





#### **SSPoS** @ Lorentz Center 2014

# Mechanisms for science: Leasons learned from modeling peer review

Francisco Grimaldo, Juan Bautista Cabotà (U.València) Mario Paolucci (LABSS- ISTC- CNR) Flaminio Squazzoni (GECS-U. Brescia)

.....

### The problem Peer review (PR) process

- PR is a cornerstone of science as it ultimately determines how the resources of the science system are allocated.
- Scrutinizes scientific contributions before they are made available to the community.
- Used in conferences, journals, granting agencies for project evaluations...
- As any social process, it should be evaluated with respect to a series of parameters [LiquidPub project]:
  - Efficiency, effectiveness, fairness, fraud
- detection, innovation promotion...

#### The context State of the art

- Diffuse dissatisfaction of scientists towards the current mechanisms of peer review:
  - Famous papers initially rejected.
  - PR failures due to judgement bias and misconduct.
- Previous studies have found that:
  - PR includes a strong "lottery" component, independent of editor and referee integrity [Neff & Olden, 2006].

 Numerical evidence on the failures of PR [Casati et al., 2011].

- "Rational" scientist can corrupt the PR mechanism under certain circumstances [Thurner & Hanel, 2010].
- Rather low level of agreement [Bornmann, 2014].

# The models **Aim of this research**

- To create a model (better, a <u>plurality of models</u>) of peer review that takes into account recent theoretical developments in recommender systems and reputation theories and test the proposed innovations.
- Today I will ...
  - ... draw an overview of how we foresee such models.
  - ... present alternative implementations of them.

# Modeling peer review Two opposing forces

- Simplify to the extreme:
  - Swarm intelligence.
  - Complex systems, economics.
  - Synchronous, interleaved, stepwise.
  - Failures by oversimplification.
- Make it as complex as you can:
  - Cognitive intelligence.
  - Philosophy, sociology, psychology, engineering
  - Asynchronous, concurrent, behevioral-driven.
  - Failures by overfitting and validation.

### Modeling peer review A pragmatic standpoint

- Focus on mechanisms, thus dealing with:
  - Processes and algorithms.
  - Parameters and distributions.
- GECS U. Brescia:
  - A PR model with no name.
- LABSS-ISTC-CNR:

```
• PR-M.
```

# A PR model with no name An ABM in NetLogo

#### • Starting point:

• Opening the Black-Box of Peer Review: An Agent-Based Model of Scientist Behaviour. F. Squazzoni, C. Gandelli. JASSS. 2013.

- Effect of reciprocity on the quality of PR.
- Extensions:

• <u>Reviewing behaviors</u>: random, fair, unreliable and strategic (local competition vs. glass ceiling).

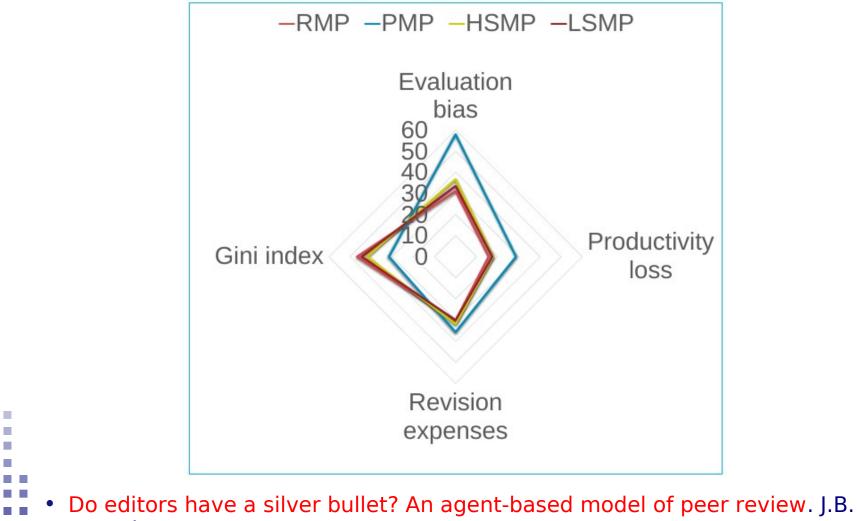
 <u>Author-referee matching policies</u>: random, peer, higher-skilled and lower-skilled.

#### A PR model with no name Overview of the model

- Entities and state variables:
  - Scientists (resources & behavior).
  - Editorial policy (publication rate & matching).
- Process overview and scheduling:
  - Noisy production and evaluation.
  - Resource accumulation and expenses.
  - Evaluation bias, productivity loss & Gini index.
- Submodels:
  - +16 extracted by combining reviewing
  - behaviors with editorial matching policies.

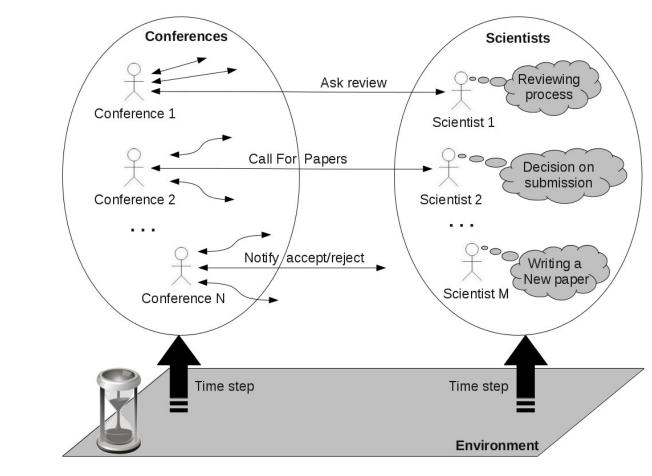
### The PR-M model Two research questions

- What is the impact of strategic behaviors by referees on the quality and efficiency of PR?
- Which are the effects of different editorial policies to match referees and authors based on their academic status?




### Experiments and Results Effects of cheating behaviours

| Scenario                                           | Evaluation bias | Productivity<br>loss | Reviewing expenses |  |  |
|----------------------------------------------------|-----------------|----------------------|--------------------|--|--|
| Weak selection (75% published submissions)         |                 |                      |                    |  |  |
| Random<br>behaviour                                | 16.51 %         | 7.68 %               | 25.98 %            |  |  |
| Cheating                                           | 20.07 %         | 4,91 %               | 21.34 %            |  |  |
| Medium-level selection (50% published submissions) |                 |                      |                    |  |  |
| Random<br>behaviour                                | 25.27 %         | 14.98 %              | 30.77 %            |  |  |
| Cheating                                           | 56.63 %         | 28.02 %              | 32.21 %            |  |  |
| Strong selection (25% published submissions)       |                 |                      |                    |  |  |
| Random<br>behaviour                                | 29.42 %         | 15.00 %              | 29.42 %            |  |  |
| Cheating                                           | 70.86 %         | 34.72 %              | 35.24 %            |  |  |




#### Experiments and Results Effect of the matching policy



Cabotà, F. Grimaldo, F. Squazzoni. ECMS. 2014.

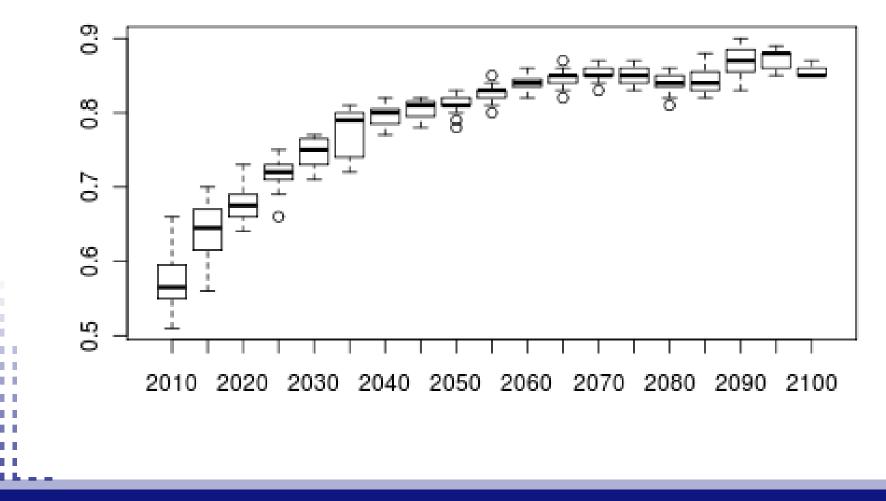
### The PR-M model Overview of the MAS in Jason



 Paper intrinsic values are integers in a <u>N-values ordered</u> scale, ranging from strong reject to enthusiastic accept.

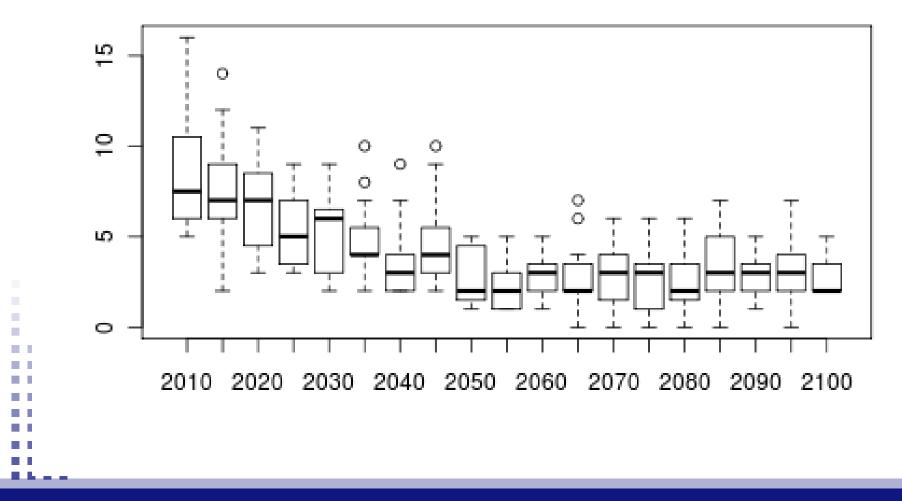
### The PR-M model **Entities**

- Papers:
  - Object level: Any item subject to evaluation (e.g. papers, project proposals...).
  - Object value is noisily perceived.
- Scientists:
  - Writing and reviewing skills and decisions.
  - Strategic behaviours (e.g. rational cheating to elliminate competitors).
- Conferences:
  - Acceptance rate and policy (e.g. unanimity).
  - PC selection based on disagreement.


### The PR-M model Two research questions

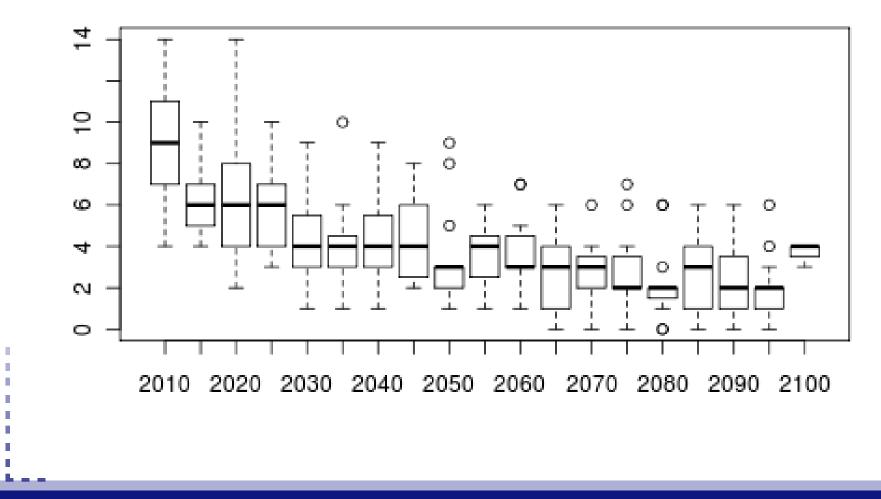
- Can the PR system ensure quality in the face of variable reviewing skills or strategic behaviors, thanks to some selection process of the PC composition that leans on disagreement control?
- Is the rational strategy really detrimental? In which sense and under which circumstances?




### Experiments and Results **Efficiency**

#### Skill of reviewers




### Experiments and Results Fairness (Type I errors)

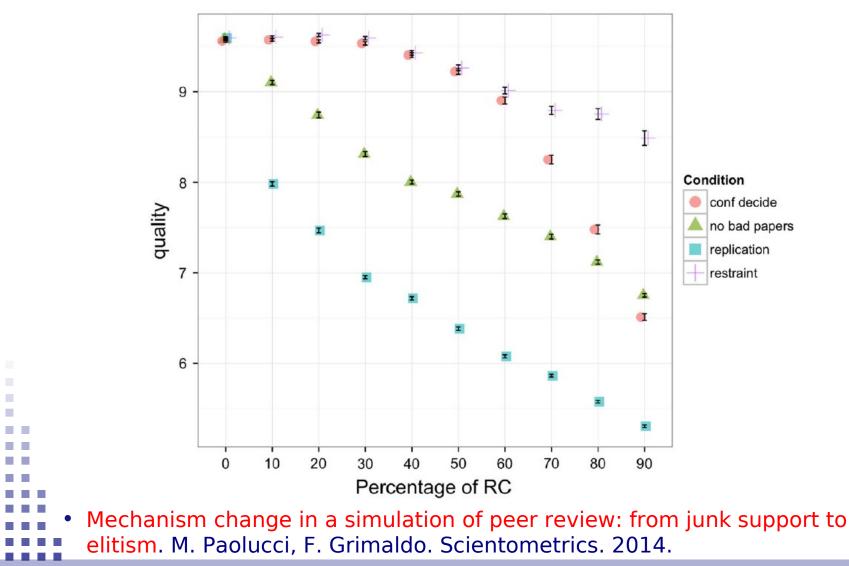
Bad papers accepted



### Experiments and Results Fairness (Type II errors)

Good papers rejected




### Experiments and Results **Effectiveness**

| Conference    | % Initial<br>disagreements | % Final disagreements | % Disagreement<br>reduction |
|---------------|----------------------------|-----------------------|-----------------------------|
| National      | 18.25                      | -                     | -                           |
| Summer School | 10.71                      | -                     | -                           |
| International | 5.41                       | -                     | -                           |
| Intl. Core C  | 5.0                        | -                     | -                           |
| Intl. Core B  | 0.0                        | -                     | -                           |
| Hom-0%RC      | 4.3                        | 2.9                   | 32.6                        |
| Hom-10%RC     | 6.1                        | 4.5                   | 26.2                        |
| Hom-30%RC     | 11.9                       | 5.6                   | 52.9                        |
| Het-0%RC-LQ   | 4.7                        | 3.6                   | 23.4                        |
| Het-0%RC-MQ   | 3.4                        | 1.7                   | 50.0                        |
| Het-0%RC-HQ   | 4.2                        | 3.8                   | 9.5                         |
| Het-10%RC-LQ  | 9.4                        | 4.2                   | 55.3                        |
| Het-10%RC-MQ  | 8.6                        | 5.5                   | 36.1                        |
| Het-10%RC-HQ  | 5.2                        | 2.4                   | 53.9                        |
| Het-30%RC-LQ  | 46.0                       | 11.8                  | 74.4                        |
| Het-30%RC-MQ  | 16.0                       | 6.1                   | 61.9                        |
| Het-30%RC-HQ  | 3.9                        | 2.8                   | 28.2                        |

• A simulation of disagreement for control of rational cheating in peer

review. F. Grimaldo, M. Paolucci. Advances in Complex Systems. 2013.

### Experiments and Results Effect of rational cheaters



### What then? Some conclusions

- PR outcomes are sensitive to how scientists identify their competitors (e.g. local competition reduces negative effects)
- Editorial counteractions to reduce the impact of referee misbehavior
  - Avoid peer matchings under local competition.
  - Select referees considering disagreements.
- PR and strategic behavior show a complex interaction:
  - It can cause a quality collapse or even a slight
  - quality increase depending on the mechanisms.

# Further steps Ongoing and future work

- Ground model assumptions:
  - Game theoretical description and analysis.
  - Calibration from experiments.
- Adding networks:
  - Co-author, citation and behavioral networks.
  - Network dynamics.

```
• Data analysis and validation...
```

# Playground or battlefield Curopean Conscience and To Science and T

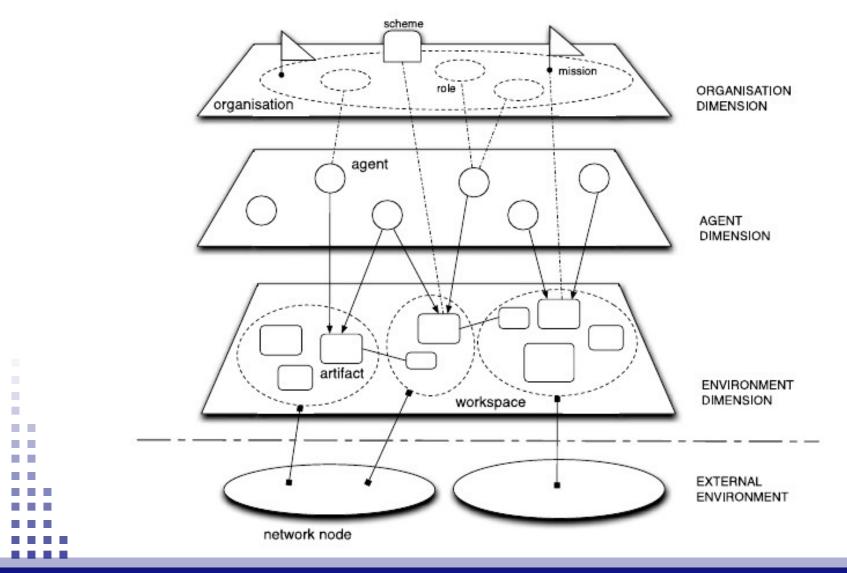
- Improve efficiency, transparency and accountability of PR
- Kick-off meeting: May 12<sup>th</sup>, 2014.
- Working groups:
  - Theory, analysis and models of PR.
  - Data sharing and testing:
    - Elsevier & Springer on board.
  - Research and implementation agenda.
- http://www.cost.eu/domains\_actions/TDP/Actions/TD1306










### Thank you!

# Mechanisms for science: Leasons learned from modeling peer review

Francisco Grimaldo, Juan Bautista Cabotà (U.València) Mario Paolucci (LABSS- ISTC- CNR) Flaminio Squazzoni (GECS-U. Brescia)

.....

### Some more details... JaCaMo system overview

