

Prospects for using context to integrate reasoning and learning

Bruce Edmonds
Centre for Policy Modelling
Manchester Metropolitan University

Part 1:

Human Context-Sensitivity

The Elephant in the Room

- Many aspects of human cognition are known to be highly context-sensitive, including: memory, preferences, language, visual perception, reasoning and emotion
- There is a mountain of qualitative research that has documented instances where a specific context is essential to understanding the observed behaviour
- Simple observation and introspection tells us that behaviour in different kinds of situation is not only different but decided on in different ways (e.g. in a lecture or a birthday celebration)

Action within a Social Context

- Without having to do anything conscious we effectively 'inhabit' each social context
- Adapting fluidly to each
- Applying context-specific knowledge there
- Using the social affordances there as an extension of our perception and action

However despite this...

- Almost all formal models of human behaviour (mathematical, statistical, logical or computational) are generic – they do not exhibit this sharp context-dependency
- Another stream of models (models fitted to or tested against data) consider a single model (at a time) against a set of data that derives from many different contexts
- Despite our ability to swap between kinds of situation with unconscious fluency, we often reason with crisp, identifiable beliefs

Part 2:

Talking about "Context"

The Difficulty of Talking about Context

- The word "context" is used in many different senses across different fields
- Somewhat of a "dustbin" concept resorted to when more immediate explanations fail (like the other "c-words": complexity & creativity)
- Problematic to talk about, as it is not clear that "contexts" are usually identifiably distinct
- Mentioning "context" is often a signal for a more "humanities oriented" or "participatory/involved" approach and hence resisted by "scientists" who are seeking general laws

A (simplistic) illustration of context from the point of view of an actor

Situational Context

- The situation in which an event takes place
- This is indefinitely extensive, it could include anything relevant or coincident
- The time and place specify it, but relevant details might not be retrievable from this
- It is almost universal to abstract to what is relevant about these to a recognised type when communicating about this
- Thus the question "What was the context?" often effectively means "What about the situation do I need to know to understand?

Cognitive Context (CC)

- Many aspects of human cognition are contextdependent, including: memory, visual perception, choice making, reasoning, emotion, and language
- The brain somehow deals with situational context effectively, abstracting kinds of situations so relevant information can be easily and preferentially accessed
- The relevant correlate of the situational context will be called the cognitive context
- It is not known how the brain does this, and probably does this in a rich and complex way that might prevent easy labeling/reification of contexts

Social Context

- Since humans are fundamentally social beings...
- ...social context is often most important
- e.g. an interview, a party or a lecture
- But social context may be co-determined, since:
 - Special rules, norms, habits, terms, dress will be developed for particular social contexts
 - The presence of special features, rules etc. make the social context recognisable distinct
- Over time social contexts plus their features become entrenched and passed down
- Social Context arises and is so recognisable as a result of cognitive and external features (a lecture hall, zoom etc.)

Part 3:

Implementing Context-Sensitivity

Context In GOFAI

John McCarthy (1971), Generality in Artificial Intelligence

"p is true in context i" asserted in context c

Context In ML

Main purposes:

- to maintain learning when there is a hidden/unexpected change in context
- to apply learning gained in one context to a similar context
- to utilise already known information about contexts to improve learning

The Problem

some choices:

- Use Global Approaches
 - But inference and learning can be hard
- Specify all the contextual information
 - Can be onerous
- Learn Contextual Information with Content
 - Need an algorithm
- Leave it to the layers of a NN, hope that this deals with it

Fuzzy Domain & Crisp Content

Coincident Clusters of Domain&Content make a Context

Basic Cognitive Model

- Rich, automatic, imprecise, messy cognitive context recognition using many inputs (including maybe internal ones)
- Crisp, costly, conscious, explicit cognitive processes using material indicated by cognitive context

ML context recognition

2. Fuzzy identification of area of memory and the scope Context Recognition **Context-Structured Memory** 1. Rich, multidimensional input

Reasoning/belief update

- 1. Under-determination
 - Neither α nor ¬α can be inferred
 Choose a more specific context

2. Over determination

• Both β and $\neg \beta$ can be inferred Choose a less specific context

Universal learn and infer loop

repeat

learn and/or up update beliefs deduce intentions, plans and actions until finished

Learn and infer loop using context

```
repeat
    repeat
       recognise/learn/choose context, c
       induce/update beliefs in c
       deduce predictions/conclusions in c
    until predictions are possible, consistent
         and actions/plans can be determined
    plan & act (starting from c)
  until finished
```


Part 4:

Example Proof-of-concept in Trading Agents

An Evolutionary Algorithm

Some Space of Characteristics

Comparison in an Artificial Stock Market

Environment:

- Traders (n context, n straight GP)
- 1 Market maker: prices and deals: 5 stocks
- Traders buy and sell shares at current market price, but do not have to do so
- Traders have memories, can observe actions of others, index, etc.
- Modelling 'arms-race'
- Actions change environment

Total Assets in a Typical Run

Black=context, White= non-context

Total Assets of Context Traders – Total Assets of Normal Traders, scaled by standard deviation of assets (7 agents of each type, 9 runs)

(Bold=average, Light= scaled difference for one run)

Average advantage for context traders for 10 runs with 3 traders of each type

Snapshot of model domains in one trader

But some model contents are very simple!

	oriceLastWeek [stock-5]				
model-274 p					
model-271	doneByLast [normTrader-5] [stock-4]				
model-273	DidLastTime [stock-2]				
model-276	DidLastTime [stock-5]				
model-399	minus [divide] [priceLastWeek [stock-2]] [priceLastWeek [stock-5]]] [times] [priceLastWeek [stock-4]] [priceNow [stock-5]]]				

Part 5:

Analysing Data in a more Context-Sensitive Manner (work by Claire Little)

"Troubled Family" Data & I2I Project

- A local authority (LA) negotiated a series of data deals which meant that it could link different data sets around many individuals & families in the area for research purposes only
- This included: input from social worker actions and family relationships (for core families), DWP records, criminal records, school attendance, etc.
- We got a pseudo-anonymised version of this data under strict conditions
- It focused on 2155 families with an intervention between 1st August 2011 and 31st July 2015 funded by the "Troubled Family" program

Using ML to divide TF into 11 clusters

Cluster	1	2	3	4	5	6	7	8	9	10	11
Ciustei	n=291	n=335	n=115	n=61	n=21	n=54	n=25	n=223	n=243	n=182	n=605
	11=291	11=333	U=112	11=01	H=Z1	11=54	11=25	11=225	11=245	11=197	11=605
Receiving DWP benefits	48%	46%	35%	57%	57%	57%	28%	42%	36%	42%	40%
Changed address at least once	46%	53%	73%	49%	48%	48%	64%	30%	54%	42%	36%
Percentage of single person families	8%	3%	4%	10%	14%	0	12%	3%	2%	4%	41%
Drug/Alcohol Events	2%	5%	2%	5%	0	4%	0	1%	3%	4%	1%
Domestic Abuse Events	14%	17%	7%	5%	33%	6%	20%	0	13%	14%	0
Percentage with no children (aged < 18)	11%	0.3%	0	18%	48%	0	4%	0	1%	0	50%
Percentage with no adult (aged >= 18)	4%	8%	7%	5%	0	7%	8%	13%	10%	13%	8%
Pre-existing CPP	5%	10%	6%	2%	10%	2%	4%	12%	1%	3%	3%
Pre-existing LAC	1%	1%	1%	2%	0	0	4%	2%	0	0	1%

A 2D projection of these clusters

Post Hoc Tree Analysis of Clusters (1-7)

School Absences Before and After TFI

1 year Before and After Cluster 5

1 year Before and After Cluster 6

Work Done by Claire Little

As her doctoral research in conjunction with the LA.

For the detail (!!!) see her thesis at:

Little, C. (2018) *Machine Learning for Understanding Complex, Interlinked Social Data*. PhD Thesis, MMU, CPM-2018-211. http://cfpm.org/discussionpapers/219

Part 6:

Concluding Discussion

Conclusions

- If context-dependency is an inherent part of how humans perceive, reason, learn and act, then we should take this on board in data analysis
- Context provides a principled way of integrating rich ML algorithms with thinner but crisp inference and belief update approaches
- It also makes crisp belief update and inference FAR more feasible

The End!

Funders

These slides are available at: http://cfpm.org/slides

Collected papers and slides of mine on context at: http://bruce.edmonds.name/context