� ) ⌃ � i[� i(� )]�i � (7)

to quantify the relation between output and labor in-
puts with a scaling exponent � i. We estimate � i and
� i for each author using OLS regression, and define the
normalized output measure � i  � i(� )� � i(� )�i using the
best-fit � i and � i values calculated for each scientist � .
Fig. 3(C) shows the e⇧ciency parameter � calculated
by aggregating all careers in each dataset, and indicates
that this aggregate � is approximately equal to the av-
erage ↵� i� calculated from the � i values in each career
dataset: � = 0� 68 ± 0 � 01 [A], � = 0 � 52 ± 0� 01 [B], and
� = 0� 51± 0� 02 [C]. Furthermore, the � and � values are
approximately equal, which is not surprising, since both
scaling exponents are e⇧ciency measures that relate the
scaling relation of output � i(� ) per input � i(� ).

D. A Proportional growth model for scientific
output

We develop a stochastic model as a heuristic tool to
better understand the e⇥ects of long-term versus short-
term contracts. In this competition model, opportunities
(i.e. new scientific publications) are captured according
to a general mechanism whereby the capture rate Pi(� )
depends on the appraisal � i(� ) of an individual’s record
of achievement over a prescribed history. We define the
appraisal to be an exponentially weighted average over a
given individual’s history of production

� i(� ) ⇤
t�1⇥

�t=1

� i(� �� � )� �c�t � (8)

which is characterized by the appraisal horizon 1 � � . We
use the value � = 0 to represent a long-term appraisal
(tenure) system and a value � ⌥ 1 to represent a short-
term appraisal system. Each agent � = 1� � � � simultane-
ously attracts new opportunities at a rate

Pi(� ) =
� i(� )⇥

�I
i=1 � i(� )⇥

� (9)

until all P opportunities for a given period � are cap-
tured. We assume that each agent has the production
potential of one unit per period, and so the total number
of opportunities distributed per period P is equal to the
number of competing agents, P ⇤ � .

We use Monte Carlo (MC) simulation to analyze this
2-parameter model over the course of � = 1� � � � sequential
periods. In each production period (i.e. representing a
characteristic time to publication), a fixed number of P
production units are captured by the competing agents.
At the end of each period, we update each � i(� ) and then
proceed to simulate the next preferential capture period
� +1. Since Pi(� ) depends on the relative achievements of
every agent, the relative competitive advantage of one in-
dividual over another is determined by the parameter � .
In the SI Appendix text we elaborate in more detail the
results of our simulation of synthetic careers dynamics.
We vary � and � for a labor force of size � ⇤ 1000 and
maximum lifetime � ⇤ 100 periods as a representative
size and duration of a real labor cohort. Our results are
general, and for su⇧ciently large system size, the quali-
tative features of the results do not depend significantly
on the choice of � or � .

The case with � = 0 corresponds to a random capture
model that has (i) no appraisal and (ii) no preferential
capture. Hence, in this null model, opportunities are
captured at a Poisson rate � p = 1 per period. The results
of this model (see Fig. S13) shows that almost all careers
obtain the maximum career length � with a typical career
trajectory exponent ↵� i� ⌃ 1. Comparing to simulations
with � � 0 and � ⌅ 0, the null model is similar to a
“long-term” appraisal system ( � � 0) with sub-linear
preferential capture ( � � 1). In such systems, the long-
term appraisal timescale averages out fluctuations, and

 non-linear 
preferential 

capture model

Hazard rate H(L)=-d/dL [ln P(L)]: 
conditional probability that failure will 
occur at time (L + δL) given that 
termination has not yet occurred at 
time L

H(L) ≈ 0
hazard rate is not dependent on
career position!
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Title: Quantifying the role of teamwork and reputation across scientific careers

Abstract: Globalization of the scientific enterprise, the emergence of quantitative 
publication and impact measures, and shifts in the economics of science have 
altered the academic career ladder, making scientific careers a topic of increasing 
interest. Using comprehensive career data for 450 leading scientists from biology, 
mathematics, and physics I will discuss patterns of career growth, reflecting on the 
amplifying role of underlying social processes such as team work and reputation. 
In the case of teamwork, for all three disciplines analyzed and for collaboration 
sizes ranging from 1 up to 100 coauthors per year, we observe a diminishing 
returns in annual publication rates when controlling for collaboration size, a feature 
that reflects team management, coordination, and training inefficiencies. These 
factors will be important in light of the increasing prevalence of ``big science''. 
Indeed, the gradual crowding out of singleton and small team science by large 
team endeavors is challenging key features of research culture. It is therefore 
important for the future of scientific practice to reflect upon the scientists’ ethical 
responsibilities within teams. Reputation, on the other hand, is an important social 
construct in science, which enables informed quality assessments of both 
publications and careers of scientists in the absence of complete systemic 
information. However, the relation between reputation and career growth of an 
individual remains poorly understood, despite recent proliferation of quantitative 
research evaluation methods. I will discuss an original framework for measuring 
how a publication’s citation rate depends on the reputation of its central author, in 
addition to its net citation count. I will show how a new publication may gain a 
significant early advantage corresponding to roughly a 66% increase in the citation 
rate for each tenfold increase in author reputation.
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FIG. 1: Longitudinal analysis of publication and citation growth patterns. (a,b) Growth curves, appropriately rescaled to start from
unity, show the characteristic career trajectories of the scientists in each cohort. The characteristic ↵ and ⇣ exponents shown in each legend
are calculated over the growth phase of the career, in (a) over the first 30 years and in (b) over the first 20 years. The mathematicians [E]
have distinct career trajectories, with ↵ ⇡ 1 since collaboration spillovers play a smaller role in their production growth. (c) Schematic
illustration of the multiplex scientific network surrounding career i. Links in the upper network represent the dynamic collaborations between
scientists (nodes); links within the lower network represent the citation network between papers (nodes); the cross-links between the networks
represent the association between individual careers and the corresponding publication portfolio, serving as a platform for reputation signaling
[14, 21, 23].
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FIG. 1: Longitudinal analysis of publication and citation growth patterns. (a,b) Growth curves, appropriately rescaled to start from
unity, show the characteristic career trajectories of the scientists in each cohort. The characteristic ↵ and ⇣ exponents shown in each legend
are calculated over the growth phase of the career, in (a) over the first 30 years and in (b) over the first 20 years. The mathematicians [E]
have distinct career trajectories, with ↵ ⇡ 1 since collaboration spillovers play a smaller role in their production growth. (c) Schematic
illustration of the multiplex scientific network surrounding career i. Links in the upper network represent the dynamic collaborations between
scientists (nodes); links within the lower network represent the citation network between papers (nodes); the cross-links between the networks
represent the association between individual careers and the corresponding publication portfolio, serving as a platform for reputation signaling
[14, 21, 23].
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