A Multi-agent Simulation Model on Individual Cognitive Structures and Collaboration in Sciences

Bülent ÖZEL

ozel@uji.es Universidad Jaume I Department of Economy Castellon De La Plana, Spain

> SPOS 2014 - Lorentz Center April 7-11, 2014

> > Leiden, Netherlands

Outline

Modelling Motivation Related Simulation Models Agent Design Implementation Initial Results Discussion on Further Modelling Issues

イロト イポト イヨト イヨト

э

- Mutuality of knowledge and social structure theory borrowed from sociology of knowledge literature, where knowledge is perceived as an essentially social and societal category.
- Limitations of approaches caused by applying isolated techniques which detach social structure from knowledge.
- Possibility of decoding fundamental aspects of scientific practices, such as knowledge diffusion and collaboration structures which are encoded in bibliographic entries.

・ ロ ト ・ 雪 ト ・ 目 ト ・

Motivation Simulation Modelling

- incorporating a dynamic social network perspective while modeling interactions in between agents
- examining and designing various knowledge creation and diffusion mechanism as the outcomes of agent-agent interactions
- examining impact of cognitive structure of scientists at incentives to pick a collaborator

Related Simulation Models

- Zhuang et. al. (2011)
 - knowledge diffusion and knowledge accumulation
 - random number of neighbors is formed
 - knowledge is quantified
 - knowledge absorption is proportional to agent's existing knowledge
- Gao and Madey (2007)
 - exemplifies a multi-agent simulation of collaboration
 - no knowledge structure
 - agents joins to tasks no explicit agent-agent interactions
- Sun et.al. (2012)
 - multi-agent collaboration to simulate split and merge of new fields.
 - random walks at picking collaborators
 - knowledge representation is attributional and is at disciplinary level
- Edmonds, B. (2014) "A Simulation of a Formal Science inference of new theorems and publishing results"

Bülent ÖZEL

- agent: author
- memory: individual cognitive structure
- memory: collaboration history

Slide 6 of 30

- co-authorship networks
- collaboration history
- transitivity mechanism

< ∃ >

Collaboration Behaviors

- stay idle
- publish solo
- seek for co-authors

Co-authorship

$$P_w^n = \begin{cases} \frac{w_{ij}}{\sum w_{ik}} & \text{if } n <= 2\\ (\frac{w_{ij}}{\sum w_{ik}})^{n-1} & (\frac{w_{ij}}{\sum w_{ik}})^{n-1} \end{cases}$$

Bülent ÖZEL A Multi-agent Simulation Model on Individual Cognitive Structures and Collaboration in Sciences Slide 9 of 30

ヘロンス 留とる 開とる

э

Cognitive Structure of Agents

- publication keywords
- keyword co-occurance relations

Cognitive Structure of Agents

< ∃→

< A

э

- common knowledge space of dyads
- random walk on semantic ties
- update of individual cognitive structures

Cognitive Resemblances

 $AK_i \cap AK_j = \emptyset$ $AK_i \cap AK_j = K_{ij}$ $AK_i \subset AK_j$

< ∃ →

Modelling Output of Collaboration

- start a random walk from common knowledge space
- random walks on semantic links
- semantic links in a breadth first search manner:

$$P_w = \frac{w_{ij}}{\sum\limits_k w_{ik}}$$

 all keywords on a walk makes up the set of keywords of new publication

Injection of New Knowledge

- \blacktriangleright $P_{injection}$
- a uniformly random link to existing knowledge of co-authors
- link formation based on a preferential attachment mechanism

< 日 > < 同 > < 回 > < 回 > < 回 > <

Implementation Chart

Bülent ÖZEL A Multi-agent Simulation Model on Individual Cognitive Structures and Collaboration in Sciences

Slide 16 of 30

イロト イポト イヨト イヨト

Software Tools

- RePast(Java) Platform
 - model development
 - initialization
 - experiment setup
 - simulation
- Python
 - simulation output data formation
- R Programming
 - Packages: Base, SNA, Network, RSiena
 - analysis
 - visualization
 - validation

Data

- 20 Authors
- 200 Papers
- ► 10 years
- initialization
- validation

イロト イポト イヨト イヨト

э

Bülent ÖZEL A Multi-agent Simulation Model on Individual Cognitive Structures and Collaboration in Sciences Slide 19 of 30

Bülent ÖZEL A Multi-agent Simulation Model on Individual Cognitive Structures and Collaboration in Sciences Slide 20 of 30

Bülent ÖZEL A Multi-agent Simulation Model on Individual Cognitive Structures and Collaboration in Sciences Slide 21 of 30

Bülent ÖZEL A Multi-agent Simulation Model on Individual Cognitive Structures and Collaboration in Sciences Slide 23 of 30

Initial Results

WavelDs	Components	Density	Triangles	Transitivity
1	12	0.11	2	1.00
2	8	0.15	2	0.40
3	8	0.15	2	0.40
4	7	0.17	3	0.41
5	7	0.19	6	0.58
6	5	0.21	6	0.46
7	4	0.22	6	0.43
8	4	0.22	6	0.43
9	3	0.27	9	0.41
10	2	0.31	12	0.46

Bülent ÖZEL A Multi-agent Simulation Model on Individual Cognitive Structures and Collaboration in Sciences

э

ヘロト 人間 とくほとくほとう

Discussion on Further Modelling Issues

- arrival and leave of new agents
- impact of current cognitive structure at incentives to pick a collaborator
- relation in between emergent collaboration structures and cognitive structures
- how new knowledge is semantically related
- validation
- using large data sets