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Abstract 

 
This paper compares reproduction schemes for adaptive behavior in an artificial society, where the 
collective task of the society is the gathering of resources in an artificial environment. The environ-
ment is randomly distributed with varying quantities of different resource types, where different re-
source types yield different fitness rewards for agents that successfully gather them.  Gathering of 
the more valuable resource types (those yielding higher fitness rewards) requires cooperative behav-
ior of varying degrees (a certain number of agents working collectively). We compared reproduc-
tion schemes over three dimensions. The first was a comparison of agents that could reproduce only 
at the end of their lifetimes (single reproduction at the end of the agent’s lifetime) and agents that 
could reproduce several times during their lifetime (multiple reproduction during lifetime).  The 
second was a comparison of agents that could reproduce only with agents in adjacent positions and 
agents that could reproduce with agents at any position in the environment. The third compared dif-
ferent methods for deriving the number of offspring produced and the fitness share given to each 
offspring, as well as stochastic variants of these methods. Results indicate that the single reproduc-
tion at the end of the agent’s lifetime scheme afforded the artificial society a higher level of per-
formance in its collective task, according to the evaluation criterion, comparative to artificial socie-
ties utilizing the multiple reproductions during lifetime reproduction scheme. 
 
 

1   Introduction 
Our research interest can be best described by the 
term Emergent Collective Intelligence (ECI)1. It is 
rooted in the artificial society simulations field in 
that it concerns groups of agents, specifically, col-
lectives, which develop certain properties bottom-
up. The applications we envision include engineer-
ing tasks.  
     We are interested in the design of cooperative 
behaviors in groups of agents, where such coopera-
tive behavior could not be developed or specified a 
priori. The key idea is that a desired group behavior 
emerges from the interaction of the component 
agents, where no single agent would be able to ac-
complish the task individually, the task is prede-
fined, and the environment is unknown. The end 
goal of such an artificial social system would be the 
transference of a cooperative behavior design meth-

                                                 
1 http://www.cs.vu.nl/ci/eci  

odology to a physical system (for example: multi-
robot) that has a specific and well-defined task in an 
unexplored environment. For example, we envisage 
the use of such a methodology in swarm-robotics 
(Nolfi et al. 2003) for the gathering of resources in 
hazardous locations (for example: the surface of 
Mars or a deep-sea ocean bed). Hence, associating a 
concrete task with the artificial social system intro-
duces the engineering or design element. If one can 
measure how well the given task is performed, we 
have a natural optimization criterion. Consequently, 
a well-calibrated system will be one where the evo-
lutionary mechanisms (and probably other adaptive 
features) are able to generate high quality collective 
behaviors efficiently.   

In this paper we consider the task of collective 
gathering, where a group of agents need to explore 
their environment in order to find some resources, 
mine them and collect them at a central location. 
The formal objective here can be expressed by the 
total value of resources gathered together in a given 
amount of time. The system, the environment, and 



the task will be described in Section 3: Simulator, 
Environment and Agents.  

As for the agent collective we use an adaptive 
artificial social system where our technical research 
goal is to establish what reproduction mechanisms 
lead to the best results in terms of the total value of 
resources gathered.  In particular, we investigate:  
 

1. Two reproduction schemes, single repro-
duction at the end of the agent’s lifetime 
(SREL) and multiple reproduction during 
an agent’s lifetime (MRDL) 

2. Two mate selection methods locally re-
stricted mating versus panmictic mating. 

3. Two methods for determining the initial fit-
ness of new individuals at birth, and for 
both methods we applied: 
3a. A deterministic variant 

               3b.A stochastic variant  
 
These issues will be discussed in section 4: Experi-
ments and section 5: Analysis and Discussion.   

 

2   Related Literature 
This section presents a brief overview of prevalent 
results pertaining to the study of emergent coopera-
tive behavior, particularly: cooperative gathering 
and transport, within simulated swarm-based sys-
tems. The term swarm-based systems refer to artifi-
cial societies containing potentially thousands of 
agents. Results reviewed maintain particular refer-
ence to research that uses biologically inspired de-
sign principles and concepts, such as emergence, 
evolution and self-organization, as a means of deriv-
ing cooperative behavior to accomplish tasks that 
could not otherwise be individually accomplished.   
     The study of the synthesis of collective behav-
iour, particularly the emergence of cooperation, is a 
research field in which there has been little work 
done in both simulated (Iba, 1996) and real world 
(Quinn, 2000) problem domains. Traditionally col-
lective behaviour and multi-agent systems have 
been studied using a top down classical approach. 
Such approaches have achieved limited success 
given that it is extremely difficult to specify the 
mechanisms for cooperation or collective intelli-
gence in all but the simplest problem domains. The 
investigation of artificial evolution relating to emer-
gent collective behavior, specifically cooperation, 
remains a relatively unexplored area of research in 
the cooperative gathering and transport problem 
domain.  
     With relatively few exceptions, and then only in 
multi-robot systems containing relatively few robots 
(Mataric, 1992), the majority of research in emer-
gent cooperative behavior is restricted to simulated 
problem domains given the inherent complexity of 

applying evolutionary design principles to collective 
behaviors in groups of real robots (Floreano and 
Nolfi, 2000). This is especially true in swarm-based 
systems, which by definition contain thousands of 
individuals.  
     Within simulated swarm-based systems there has 
been a significant concentration of research on the 
study of emergent behavior in artificial ant colonies 
(Deneubourg et al. 1987). Certain artificial life 
simulators and applications have popularized studies 
of swarm-based systems. These include Swarm 
(Daniels 1999), MANTA (Drogoul et al. 1995), 
Tierra (Ray, 2001), and Avida (Adami, 1994). 
     Drogoul et al. (1992a; 1992b), (Drogoul and Fer-
ber, 1992) presented a simulation model of social 
organization in an ant colony termed: MANTA 
(Model of an ANT-hill Activity), which was de-
signed to explore the contribution of emergent func-
tionality such as division of labor on emergent co-
operation. Results elucidated that emergent division 
of labor improved the efficiency of emergent func-
tionality in the population. Such emergent function-
ality included cooperative foraging and sorting be-
havior. The authors concluded that the notion of 
emergent cooperation remains very unclear, difficult 
to define, and that many of the behaviors viewed as 
cooperative emerged as a result of the competitive 
interaction that occurs between individuals in a con-
strained environment with limited resources. 
     As part of the swarm-bots initiative, Nolfi et al. 
(2003) conducted several experiments to address the 
problem of how a group of simulated robots (s-bots) 
could coordinate their movements and actions so as 
to cooperatively move objects in the environment as 
far as possible within a given period of time.  Nolfi 
et al. (2003) conducted a set of experiments de-
signed to facilitate emergent cooperative behavior, 
where a group of eight s-bots were connected to an 
object, or connected so as to form a closed structure 
around an object, and were given the task of moving 
the object as far as possible in the least amount of 
time. In the first set of experiments the eight s-bots 
used what the authors termed the ant formation, 
which connected all s-bots to the object, but there 
were no links between the s-bots themselves. The 
result was dependent upon the weight of the object, 
such that the s-bots cooperatively negotiated to ei-
ther push or pull the object to their destination. In 
the second set of experiments, s-bots were assem-
bled so as to form a circular structure around the 
object. The results were similar to those obtained 
with the ant-formation, with the exception that the s-
bot formation deformed its shape so that some s-
bots pushed the object, while other s-bots pulled the 
object. The mechanism deemed to be primarily re-
sponsible for these results was the neural controllers 
of individual s-bots, which evolved the capability to 
cooperatively coordinate movement when connected 



to either each other or the object. That is, each s-bot 
was inclined to follow the direction that the majority 
of s-bots followed at a given time. 
     From this overview of these different research 
efforts, associable by similar tasks and the general 
research topic of emergent cooperation, it is obvious 
that some formalization of mechanisms for the de-
sign and analysis of emergent cooperation is needed.  
Specifically, if emergent cooperative behavior in 
swarm systems was sufficiently understood, pur-
poseful design of cooperative behavior could be 
applied to benefit a variety of application domains 
including telecommunications (Di Caro and Dorigo, 
1998), space exploration (Brooks and Flynn, 1998) 
and multi-robot systems (Mitsumoto et al. 1995). 
 

3 Environment and Agents 
The experiments presented in this paper were per-
formed with our simulation framework: JAWAS2. 
Using this framework we implemented a particular 
environment and agents populating this environ-
ment. 
 
3.1 Swarm-Scape 
 
Swarm-Scape is a specific swarm-based model im-
plemented within the JAWAS simulation frame-
work. Swarm-scape utilizes an initial population of 
1000 agents, placed at random positions on a grid-
cell environment with a 50 x 50 resolution. A 
maximum of 4 agents can occupy any given grid-
cell within the environment. Also, a home area 
spanning 4 x 4 grid-cells is randomly placed some-
where within the environment. This home area is 
where each agent must deliver resources that it is 
transporting. The process of mining, transporting, 
and delivering a resource is termed gathering.   
     Within the environment there exist three types of 
resources: gold, iron and stone. It is essential in our 
design that resources also have a value that can dif-
fer for different types of resources. In particular, in 
our present system one stone-unit is worth of 1 ab-
stract unit of value, one iron-unit is worth 2, and one 
gold-unit is worth 4.  
     Initially, there is some quantity, defined in terms 
of resource units, of each resource type. For each 
grid-cell, a maximum quantity (number of resource 
units) of each resource is specified, and for all grid-
cells the re-grow rates (number of resource units 
that are replenished per simulation iteration) of each 
resource is specified. Each of these resources has 
different properties pertaining to its value and cost 
to transport for each agent.   
                                                 
2 JAWAS: Java Artificial Worlds and Agent Societies, can be 
downloaded from http://www.cs.vu.nl/ci/eci/ 
 

     In order to mine each resource some degree of 
cooperative behavior is necessitated.  Specifically, 
to mine a unit of gold (the most valuable resource), 
4 agents need to be situated on the same grid-cell.  
To mine a unit of iron (the medium valued re-
source), at least 3 agents need to be situated on the 
same grid-cell.  To mine a unit of stone (the least 
valuable resource), only a single agent needs to be 
situated on the grid-cell. For the purposes of the 
experiments described within this paper, the term 
cooperation was defined as the instance when at 
least two agents, situated on the same grid-cell, si-
multaneously attempted to mine the same resource 
unit.  
 
3.2 Task Environment 
 
The task of each agent in the environment is the 
gathering of the highest possible value of resources 
during the course of its lifetime. This task was inter-
faced to the agent collective by using the value of 
the resources gathered by an agent, where gathered 
value translates into fitness rewards. In our system, 
fitness was used as a metaphor of energy: perform-
ing actions costs fitness units. Furthermore, fitness 
also played its conventional role in survivor selec-
tion: if an agent’s fitness reaches zero, it dies.   
    The particular method we used to reward agents’ 
performance worked as follows. In an instance when 
a resource unit is delivered to the home area, the 
agent is given a fitness reward proportional to the 
total value of the resource units delivered.  Specifi-
cally, one gold-unit yields a fitness reward of 20 
fitness units, 1 iron-unit yields a fitness reward of 10 
fitness units, and 1 stone-unit yields a fitness reward 
of 5 fitness units.  The total fitness reward corre-
sponded to the total value of the resources an agent 
delivered. 
     The initial amount of gold, iron and stone in the 
environment was 250, 500, and 1000 respectively, 
where the number of resource units that could be on 
any given grid-cell was unlimited.  The re-grow rate 
for each of the three resources was 1 unit per 3 
simulation iterations.   
 
3.3 Swarm Agents  
 
Our agents were based on the classical SugarScape 
design, adopting most of the SugarScape features 
(Epstein and Axtell, 1996).  An agent was able to 
detect agents and resources for a number of grid-
cells determined by a sight property.  Specifically, 
an agent was able to detect the number of agents, 
and the types of resources, in all grid-cells surround-
ing its current position for a distance (number of 
cells) given by sight. 



Each Swarm-Agent used the following set of heuris-
tics in order to determine the action it takes during 
any given simulation iteration: 
 
IF end of life and SREL active THEN reproduce 
 

IF at home THEN unload resources transported  
 

   IF MRDL active THEN reproduce 
 

IF transporting a resource THEN go home 
 

ELSE IF gold detected THEN move to gold 
 

   ELSE IF iron detected THEN move to iron 
 

      ELSE IF stone detected THEN move to stone  
 

         ELSE move to a random cell 
 
For any given simulation iteration, each agent was 
able to move for a number of grid-cells in any posi-
tion given by the value set for its move property. 
Both the sight and move properties were initially set 
to one grid-cell. Also, upon initialization each agent 
was assigned the maximum time for which it would 
live, assuming that it did not reach zero fitness be-
fore this time. This property termed: death age was 
randomly set for each agent to a value between 40 
and 80 upon its initialization.  
     Each agent in the population followed a set of 
heuristics directing the agent to move, to mine, and 
then to transport the most valuable resource it could 
find in the environment. Once an agent had mined 
as much of a given resource as it could transport 
(determined by the resource type and the number of 
units mined), it would immediately begin transport-
ing the resource units back to the home area.  Each 
agent had several properties dictating restrictions on 
its behavior.   
     The maximum gold mining capacity property 
specified the maximum number of gold units that 
each, of 4 cooperating agents, could mine. For these 
experiments the maximum gold mining capacity 
property was set to 5. The maximum iron mining 
capacity property specified the maximum number of 
iron units that each, of at least 3 cooperating agents, 
could mine. For these experiments the maximum 
iron mining capacity property was set to 10. The 
maximum stone mining capacity property specified 
the maximum number of stone units that each agent 
could mine.  For these experiments the maximum 
stone mining capacity property was set to 20.The 
transport-capacity property determined the maxi-
mum number of units of resources a single agent 
could transport.   
     An important property for each agent was its 
fitness (that is: the agent’s energy rating). At the 
beginning of each simulation, fitness was randomly 
initialized for each agent to a value between 90 and 
100.  Every action taken by the agent cost some 
portion of its fitness. Mining of any resource type 
cost one fitness unit. Every grid-cell of distance that 
an agent moved cost one fitness unit. An agent’s 

fitness could only be replenished when it delivered a 
resource unit to the home area of the environment. 
      The initialization settings for each of these pa-
rameters is based the most ‘appropriate’ settings for 
the given environment, as ascertained in previous 
experiments (Vink, 2004).  
 
3.4 Reproduction of Swarm Agents  
 
In our system, agents evolved, that is, they under-
went variation and selection where the environment 
performed selection implicitly. Agents with a high 
fitness (those that performed their tasks most effi-
ciently) were selected for, where as poorly perform-
ing agents with not enough fitness died. Variation of 
agents was accomplished by recombination of agent 
genotypes.  
     The core of reproduction was the reproduction 
cycle where two parent agents created a number of 
offspring agents via recombining their own genes 
for maximum gold mining capacity, maximum iron 
mining capacity, maximum stone mining capacity 
and transport-capacity and passing the average of 
their values onto their offspring.  
    In this investigation we compared two temporal 
schemes for reproduction. In the SREL scheme an 
agent could only perform one Single Reproduction 
act at the End of its Lifetime. That is, when each 
agent reached the end of its lifetime it selected m 
mates (partner agents) and then produced a number 
of offspring according to the particular reproduction 
method being used. In the MRDL scheme Multiple 
Reproduction acts are executed During Lifetime. 
Using the MRDL scheme, every agent was able to 
reproduce when a resource quantity was delivered to 
the home area. Upon delivery of a resource quantity, 
the agent would receive an immediate fitness re-
ward, and a reproduction cycle would start. During 
this cycle the agent would select m partner agents 
from the environment, and then produce a number 
of offspring according to the reproduction parame-
ters being used. 
     The second reproduction feature we studied here 
concerns the spatial distribution of mates for repro-
duction: panmictic versus locally restricted mate 
selection. Using the locally restricted method, an 
agent could only reproduce with agents in the adja-
cent grid-cells. In this case, all agents on the same 
grid-cell or in adjacent grid-cells were taken into 
account as mates. Using the panmictic method, an 
agent could reproduce with any other agent any-
where else in the environment.  In this case the 
number of mates m was a random integer between 0 
and 10 drawn with a uniform distribution. 
     Third, we compared two methods for determin-
ing the initial fitness given to offspring agents at 
birth. For both fitness inheritance methods we used 
a distribution mechanism where 90 percent of a par-



ent agent’s fitness was passed onto and divided 
among its offspring and we divided the total amount 
of fitness to be inherited (x) over the number of 
children (n) equally, that is, giving each offspring 
agent y = x/n fitness units. The parameters to distin-
guish the investigated methods were n and y.  
     Using the first method, n, the number of off-
spring to be produced was predefined and y was 
derived for each reproduction act by dividing the 
actual value of x for the two given parent agents by 
n. In the second method, the fitness share y was pre- 
defined and n was determined as x/y (rounded up). 
The values we used for our experiments are n = 5 
for the fixed number of offspring method and y = 10 
for the fixed offspring fitness method. 
     For both fitness inheritance methods we applied 
deterministic and stochastic variants. The determi-
nistic variants simply used outcomes of the calcula-
tion (rounded up, when needed). The stochastic vari-
ants were the same two methods, though random 
noise was added to the fitness share (in the case of 
the first method), or random noise to the number of 
children produced (in the case of the second 
method).  In the case of the first stochastic variant, 
the random noise was generated within the range 
between -1 and +1 by a uniform distribution, and in 
the case of the second variant, random noise was 
generated within the range of -5 and +5. 
           

4 Experiments and Results 
 
We designed our experiments along three parameter 
dimensions and two values for each dimension as 
outlined in the research objectives:  
 

1. Reproduction scheme: SREL versus 
MRDL. 

2. Mate selection method: panmictic versus 
locally restricted. 

3. Fitness inheritance method: fixed n or fixed 
y. 

 
This led to 8 different experimental setups, although 
since we also compared a deterministic and a sto-
chastic variant for the inheritance methods, the total 
number of different experimental setups was 16. For 
each of them we performed 50 independent runs 
(using different random initialization parameters), 
where one run was executed for 2000 iterations. 
 
4.1   Simulation Monitors  
 
Within each simulation, several experimental moni-
tors are set as objective measures for the perform-
ance of the society across multiple generations of 
agents. The first and second are the number of 
agents and the average value gathered coopera-

tively since it is these that determine the value of 
resources gathered together in a given amount of 
time, which is our formal objective. The average 
fitness of the population and the average distance to 
home, which describes the population density, are 
additional measures illuminating details on the 
overall behavior of the artificial society.   
     As presented in section 3, cooperative behavior 
was evaluated according to the total value of each 
resource: gold, iron, and stone, gathered by the 
agent population over the course of a given simula-
tion.  Specifically, the measure of cooperative be-
havior is the total value gathered cooperatively, 
which includes all resource types gathered by the 
society over the course of the simulation.  Sub-
measures of this are: value of gold gathered coop-
eratively, value of iron gathered cooperatively, and 
value of stone gathered cooperatively. These meas-
ures can be simply monitored via the GUI and saved 
for off-line analysis later on, but are not reported in 
the present paper. 

 
4.2   Results 
 
Figures 1 through to 8 present results attained for 
the objective measures described above with all 16 
different setups. The presentation principle we fol-
low is to use a table style arrangement, with four 
rows and two columns. Here, each row belongs to 
one of the measures; the two columns correspond to 
the two reproduction schemes we investigated. A 
cell in this table contains a graph divided into a 
right-hand side and a left-hand side histogram, be-
longing to the two methods for distributing the par-
ents’ fitness over the offspring. Within each histo-
gram deterministic and stochastic variants of these 
methods are further distinguished by their left/right 
position. Finally, the two colours are used represent 
the two mate selection methods.     
 

5   Analysis and Discussion 
As mentioned in the introduction, our formal objec-
tive is to maximize the total value of resources gath-
ered.  To this end, the average value gathered collec-
tively and the average number of agents is essential, 
as their product indicates how well the population 
performs.  
     The reproduction scheme turned out to be one the 
most influential features in our study, that is, the 
feature with the highest impact on performance. The 
impact was most prominent on population sizes. 
Using the multiple reproductions during lifetime 
scheme (MRDL) the population sizes varied in a 
range that was around one tenth of population sizes 
under the single reproduction at the end of lifetime 
(SREL) scheme. This is remarkable, in that the 



number of reproduction cycles was much lower 
when agents are only allowed to mate once in a life-
time. Apparently, it is worthy to "save" fitness for a 
longer period and create offspring only in a "rich" 
state. Perusing the average values gathered one 
could observe that the impact of the reproduction 
scheme is much less (as presented in figures 2 and 
6). Differences are at most of a factor 2 to 3, some-
times in favour of SREL, sometimes not. Concern-
ing the net effects on total value gathered by the 
whole population3 the SREL scheme is the clear 
winner. 
     Interestingly, the average fitness values were 
much less sensitive to these reproduction schemes.  
In 8 out of the 16 experiments average fitness values 
did not differ significantly for the SREL and MRDL 
schemes (as illustrated in figures 3 and 7). In the 
other 8 cases they did differ in about a factor 3 to 5 
in favour of the MRDL scheme. The figures on the 
average distance to home measure, disclose that the 
MRDL scheme evolved smaller and denser popula-
tions. 
     The investigated options for the mate selection 
method, panmictic versus locally restricted repro-
duction, showed no significant differences in per-
formance for our task environment. 
     For the inheritance method we could make ob-
servations quite similar to those about reproduction 
schemes. The most affected measure was the popu-
lation size with differences up to a factor 10. Varia-
tions in the average value gathered were much less, 
up to a maximum of factor 2 to 3. Whether the fixed 
number of offspring  (n) or the fixed offspring fit-
ness (y) method worked better depended on the us-
age of random noise.  For instance, using a fixed y 
in a deterministic way enabled much larger popula-
tions than its stochastic counterpart. However, the 
fixed n method worked much better in the stochastic 
variant. 
 

6    Conclusions and Future Work 
 
In this paper we presented an artificial society and a 
particular task the inhabitants of this society needed 
to accomplish. This task was the gathering (finding, 
mining, transporting, and delivering) of certain re-
sources. Resources differed in their difficulty to 
mine, in that they required a different degree of co-
operation to be mined. Resources also differed in 
their value; that is: the rewards an agent would re-
ceive upon delivery were different. Resource mining 
difficulty and value were related: more difficult re-
sources were worth more.  

                                                 
3 The total value gathered was the average value gathered  (fig-
ures 3 and 7) multiplied by the average number of agents (figures 
1 and 6).   

     We investigated reproduction mechanisms within 
this society and found that two features clearly in-
fluenced the performance of the agent population. 
Firstly, the results of our investigation show that the 
single reproduction at end of lifetime (SREL) 
scheme yielded a higher total amount that the popu-
lation gathered comparative to the multiple repro-
duction during lifetime (MRDL) scheme. The sec-
ond feature with a high influence was the fitness 
inheritance method.  The best method depended 
upon the right combination with either a stochastic 
or deterministic variant. In particular, we found that 
the stochastic fixed number of children and determi-
nistic fixed offspring fitness outperformed their 
counterparts.  
     The overall best combination of the investigated 
aspects of the reproduction mechanisms within our 
world was the SREL reproduction scheme with pan-
mictic mate selection and deterministic fixed off-
spring fitness. This combination yielded twice the 
performance (total value gathered cooperatively) of 
the second best combination. 
     Three future research objectives have been de-
fined based upon the results presented in this paper. 
The first is to further investigate the mechanisms 
that lead to the SREL societies attaining a higher 
performance (value gathered cooperatively) for the 
given task, though maintaining a comparable fitness 
to MRDL societies. 
     The second is to increase the complexity of the 
agent controllers and evolutionary process, giving 
agents the capacity to learn during their lifetimes, as 
well as evolution the capacity to modify genotypes 
based upon lifetime behaviors (collective or indi-
vidual). Modifying the evolutionary process such 
that a greater part of the agent genotype is subject to 
evolution would also likely yield greater complexity 
and diversity in emergent behaviors.  
     The third is to measure the impact of the number 
of offspring produced upon the given task.  Specifi-
cally, to investigate if societies that produce many 
offspring with small fitness shares have superior 
performance compared to societies that produce few 
offspring with relatively large fitness shares.    
    Forthcoming results will be published on different 
scientific forums; for locating them conveniently 
one can visit: http://www.cs.vu.nl/ci/eci.  



SREL: Single Reproduction at End of Lifetime 
 

 
 
Figure 1: The average number of agents, when using the SREL 
reproduction scheme (Note the scale for the average number of 
agents in comparisons with figure 5). 
 

 
 
Figure 2: The average resource value gathered cooperatively by 
the agent population, when using the SREL reproduction scheme. 

 

 
 
Figure 3: The average fitness of the agent population attained 
under the SREL reproduction scheme.   
 

 
 
Figure 4: The average distance to home for the agent population, 
when using the SREL reproduction scheme (Note the scale for the 
average distance to home in comparisons with figure 8).  
 
 
 

MRDL: Multiple Reproductions During Lifetime  
 

 
 
Figure 5: The average number of agents, when using the MRDL 
reproduction scheme (Note the scale for the average number of 
agents in comparisons with figure 1). 
 

 
 
Figure 6: The average resource value gathered cooperatively by 
the agent population, when using the MRDL reproduction 
scheme. 
 

 
 
Figure 7: The average fitness of the agent population attained 
under the MRDL reproduction scheme.   
 

 
 
Figure 8: The average distance to home for the agent population, 
when using the MRDL reproduction scheme (Note the scale for 
the average distance to home in comparisons with figure 4).   
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