

Agent-based participatory simulation activities for the
emergence of complex social behaviours

Stefano Cacciaguerra, Matteo Roffilli

Department of Computer Science, University of Bologna
Mura Anteo Zamboni 7, 40127 Bologna, Italy
{scacciag, roffilli}@cs.unibo.it

Abstract

Nowadays, social organizations (at macro-level) can be represented as complex self-organizing sys-
tems that emerge from the interaction of complicated social behaviours (at micro-level). Modern
multi-agent systems can be employed to explore “artificial societies” by reproducing complicated
social behaviours. Unfortunately, promoting interactions only among pre-set behavioural models
may limit the capability to explore all possible evolution patterns. To tackle this issue, we aim at
discovering emergent social behaviours through simulation, allowing human people to participate in
the simulation environment, so that the range of possible behaviours is not pre-determined. In order
to support this new approach, we propose a system architecture that is able to support an endless
session level between a software agent and a human player (called participatory framework). In par-
ticular, while network faults or human low reactivity do not allow the human being to control his
agent, this system architecture adopts a virtual player mechanism (called ghost player) that takes
control of the agent driven by the user. The advanced version of such a ghost player relies on sub-
symbolic Machine Learning techniques for mimicking the strategy of the off-line human being.

1 Introduction

Social organizations can be studied at many differ-
ent levels of abstraction and analysis. Historically,
in the analysis of organizational decision-making
processes, a common strategy is to reduce a com-
plex social activity to a single constrained optimisa-
tion problem that is solved by means of a (macro-
level) function. Nowadays, social organizations can
be approached as complex self-organizing systems
that emerge from the interaction of complicated
social behaviours (at micro-level) (Lomi et al.,
Groningen 2003). This approach makes possible to
explore the connection between the micro-level be-
haviour of individuals and the macro-level patterns
that emerge from the interaction of many individuals
(Lomi et al., Notre Dame 2003). It is possible to
effectively describe these behaviours as the actions
of agents into an environment, where the agents are
the individuals and the environment is the complex
self-organizing system. We consider an agent as a
computer system capable of independent actions in
order to satisfy its planned objectives. In particular,
to describe a complex self-organizing system we
need several individuals, while to reproduce it, we

need several agents. Along with this consideration, a
multi-agent system can be successfully employed, in
order to describe self-organizing systems. A multi-
agent system is an environment that consists of a
number of agents, which interact with one-another.
Therefore, it is possible to reproduce social societies
into a synthetic environment by creating “artificial
societies”. To successfully mimic real societies, the
multi-agent systems make the agents interact thanks
to their ability to cooperate, coordinate, and negoti-
ate (Stone et al., 2000). Nowadays, multi-agent sys-
tems are used for educational purposes. For exam-
ple, a multi-agent system could be used as a com-
puter-based learning environment to teach students
of social and economic schools a number of central
issues when studying organizational and decision-
making processes, and the respective representation
of problems (Chen et al., 1993; Colella et al., 1998).
These “artificial societies” create a quasi-
experimental observation-generation environment
where it is possible to conduct tests. Modern multi-
agent systems can be employed to explore multiple
phenomena from natural to social ones by involving
different disciplines: art, biology, chemistry, phys-
ics, computer science, earth science, games, mathe-

matics and social sciences.
Well-known modern multi-agent systems are:

Swarm (Minar et al., 1996), Repast (Collier et al.,
2003), Jas (Sonnessa, 2004), SPADES (Riley, 2003)
and Netlogo (Wilensky, 1999). Swarm is a collec-
tion of (Objective-C) libraries that promotes the
implementation of agent-based models. The Swarm
code is Object-Oriented and facilitates the job of
simulationists by supporting the incorporation of
Swarm objects into their simulation programmes. Its
programmes are hierarchical: the top level (called
the “observer swarm”) creates screen displays and
the levels below them. These levels (called the
“swarm model”) implement the individual agents,
schedule their activities, collect information about
them and exchange it on the base of an “observer
swarm” request. Swarm provides a lot of tutorials
that share portions of code in order to facilitate the
design of an agent-based model, for example: the
management of memory, the maintenance of lists,
the scheduling of actions. Jas and Repast are clones
of Swarm originated from the translation of Swarm
Objective-C sources into Java. In fact, they provide
a (Java) library of objects useful to model, schedule,
display and collect data from an agent-based simula-
tion. Again, they allow the visualization of the data
obtained from the simulation by means of histo-
grams and sequence graphs. Further, they can show
snapshots of the evolution of the simulated complex
systems in a 2-dimensional (2D) “movie” format.
SPADES (System for Parallel Agent Discrete Event
Simulation) is a middleware system for agent-based
distributed simulation. SPADES allows the simula-
tionist to define the behaviour of agents (as remote
processes) and the rules of the world where they
live. Differently from the previous ones, it supports
the distributed execution of the agents across multi-
ple operating systems, while at the same time it runs
distributed simulations regardless of network or
system load, adopting a fair policy. NetLogo is a
programmable modelling environment that allows
the simulationists to give instructions to several pas-
sive (i.e. patches) and active (i.e. turtles) agents all
operating at the same time. It also implements a
classroom participatory simulation tool (called
HubNet). HubNet connects networked computers to
the Netlogo environment by helping each user con-
trol an agent during a simulation.

Typically (apart from Netlogo), a simulationist
can interact with these multi-agent systems only
during the configuration phase. This means that af-
ter a simulationist has chosen the initial conditions
of the complex system, he simply becomes a specta-
tor of it (simulated) evolution. If the estimation of
the system variables does not critically affect the
soundness of the simulative results, the above ap-

proach works right. In other cases, alternative ap-
proaches are needed to tackle this problem (ill-posed
problem). One of them is called “participatory simu-
lation” (Resnick et al., 1998; Wilensky et al., 1999).
It provides a way to expand the capability of interac-
tions with these systems at run time. Hence, during a
participatory simulation, each single user can play
the role of individual system entities and can see
how the behaviour of the system as a whole can
emerge from the individual behaviours. These syn-
thetic environments promote the cooperation, coor-
dination, and negotiation among the agents con-
trolled by pre-fixed behavioural models (designed
by a simulationist) and those driven by humans, all
pursuing their own goals. The emergent behaviour
of the model and its relation to the participation of
humans can make the dynamics of the simulated
system clearer. Therefore, these participatory role-
playing activities result useful to understand how
complex dynamic systems evolve over the time.
This approach is very didactic because it promotes a
deeper comprehension of the evolution of the simu-
lated complex system. For example, consider a vir-
tual stock exchange, where each player (investor)
can play the role of a virtual buyer or seller who
engages in the activities of the resulting share ex-
change dynamics.

The remaining part of this paper is organized as
follows. In Section 2, we illustrate the main limits of
the modern multi-agent systems, in general, and of
agent-based participatory simulation activities, in
particular. In Section 3, we present a new alternative
approach that overcomes these limitations by adopt-
ing a ghost software mechanism and a participatory
framework. Section 4 shows some results we ob-
tained with a prototypic implementation of our sys-
tem. Finally, Section 5 concludes our work with
some hints for future developments.

2 Limitations of MASs
One of the main attractions of the above-described
simulation environments is the easiness by which it
becomes possible to statistically assess the validity
of a model. Simulationists can simply explain their
idea by writing some lines of code in natural lan-
guage and then start the simulation. During the evo-
lution they observe the values of some pre-fixed
interesting variables and make decisions. Recent
works permit to display, in real time, results of the
simulation in 2-dimensional computer graphics (Re-
past; Jas; Netlogo). In our previous work (Cac-
ciaguerra et al., Las Vegas 2004), we improve these
capabilities with a 3-dimensional (3D) computer
graphics highlighting that this improvement allows
to tackle a new class of problems from different

points of view. Recently, the last release of Netlogo
environment promotes another 3D visualization
confirming our insight (Wilensky, 2005). Neverthe-
less the multi-agent simulations presented up to now
share a common feature: they carry out interactions
only between pre-set software behavioural models.
While this is extremely important for statistical as-
sessments, we argue that it limits the generation of
emerging complex behaviours in any simulation.
Along with these considerations, we deem that there
are two reasons for the limitation.

The first is related to the simplicity of the model
assumed. Every model is defined as a hypothetical-
deductive assumption related to some personal
knowledge of the simulationist. In fact, the simula-
tionist tries to describe his insight about target prob-
lem in a way that a deterministic machine can inter-
pret. This approach is very sensitive to the level of
accuracy when modelling the target problem. In
fact, it results very difficult to accurately describe all
the behaviours included in a model because of in-
trinsic complexity of social interactions. Then, to
leave some degree of freedom, stochastic steps are
often introduced causing a loss of sharpness in the
analysis. In other cases, it is not possible to fully
define a behavioural model because of the not-
deterministic physical law behind it. Considering
these expert design issues, the analysis are often
performed only at standard time intervals: at starting
point, at running and finally at asymptote. Obvi-
ously changing the starting conditions the simula-
tion shows different behaviours, but asymptotically
it reaches the same state-condition or the same peri-
odical fluctuation. This approach guarantees the
statistical soundness of the simulation results while
it limits the capability to explore all possible evolu-
tion patterns.

The second reason is related to the bounded
computational power. The current software is not
able to handle large amounts of interactions in a
timely way because of its engineering. In this case,
as well as when facing typical problems related to
physical simulations, the time constraint cannot be
dealt with in a short period by making the experi-
mentation of complex models impossible. In addi-
tion, the analysis of physical systems may result
easier than the social one because of the rigid con-
straints and the proven theories behind it. Hence, it
seems to be difficult to implement social simulations
that are able to generate new and emergent behav-
iours. We argue that, by reducing the constraints for
the statistical soundness, it is possible to overcome
the two limitations (due to both the model accuracy
and the time constraint) in an efficient way. To
achieve this result, it is necessary for accurate be-
havioural models to be able to interact together
quickly and for a sufficiently long time inside a syn-

thetic environment. In particular, the following is
needed:

• A common protocol (i.e. language) to exchange

information,
• A high-bandwidth channel for managing com-

munication and
• Large computation power to control behav-

ioural models.

We believe that a cooperative game environment
satisfies all the three requirements. A cooperative
game is a special kind of game in which many peo-
ple play together to reach some pre-set goals. The
agent-based participatory simulation shows to be
one of the best approaches for implementing a co-
operative game. It is worth noting that according to
our idea the game is the instrument for running a
simulation and not the goal of the simulation. One
of the main attractions of the transposition of the
above problem from a pure software simulation into
a cooperative game is that, in the transposed prob-
lem, humans can directly interact with the agents
inside the synthetic environment by joining the
game. Hence, any previous knowledge of the simu-
lation toolkits and programming language is needed,
making the simulation methodology widely accessi-
ble. Therefore, it becomes possible to use humans as
complex and accurate behavioural models for the
simulation. In fact, apart from general considera-
tions about Artificial Intelligence (Penrose, 1994),
we consider a human being as a very complex social
behavioural model. Hence, in defining the objective
of the game, we (implicitly) promote the human
being to apply his own social model to a pre-fixed
task. We argue that this is very similar to the mental
process that the simulationist performs when writing
a social model for a common simulation toolkit. In
addition, humans obviously do not require addi-
tional computational power to interact together in a
timely way. They also share a priori common lan-
guage to perform interactions. In fact while a soft-
ware simulation toolkit offers a hand-made protocol
for exchanging information among agents, a game is
self-explaining for humans. The 3D visualization
(eventually extended with positional 3D audio) is
the fastest way to perform interactions among peo-
ple. In fact, it exploits human natural senses and it is
of immediate comprehension. Hence, the coopera-
tive game only demands to create and manage the
shared environment to exchange information (that
represents the game). In this way, the problem of
time constraint is solved too. Further, the coopera-
tive game shows other interesting properties. While
solving key problems when running a simulation
some questions about experimental design arise.

1. How can we analyse the behaviour of a hand-
made behavioural model in such context?

2. Can we assume that providing a large number
of participants and a long duration to the simu-
lation will resume the lost statistical soundness?

3. And assuming this is right, how can we find
such a large number of people that will play a
simulation for an entire week?

3 New approach
In order to tackle these issues, we propose to popu-
late the cooperative game with virtual agents that
play together with human players in the same envi-
ronment. Each virtual agent could be controlled by a
software that implements hand-made behavioural
models. Further, each human being is represented in
the game by his digital avatar that can be fully con-
trolled. Hence, we can think of the avatar as another
agent that is driven by the human being instead of a
software. In this way, no distinction is made be-
tween human beings and software players inside the
game context. In line with this assumption, from a
game perspective, it is easy to reach hundreds, thou-
sands even up to millions of concurrent players.

Further, this approach offers interesting consid-
erations. First, it becomes very difficult (if not im-
possible) to distinguish inside the game between
software programs and human being-controlled
agents using a priory or trivial information. The only
way to distinguish them is to analyse the behaviour
of each agent for enough time to classify it with
some pre-fixed model of knowledge. In other words,
a human being should evaluate the strategy (i.e. the
pattern of behaviour) of another agent by using his
thought of strategy. Along with this consideration,
we can think to create an agent that makes this clas-
sification extremely difficult. Hypothetically, pro-
gramming an agent so that no human being can rec-
ognize it as a software while playing with it for a
long time should be possible. If this mimic game is
successful, we could safely assert that this software
has passed a new version of the Turing test (Turing,
1950). Designing such a software is a hard task and
out of the scope of this work. Despite this considera-
tion, promising technologies are emerging.

3.1 Ghost player
Nevertheless, maintaining a high number of human
players for a long time is a hard job due to both
physiological limits and technical issues. In fact,
humans are quickly stressed by intense actions and
briefly degrade their mental performances. In addi-
tion, depending on the modality of connection to the
server (where the synthetic environment is accom-

modated), the played session can be broken by net-
work faults. In any case, a good participatory simu-
lative environment should not be affected by physio-
logical limits and network faults. To this aim, we
propose a preliminary adaptive mechanism (see
Figure 1) to avoid these problems penalize the evo-
lution of the complex system. The idea is the fol-
lowing: while a human player is gaming, a ghost
player is joined to his agent. The ghost player has
been previously programmed to run pre-fixed algo-
rithms (a.k.a. behaviourist model) in order to
achieve some goals during the game. The ghost
player is endowed with an adaptive mechanism able
to recognize when the human player is not control-
ling his agent during the played session. Exploiting
this mechanism, when the human player is not able
to send moves to his agent, immediately, the ghost
player starts to control it avoiding interruptions and
the slowdown of the game. When the human player
will be able to send moves to his agent again, the
ghost player comes, immediately, in the background
leaving the control. Hence, this adaptive mechanism
is able to keep the game session of a human player
alive during the human rest and the network faults.

Agent

Ghost Player Human Player

Hand-made
Behavioural model

Machine Learning
mimicking model

Recovery

Session

M
od

el

Le
ar

ni
ng

Figure 1: System architecture of our approach

Trying to keep the game alive this mechanism

could partially corrupts its consistency. In fact, the
ghost player might show a behaviour that is abso-
lutely different from human beings’ behaviours. If a
lot of ghost players switch on and off intermittently
this results in a high degree of unpredictability that
potentially transforms the participatory game in a
random game where no constructive interactions can
be performed. In particular, a human player that is

not able to send moves for a short time, could take
the control of his agent again in a situation that has
destroyed his long period strategy.

Considering the previous considerations about
the mimic game, we propose to replicate the strategy
of the human player by providing the ghost player
with mimic capabilities. The ghost player analyses
the actions of the agent in background and seeks to
fit its own pre-fixed behavioural model to the
agent’s behaviour. In addition, exploiting Machine
Learning (Dietterich, 1997; Mitchell, 1997) tech-
niques, it should be able, starting from an imperfect
knowledge (i.e. noise-corrupted estimation of sys-
tem variables) of the environment, to automatically
construct a behavioural model resembling that of a
human being. A preliminary mimic methodology
could be the following: the ghost player knows the
legal actions inside the game and it is programmed
to consider only a sequence of n moves. Then, it
statistically updates the probability of performing
the action y knowing that n actions x1,..., xn were
previously done. We are planning to substitute this
simple Bayesian statistics in order to reach more
accurate fitting and generalization. We are looking
for some candidate methodologies gathered from the
field of sub-symbolic Machine Learning. In particu-
lar we are evaluating Artificial Neural Networks
(Bishop, 1995), ε-Machines (Shalizi et al., 2000),
and, especially, Support Vector Machines (Vapnik,
1998), which demonstrated good generalization
power in hard tasks (Campanini et al., 2004).

It is worth noting that our purpose is not to cre-
ate an agent that learns to solve a given problem in
an unknown environment and in unsupervised man-
ner. This goal had been deeply analysed in the 90’s
and a bunch of symbolic algorithms were proposed
to tackle it. Our aim is to teach an agent to replicate
an existing behaviour starting from noise-corrupted
knowledge. Thus, it is a sub-symbolic supervised
Machine Learning task.

3.2 Participatory framework
According to the above-proposed approach, we de-
velop a participatory framework that supports the
management of the interaction between humans and
agents into any participatory simulation. A user can
make decisions (and then can act in the synthetic
environment) in place of the behavioural model of
an agent. More simply, a user can participate in the
evolution of the (remote) simulated complex system.
Therefore, this framework implements a connection
between the user and the agent where a (ISO/OSI)
session level is exploited. The user drives a specific
agent by means of a client at application level (ac-
cording to a client-server model architecture that
recalls something similar to the Hubnet tool) that

communicates over a network connection to the
synthetic environment (see Figure 2). In particular,
the session level becomes very useful if we are run-
ning a participatory simulation over an unreliable
network. A typical multi-agent system architecture
adopts a fair turn approach to evolve the synthetic
environment. This means that each agent must act
during each turn (also the NULL move is permit-
ted). Therefore, agents driven by humans must act
according to the turn approach too. In addition, the
actions coming from a remote human player might
slow down the whole serialization of the sequences
of fair turns. For this reason, the participation of
multiple (remote) users can slow down the evolution
of the simulated complex system to unacceptable
speed. This may be due to two possible reasons:
i) an interruption of the communication and ii) a
user high-delayed move. In the case i), an interrup-
tion might be two kinds, momentary and permanent,
depending on the cause that has generated it. A
momentary interruption might be due to network
congestion or outages of the communication chan-
nel. Instead, a permanent interruption could be due
to either a client or a server disconnection. In the
case ii), the high-delayed move could be due to the
low reactivity of a human player. Further, it could
also happens that a human player does not want to
sent a move leaving the control of his agent to the
ghost player to rest him-self. Hence, the main goal
of this framework becomes to maintain the evolu-
tion of the simulated complex system over a certain
time threshold supporting the human playability. For
this reason, if the human player is not able to par-
ticipate in simulated system under this threshold, the
framework guarantees the correctness of evolution
within pre-fixed time constraints, by imposing on
the slow agent to be driven by the ghost player.

Agents

Synthetic
Environment

Figure 2: Client-Agent as client-server architecture

In addition, this framework manages the communi-
cation by means of a session recovery mechanism
that allows the user to take the control of his agent
again, after a disconnection from the participatory

simulative environment due to a permanent interrup-
tion or due to his own free will. In the meantime, the
ghost player generates moves for the agent waiting
for the re-connection of the human player. In this
way, the simulationist can exploit a distributed
simulation environment that takes advantage of a
session level over the standard ISO/OSI stack (see
Figure 3).

3.3 Implementation
We develop a participatory framework that imple-
ments a session level over the TCP/IP stack (see the
Figure 3). This framework guarantees the correct-
ness of the simulation evolution, and avoids the
slowing down of its time performance by accurately
managing a session mechanism between the human
being and his agent. In particular, the participatory
framework consists of a mechanism of session man-
agement and a communication management.

The session management mechanism guarantees
that the human being can participate in the simula-
tion by building his personal session. This means
that a human player takes the control of an agent for
a simulation run. Therefore, if the human player
looses his connection (on purpose or against his own
free will) with the agent, his participation in the
simulation is guaranteed by the session management
mechanism that gives the control to the ghost player.
In the near future, if the human player connects to
his agent again, the mechanism recovers the previ-
ously instantiated session by returning the control to
the human being.

Application Agent Client

Session
Participatory
framework

Participatory
framework

TCP . .

IP . .

Datalink . .

Physical . .

Figure 3: Participatory framework
over TCP/IP stack

While the session management mechanism is in
charge of managing long period problems due to a
disconnection, the communication management
mechanism handles imminent short period ones such
as, human low reactivity, network congestion and
outages. The communication management mecha-
nism consists of an action timeout handler and a

TCP timeout handler. The first is used by the com-
munication management mechanism to avoid that a
low reactivity from the human player slows down
the evolution of the complex systems under a certain
frequency. In particular, the action timeout handler
monitors the responsiveness of the client (on which
the human being plays). Hence, the simulationist
can set the upper bound (called action timeout) to
the responsiveness at a configured time. Obviously,
above this bound, the action timeout handler im-
poses on the ghost player to drive the agent in place
of the human being. For sake of completeness, we
report that the agent periodically sends session ac-
knowledgements to its client to confirm the respon-
siveness and to wait for the next move. Instead, the
TCP timeout handler is used both at agent-side and
client-side. This handler decides if the communica-
tion between the client (of the human being) and his
agent is closed, based on statistical calculations.
These statistics are related to the previous perform-
ance according to the agent responsiveness on cli-
ent-side and human being responsiveness on agent-
side. In particular, at agent-side, the TCP timeout
handler sets the state of a communication as broken
when a certain number (i.e. maximum consecutive
action timeout configured by the simulationist) of
consecutively lost interactions occurs. When the
state of the communication is considered as broken,
the TCP timeout handler closes it (with a shutdown).
Instead, at client-side, the TCP timeout handler sets
the state of a communication as broken, only after
an amount of time (called TCP timeout) has passed
without receiving any session acknowledgement
from the agent. After a TCP timeout expiration, the
TCP timeout handler at client-side closes the com-
munication (with a shutdown). Finally, the partici-
patory activity could be recovered by exploiting the
session management mechanism. Therefore, it be-
come possible to request a new connection to own
personal agent exploiting the session management
mechanism in active way, by clicking a button, or in
passive way, by setting up the configuration file to
automatically connect again agent after the expira-
tion of a TCP timeout.

4 Results
In this section, we want to show some results that
highlight the effectiveness of our approach. Along
with this consideration, we implement a predator-
prey artificial ecosystem (a.k.a. pursuit domain) as
a model for participatory simulative environment
that adopts our participatory framework and a ghost
player. This simple biological model is the base for
more complex systems. The predator-prey model
randomly positions a variable number of preys and
predators in a synthetic environment. Obviously, the

preys’ goal is to escape, while the predator’s is to
pursue them. Once a predator reaches a prey, it eats
this. Otherwise, if a long period of simulated time
passes, the predator dies for starvation. In particular,
in these preliminary tests, we focus on the escape
trajectory of the prey-agent (green ball of Figures 4-
6). The Figures 4, 5 and 6 summarize the video clip
related to different runs of the artificial ecosystem
(Cacciaguerra et al., December 2004), where the
clip frames represent the output of the predator-prey
model executed on our prototype. The red balls re-
port the previous positions of the prey-agent. Ac-
cording to this representation, the set of red balls
represents the escape trajectory of the prey. In all
the simulation runs, the prey-agent is driven by a
human player during the initial period (see inset of
Figure 4). After this period, the human player does
not send the next moves, leaving the control of the
prey-agent to the ghost player (in particular, after a
maximum consecutive action timeout, the human
being was disconnected; see the Figure 7). The pat-
tern of moves related to the human being is similar
to a stairway. In Figures 4 and 5, the ghost player
adopts his mimic capabilities trying to reproduce a
pattern of moves (i.e. a strategy) similar to that of
the human being. This does not mean that the ghost
player duplicates exactly the learned pattern in a
periodical manner or in replicated copies. Instead,
the ghost player has learned the way in which the
human player drives his agent (to escape) and ap-
plies this abstract knowledge to mimic his behaviour
(called generalization).

Figure 4: 2D visualization of the escape trajectory of
the prey driven by ghost player with mimic capabili-

ties (on Windows XP)

This becomes clear in Figure 5 where the ghost
player, stressed to learn the same sequence of moves
(see inset in Figure 4), shows a different but similar
behaviour as in Figure 4. Obviously, if we look at
Figure 6, where the ghost player was running adopt-
ing a non-mimic (i.e. random) algorithm, it is clear
that the pattern of moves is very dissimilar.

Figure 5: 2D visualization of the escape trajectory of
the prey driven by ghost player with mimic capabili-

ties (on Linux)

Figure 6: 2D visualization of the escape trajectory of

the prey driven by the ghost player without mimic
capabilities (on Linux)

Ghost Player
with mimic capabilities

Ghost Player
without mimic capabilities

Ghost Player
with mimic capabilities

Moves of
Human Player

Finally, Figure 7 shows the responsiveness of the
prey-agent during the previously presented simula-
tive run schemes. This graph illustrates the time
spent by the prey-agent to insert it next move into
the synthetic environment, showing three phases.

I. From 0 to 2600 simulated time, the agent is

driven by the (remote) human player.
II. From 2601 to 5700 simulated time, the agent is

driven by the (local) ghost player because the
human being is not playing a move under the
action timeout,

III. After 5701 simulated time till the end, the agent
is driven by the (local) ghost player because a
TCP timeout has expired.

0 2600 5700 8000
0

200

500

Timeline (simulated time)

R
es

po
ns

iv
en

es
s

(m
se

c)

Figure 7: Responsiveness of the prey-agent before
and after a user disconnection

5 Conclusions
We have designed and developed a software proto-
type able to support the execution of agent-based
participatory simulative activities to discover the
emergence of complex social behaviours. In particu-
lar, this prototype supports the participants with an
endless session level that allows the human player to
disconnect from the synthetic environment while a
ghost player takes the control of his agent. A mim-
icking strategy has been developed to drive the
ghost player by means of Machine Learning algo-
rithms. Coupling our framework with smart mimick-
ing capabilities makes it possible to engage agent-
based participatory simulation activities with thou-
sands of players dispersed in the world for a long
time. The mimicking mechanism is fundamental to
maintain a good level of coherence in the game dur-
ing network faults and human rest. Some results
confirm, by means of visual graphs, the efficacy of
our approach. In particular, the movie (in mpeg
format) of the simulation run reported in Figure 4
highlights the usefulness of our approach. We are
designing our software prototype to pass to a new
version of the Turing test using some methodologies
gathered from the field of Machine Learning as Ar-

tificial Neural Networks, ε-Machines, and Support
Vector Machines. Further, we are currently planning
a massive experimental campaign to study the per-
formance of our participatory framework. We hope
this will demonstrate the emergence of complex
social behaviours. In order to achieve these results
learning behavioural models through imitation
seems to be a key point. We wish to conclude this
work by mentioning that these trained behavioural
models may be very effective in other possible ap-
plication fields such as digital cinema (Regelous,
2005), edutainment (Wilensky et al., 1999), and
multiplayer games (Ferretti et al., 2003) where peo-
ple can leave and come back.

Acknowledgements
Many thanks to Marco Pracucci for his contribution
in the implementation of our idea.

References
C. M. Bishop. Neural Networks for Pattern Recognition. Claren-

don Press, Oxford, 1995.

S. Cacciaguerra, A. Lomi, M. Roccetti and M. Roffilli. A Wire-
less Software Architecture for Fast 3D Rendering of
Agent-Based Multimedia Simulations on Portable Devices.
In proc. of the IEEE CCNC 2004, Las Vegas, USA, 2004.

S. Cacciaguerra and M. Roffilli. AISB 2005 movie website.
http://wwwfn.csr.unibo.it/projects.html (Dec 2004).

R. Campanini, D. Dongiovanni, E. Iampieri, N. Lanconelli, M.
Masotti, G. Palermo, A. Riccardi and M. Roffilli. A novel
featureless approach to mass detection in digital mammo-
grams based on Support Vector Machines. In Phys. Med.
Biol. 49:961-975, 2004.

D. Chen and W. Stroup. General Systems Theory: Toward a
conceptual framework for science and technology educa-
tion for all. Journal for Science Education and Technol-
ogy, 1993.

V. Colella, R. Borovoy and M. Resnick. Participatory Simula-
tions: Using Computational Objects to Learn about Dy-
namic Systems. In Proc. of the Computer Human Interface
(CHI '98) Conference, Los Angeles, 1998.

N. Collier, T. Howe and M. North. Onward and Upward: The
Transition to Repast 2.0, Proc. of the First Annual North
American Association for Computational Social and Or-
ganizational Science Conference, Pittsburgh, USA, 2003.

T. G. Dietterich. Machine Learning Research: Four Current Di-
rections. AI Magazine, 18 (4), 97-136, 1997.

 S. Ferretti and S. Cacciaguerra. A Design for Networked Multi-
player Games: an Architectural Proposal. In proc. of the
Euromedia’03, Plymouth, UK, 2003.

A. Lomi and S. Cacciaguerra. Organizational Decision Chemistry
on a Lattice. In proc. of the 7th Annual Swarm Us-
ers/Researchers Conference), Notre Dame, USA, 2003.

A. Lomi and S. Cacciaguerra. The Emergence of Routines in an
Organizational Decision Chemistry. In proc. of the 1st
European Social Simulation Association Conference
(ESSA’03), Groningen, Netherland, 2003.

N. Minar, R. Burkhart, C. Langton and M. Askenazi. The Swarm
Simulation System: A Toolkit for Building Multi-Agent
Simulations, Santa Fe Institute Working Paper, 1996.

T. Mitchell. Machine Learning, McGraw Hill,1997.

R. Penrose. “Shadows of the Mind: A Search for the Missing
Science of Consciousness”, Oxford University Press, 1994.

S. Regelous. Massive Software.
http://www.massivesoftware.com (May 2005).

M. Resnick and U. Wilensky. Diving into complexity: Develop-
ing probabilistic decentralized thinking through role-
playing activities. Journal of the Learning Sciences, 1998.

P. Riley. SPADES: System for Parallel Agent Discrete Event
Simulation. AI Magazine, 24(2):41–42, 2003.

C. R. Shalizi and J. P. Crutchfield. Pattern Discovery and Com-
putational Mechanics. In proc. of the 17th International
Conference on Machine Learning, Santa Fe Institute, 2000.

M. Sonnessa. The JAS (Java Agent-based Simulation) Library. In
proc. of the 7th Annual Swarm Users/Researchers Confer-
ence (SwarmFest’03), Notre Dame, Indiana, 2003.

P. Stone and M. Veloso. Multiagent Systems: A survey from a
machine learning perspective, Autonomous Robots,
8(3):345–383, July 2000.

A. Turing. Computing machinery and intelligence, Mind, 1950.

V. Vapnik. Statistical Learning Theory, John Wiley and Sons,
1998.

U. Wilensky. NetLogo.
http://ccl.northwestern.edu/netlogo/. Center for Connected
Learning and Computer-Based Modeling, Northwestern
University. Evanston, IL, 1999.

U. Wilensky. NetLogo 3-D Preview 1 released.
http://ccl.northwestern.edu/netlogo/. Center for Connected
Learning and Computer-Based Modeling, Northwestern
University. Evanston, IL, March 2005.

U. Wilensky and W. Stroup. HubNet.
http://ccl.northwestern.edu/netlogo/. Center for Connected
Learning and Computer-Based Modeling, Northwestern
University. Evanston, IL, 1999.

http://www.cs.utexas.edu/%7Epstone
http://www.cs.cmu.edu/%7Emmv

