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Topic and Sub-Topics	


Graphic Models of 

Population 
Processes 

Evolutionary 
Processes on Graphs 

Information Spread In 
Structured 

Populations 

General Processes on Graphs 

Processes with  
Variation/Selection 

Specific Models of Propagation 



Many Areas of Application	



Information 
Spread 

Crowd dynamics: 
rumor, gossip, 
urban legends, 
social media, 
politics, panic 

Mutant genes, 
cancers, neural 

networks 

Innovation (e.g., U.S. 
Dept. of Agriculture, 

1920s on)  

Epidemic 
Models 
(HIV, 

SARS, 
etc.), 

Computer 
Viruses 

Ecological 
Tracking, 
Invasive 
Species 

Tracking  
Terrorists 

Marketing 



The Initial Question 

Given a genetically homogeneous population of 
size N, having relative fitness 1 for all members, 
suppose that a single mutation with fitness r is 

introduced at time 0.  The fitness r may be 
greater or less than 1. 

What is the probability this mutation will 
become fixed in the population? 



The Initial Answer 
Patrick Moran (1958) gave an answer using a 

Markov Birth-Death process: At each time step: 
Choose a vertex at 
random, biased by fitness, 
to “reproduce.” 

Choose a vertex 
accessible from the 
reproducing vertex to die 

Replace the dead vertex 
by a copy of the 
reproducing vertex 



The Initial Answer: The Math 

The “Moran process” is a discrete time 
Markov process on S = {0,1,…,N} where 
state m corresponds to m mutants and N – m 
normals in the population.  If pm,m±1 is the 
probabilities of state transitions m à m±1 and 
xm is the probability of fixation starting from 
state m then x0 = 0 and xN = 1.  



The Initial Answer: The Math 
The Markov evolution equations are 
 
 
 
and the fixation probability              is  
 
 
          
 

x0 = 0, xN = 1
xm = pm−1,mxm−1 + pm,mxm + pm+1,mxm+1

ρM = x1

ρM = 1

1+ gm
m=1

k

∏
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∑
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The Initial Answer: The Math 

For the Moran process  
 
 
 
 
 
 
 
 

pm,m−1 =
1

N −m + rm
, pm,m+1 =

r
N −m + rm

gm = 1
r

 

ρM =
1− 1

r
1− 1

rN
= rN−1

1+ r ++ rN−1



The Next Question 

Does population structure 
influence this result? 

Represent a population of size N by a 
graph with N vertices together with an 
edge-weight matrix W such that wij is 
the probability that if individual i is 
chosen for reproduction, then individual 
j will be chosen for death.   



The Next Answers 
 
Early studies (Maruyama, 1974; Slatkin,1981) 
indicated that population structure did not seem to alter 
fixation probabilities.   
 
In 2005, however, Lieberman, Hauert, & Nowak 
published the seminal paper (Nature, 433, 312 – 316),  
demonstrating that certain graphs could suppress or 
enhance fixation probability relative to the Moran case. 
 



The Isothermal Theorem	


Isothermal Theorem (Liberman, et al, 2005) 
A graph G with edge weight matrix W is 
fixation-equivalent to a Moran process if and 
only if for all j, k  

 

I.e., if and only if W is doubly stochastic.   

(The sums here are called the “temperatures” 
of vertices j and k; the hotter the temperature 
the more exposure a vertex has to change.) 

wij
i=1

N

∑ = wik
i=1

N

∑



Some Moran-Equivalent Graphs	



Early work on fixation probabilities based on 
graphs such as these indicated that population 
structure had no influence. 
*From Liberman, et al (2005) 

* 

 
      c = complete graph,  
      d = cycle 



Suppressing Selection	


Some graphs that suppress selection: 

In particular, the  line and rooted tree have 
fixation probability 1/N. 

* 

* From Liberman, et al (2005) 



Suppressing Selection	


 

  

 

Population structures that suppress selection can 
protect against rapidly reproducing malignant 
mutations.  Skin tissue and colon lining, for 
example, are hierarchically structured from less 
to more differentiated cells.  Only mutations that 
appear in the initial stem cells can go to fixation. 

Stem 
Cell 

Skin Cells 



Enhancing Selection	


 

  

 

Some graphs that enhance selection:  

 

 

 

 

 

 

 
 

 

 

* 
*From Liberman, et al (2005) 



Birth-Death Dynamics on Graphs	


A state space approach  

 
A configuration of mutants defines a length N 
binary vector     with vi equal to 0 or 1 as 
vertex i is occupied by a normal or mutant.  
The full state space is the vertex set V(HN) of 
the N-Hypercube.   
 

 
v



Line of Solution 

•  Population graph (G,W) 
•  W is weighted adjacency matrix 

Subset of N 
Hypercube 

•  State Transition Diagram 
(STD,T)  Size 2Nx2N 

Fixation 
Probability 

Vector 
•  Fixation 

Probability 

Construct 
transition 
matrix T 

 (I −T ) ⋅
x = 0



Birth-Death Dynamics on Graphs	


 
Population evolution is given by a Markov 
process on V(HN) with transition matrix T.  
Given T, the steady state solution determines 
fixation probabilities.   
 
The question is finding T given the edge 
weight matrix W.   



Birth-Death Dynamics on Graphs	


Given a population state   , define vectors 
 
 
aj(  ): the sum of probabilities that an edge from 
a mutant vertex terminates at vertex j. 
 
bj(  ): the sum of probabilities that an edge from 
a normal vertex terminates at vertex j.  
 
                       , where   is the temperature vector.   

 
a(v) = v ⋅W ,


b(v) = ′v ⋅W ′vi = 1− vi

 
a(v)+


b(v) =


t

 
v

 
v

 

t

 
v



Birth-Death Dynamics on Graphs	


Theorem (Transition Matrix Construction):  
Let a birth-death process be defined on a graph G 
with edge weight matrix W.   
 
1.  The transition probability  
(v1,…,vj-1,0,vj+1,…,vN) à (v1,…,vj-1,1,vj+1,…,vN) 
is  
 
 
 

 

raj (
v)

N −m + rm



Birth-Death Dynamics on Graphs	


2. The transition probability  
(v1,…,vj-1,1,vj+1,…,vN) à (v1,…,vj-1,0,vj+1,…,vN) 
is  
 
 
3. The probability that    remains unchanged is  
 
 
 

 

bj (
v)

N −M + rm

 
ra(v) ⋅ v +


b(v) ⋅ ′v

N −m + rm

 
v



The Transition Matrix T	


 

The transition matrix T is row stochastic with 
maximum eigenvalue 1 and corresponding 
eigenvector     = s1 where 1 is the 2N vector of 
all ones. There are two absorbing states, 0 and 
1: the mutation either becomes extinct, or 
goes to fixation.  

 

 

ξ



The Transition Matrix T	


Since 0 and 1 are the only absorbing states 
the matrix 
 
consists of initial and final non-zero columns 
with all other entries equal to 0:  
           T*

uv = 0, v ≠ 0, 2N – 1.   

T * = lim
k→∞

T k



Birth-Death Dynamics on Graphs	


Theorem 1 allows construction of the transition matrix 
T:V(HN)àV(HN).  If     is an element of V(HN) it is a 
binary number with denary form 
 
 
 
Let xv be the probability of fixation starting from the 
state   .   
 

v = vk2
k−1

k=1

N

∑

 
v

 
v



Birth-Death Dynamics on Graphs	


Theorem: If xv is the fixation probability starting 
from an initial configuration represented by the 
vector    then the Markov process on V(HN) 
yields the set of master equations:  
 
 
 
 
 
  

N + (r −1)m − ra(v) ⋅ v −

b(v) ⋅ ′v⎡⎣ ⎤⎦ xv

− r ai (
v)vi′xv+2N−i −

i=1

N

∑ bi (
v)vixv−2N−i = 0

i=1

N

∑
x0 = 0, x2N −1 = 1

 
v



Example	



For the graph                    there are 16 equations 

and    

 

 

 

 
 

 

!
!
!
!
!
!
!

!
!

!

! ! ! ! !

!
n R(r) coefficient of rn P(r) coefficient of rn 

0 4704 1152 

1 66,408 16,416 

2 419,344 108,384 

3 560,082 439,424 

4 3,801,097 1,226,164 

5 6,388,510 2,515,774 

6 7,603,301 3,992,261 

7 6,468,470 5,131,031 

8 3,912,548 5,549,348 

9 1,645,520 5,131,031 

10 458,496 3,992,261 

11 76,320 2,515,774 

12 5760 1,226,164 

13  439,424 

14  108,384 

15  16,416 

16  1152 

!
!

ρ = r
4R(r)
5P(r)



General Analytic Solutions	


 

  

 

 

In a 2008 paper, Broom & Rychtar give the 
exact solution for the n-Star as well as a means 
of solving for any given line graph.  Zang, et al 
(2012) compute the k-vertex fixation probability 
for star graphs and give an approximation for 
the complete bipartite graph.  
 



Another Analytic Solution	


About two years ago I found the exact fixation probability for the 
complete bipartite graph Ks,n.  
                                                    s     1/n       n 
                                                          

                 1/s 
 
 
 
 
 
 
These, together with Moran-equivalent  cases, are the only known 
general solutions. 

ρS (s,n) =
rn+s−1

sr + n
⎛
⎝⎜

⎞
⎠⎟

snr + n2 − sn + s2( ) nr + s( )n−s−1

P(s,n)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

P(s,n) = r
n+s (nr + s)n−s − (sr + n)n−s

r2 −1
.



Enhancement in Bipartite Graphs	


Typical graphs of                  show selection 
enhancement for r > 1.    

 

 

 

 
 

                 

ρKs ,n
− ρM



Example: (1,2,n) Funnel Graphs 

                  for graphs, and for each class in graph. ρG − ρM



Examples 

What is particularly interesting about these graphs is that 
they increase the fixation probability relative to a Moran 
process for r < 1. 



Limitations and a Warning 
1.  The major limitation is that for a general graph there 

are 2N – 2 equations to solve. 
2.  This makes it important to develop approximation 

methods; using, e.g., the thermodynamic analogy, or 
mean field approaches.  

3.  But WARNING: Averaging methods will return the 
Moran result, eliminating information about the 
influence of graph topology. 



An Application of T	


Suppose a distribution of mutants (or infected 
sites, etc.) is observed, represented by the 
binary vector (v1,…,vN).  Further, suppose we 
can estimate the time t that has elapsed since 
the initial “infection.”  Then the probability 
that the initial infected node was u is given by 
   
 
 

Pinf (u | v(t)) = Tuv
t



Application Questions: Population 
Polarization 

Is it possible 
to find a 
graph-based 
measure of 
polarization 
within a 
population? 

For a population 
represented by a 
graph (G,W) the 
spectrum of the 
Laplacian gives 
information on the 
connectivity of G 



Population Polarization	


For an undirected graph the matrix W, the matrix 
∆ = I – W is the graph Laplacian. For a directed 
matrix ∆ =                             where     is the 
diagonal matrix with entries equal to the steady 
state solutions for W.  The first eigenvalue of ∆ is 
always 0.  The second eigenvalue (the “algebraic 
connectivity”) gives information about the 
difficulty of cutting a graph into disconnected 
parts. 

Φ1/2 I −W( )Φ−1/2 Φ



Population Polarization: Examples	


    1-p                    p                     1 
 
 
     1                      p                     1-p 

Eigenvalues of ∆: 0, p, 2-p, 2 

W =

0 1 0 0
1− p 0 p 0
0 p 0 1− p
0 0 1 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

, Δ =

1 − 1− p 0 0

− 1− p 1 − p 0

0 − p 1 − 1− p

0 0 − 1− p 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟



3,4 Graphs: Limit Cases	



1-p 

1-q 

p/2 

p/2 

1/3 1/2 
q/3 

q/3 

q/3 

(1-q)/3 

(1-p)/4 

Single Link                           Partial Bipartite 

All p/2 All q/3 



Fixation Probability Minus Moran 
Probability for Partial Bipartite (3,4), r=2	



Graph only goes to p = 9/10, q = 9/10 



Fixation Probabilities 3,4 Partial 
Bipartite Graph, r = 2	



Lower sheet is fixation probability of starting from a vertex on the 3 side, upper 
sheet from starting at a vertex on the 4 side. 



Fixation Probability Minus Moran 
Probability for Single Link (3,4), r=2	



Graph only goes to p = 9/10, q = 9/10 



Comparison	



Graphs goes to p = 9/10, q = 9/10 



Comparison	



Graphs goes to p = 9/10, q = 9/10 

Fixation Probabilities for 
vertex on 2 side and 
vertex on 3 side. 

Fixation Probabilities 
linking vertices. 

Difference between 
single link vertices 
fixation probabilities. 



Laplacian Roots 	


x − 1

n −1
⎛
⎝⎜

⎞
⎠⎟
n−2

x − 1
m −1

⎛
⎝⎜

⎞
⎠⎟
m−2

x2 − ′p ′q⎡⎣ ⎤⎦ x − n − 2
n −1

⎛
⎝⎜

⎞
⎠⎟ x − m − 2

m −1
⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

− p
n −1

x − m − 2
m −1

⎛
⎝⎜

⎞
⎠⎟ x −

q
m −1

x − n − 2
n −1

⎛
⎝⎜

⎞
⎠⎟ x +

pq
(n −1)(m −1)

⎫
⎬
⎭

′p = 1− p, ′q = 1− q

(x +1) x −1+ p + q( ) x − p / (n −1)( )n−1 x − q / (m −1)( )m−1

Single Link Case 

(n,m) Partial Bipartite 

λ −1Note: x =  



Laplacian Roots, Single Link Case	



P=0 

P=1 P=3/4 

P=1/2 P=1/4 



Measures of Connectivity: exp(W) for 
3,4 Partial Bipartite	



Trace of exp(W) s=3 vertex centrality n=4 vertex centrality 

Minimum of trace  
At p = 1/3, q = 1/2 

Exp(W) is called the matrix 
“communicability.” 



Measures of Connectivity: exp(W) for 
3,4 Single Link	



Trace of exp(W) Unlinked vertex 
centralities (lower is from 
s = 3 side, upper from n 
= 4 side 

Centralities of linked 
vertices (lower from 3 
side, upper from 4 side 



Other Update Paradigms	


 
In all of this, I’ve used a birth-death update 
paradigm.  Other approaches are possible and 
the approach chosen can influence the results 
obtained. 
  



Other Update Paradigms	


 
Some possibilities:  
1.  Birth-Death  
2.  Death-Birth  
3.  Voter Models  
4.  Probabilistic Voter Models 
  



Basic Questions for Study 

1.  How does interaction structure influence 
the spread of information in a population?   

2.  What is the probability of a mutation 
taking over a population, of a (computer) 
virus spreading, or of a rumor going viral? 

3.  If a distribution of mutants is observed, 
where did it most likely originate?  E.g., 
where did this mutant, virus, rumor, 
innovation, etc., come from?   



Thank You	




