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Abstract. A guide to doing agent-based modelling in an appropriately rigorous 
way is presented. This tries to be (a) accessible to non-experts and (b) appropriate 
to the stage and purpose of the modelling. Thus, what is suggested is aimed at 
four different levels: (1) for one’s own understanding, (2) when presenting a 
model to an audience for discussion, (3) when publishing in a journal article and, 
(4) where the modelling may influence decisions that affect people’s lives. Thus, 
the highest level of rigour is not demanded at earlier stages. As one moves to the 
next level, the suggested steps needed for rigour increases, making it possible to 
incrementally learn increasing rigour as one gets more serious. Level (4) will not 
be discussed here but left to future versions of this document. 
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Rigour is a set of norms and procedures a field has for ensuring their conclusions are 
reliable. People outside the field do not want to know the details of how we achieve 
such reliability, just that they can rely on the results and understand for what they can 
be relied on for.  People inside the field, only communicating with each other, are often 
a bit more relaxed but they still want models that ‘do what it says on the tin’. One can 
always be more rigorous, so this is not an all-or-nothing decision but a continuous jour-
ney “onwards and upwards”. All modellers are somewhere on this journey – none of 
us is perfect and the standards continue to evolve. All of these have been discussed 
elsewhere but not collected and presented in an organized and accessible manner. 

The guide is presented as a series of steps to implement at each level – some extra 
things to do alongside your growing modelling abilities. We have tried to make these 
appropriate to each stage – not demanding a gold-standard from begginers. Concentrate 
on the steps at the level appropriate to the task you are engaged in. If you feel you have 
got on top of the steps at one level, then move on to those at the next level. This should 
not be a tick-box exercise – racing through all the steps in a superficial manner will not 
make you more rigorous – rather the best reliability comes from carefully developed 
thinking and habits. There are four “levels” for different modelling circumstances: 
Level 1 – for your own understanding, Level 2 – for presenting a model to an audience 
for discussion, Level 3 – when publishing in a journal article, and Level 4 – where 
modelling may influence decisions that affect people’s lives. These are cumulative, so 
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each level builds upon (and includes) the previous levels. It is important to realise that 
the level of rigour is not related to the level of your skill at programming, but rather 
what is necessary to the kind of task you are engaged upon.  

We understand that declaring standards for rigour is a (“small-p”) political act. Pro-
moting norms that mean modellers have extra obligations in their already busy lives 
will not be universally popular. We are trying to make only modest suggestions here, 
but adopting them will mean that modelling is a slightly slower and more cautious pro-
cess. It will involve more of the social processes of science: checking and critique by 
others, and more care about how the results might be interpreted by non-modellers etc. 
In other words any work (beyond just playing with a model [17]) will be slightly less 
fun. We admit that we, as modellers, have not always done all the steps that we describe 
here, but hope by declaring these standards we can also motivate ourselves to improve. 
What is in here is a snapshot of some of the practices and issues you might want to 
consider – we do not think it lists all those possible, that would make this into a book. 
If you are serious do the follow-up reading suggested in each section. 

1 Modelling for your own understanding (level 1) 

This section is aimed at those who are new to Agent-Based Modelling (ABM) to guide 
them on the early stages of this journey. This level is aimed at those using ABM in a 
more rigorous manner so as to reliably increase your own understanding.  Before taking 
up anyone else's time (other than teacher, fellow student, advisor etc.) in understanding 
the model or its results, one should also implement level 2. 

General Advice. The first barrier when coming to ABM is getting to grips with the 
technology: how you write code, run it, find errors, see the results etc. During this initial 
phase one is simply glad to get anything to work and one’s whole energy spent under-
standing the mechanisms and facilities of the system you are programming with. During 
this phase one is continually going back and forth from manual/tutorial and one’s de-
veloping model – reading a bit more, trying things out and then revisiting what one 
coded. At this stage it is good to look at and play with other people’s code – trying to 
understand what they have done (and why), then messing with it to see what happens 
when you run it. Ideally, one should have someone to ask when one has beat one’s head 
to a pulp trying to get something to work but making no progress. 

It is only worth worrying about rigour when one has started to get past this initial 
phase, so one can concentrate a little on what one is trying to achieve. The key to this 
stage is not just doing stuff, but reflecting on what one is doing and thinking how one 
might do it better. Sure, it can be helpful to copy what another modeller is doing, but 
then try to also work out why they have coded in the way they have. 

Think about what you are trying to achieve with your model. One does not do 
ABM just for fun – usually one is trying to gain some more understanding of something. 
The thing you are trying to understand can be many different things: an observed sys-
tem, the theoretical consequences of some mechanism, some ideas, someone else’s 
model, etc. In this case the point is to learn something, something that one would not 
learn without the model (Even if in retrospect what you learnt is obvious – it may only 
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be ‘obvious’ only after having done the modelling). Thus it is worth keeping in mind 
what one is aiming to achieve at each stage of modelling (even if this changes over 
time). The more precise this is the better – vague aims are generally less useful than 
more explicit aims. One of the troubles with ABM is that it is a very flexible tool that 
can be used for lots of different purposes [10, 9], which can cause confusion.  Limit 
yourself to one aim at a time (more risks achieving none well). 

Keep track of your model code as it develops. Computer simulations are often 
simpler to understand than many real world systems. However ABMs can quickly be-
come sufficiently complex that the programmer does not completely understand them. 
In other words, it is easy to fool yourself using your own code. Part of the problem is 
that the human brain can only hold so much in mind at any one time (this is the point 
of an ABM). Thus, although it may seem obvious to you at the time, a week or two 
later you will have forgotten the reason you implemented bits of your code in the way 
you did. For this reason it is good to document your code as you go along. In other 
words, to give modules, procedures, functions and variables long meaningful names 
and to write comments into the code concerning what each bit does and why. Nobody 
likes to go back and do this later, and it is quicker to do it whilst it is fresh in your mind. 
These comments will also be useful in Level 1 when you want to present your work. 
Such documentation has more than an administrative function – describing what you 
are doing and why aids reflection on your actions and thus encourages precision. It is 
something about imagining someone else reading your code and its comments that aids 
a more objective perspective on what you are doing.  

Find out what is happening in your model by messing with it. Once you have a 
model that seems to be doing something interesting, the next step is to understand what 
is happening in the model – find out why, how and when the interesting results occur 
when you run the model. Do not underestimate how difficult this can be! Even when 
we think we know what is happening this understanding is often incomplete or mistaken 
– just because we intended our model to work in a particular way does not mean that it 
does (this is not because you are not clever enough, there are basic limits to any under-
standing [24]). Thus one has to take active steps to ensure one has an adequate under-
standing of your model – just running it a few times, watching it and getting out a few 
numbers or a graph, is insufficient. You should do two things: (1) program as many 
different measurements, traces, graphs, indicators etc. of what is happening in your 
model as possible, a good visualization really helps understanding, (2) do lots of dif-
ferent experiments with it: changing parameter values (including setting them to silly 
values), change rules in minor ways, run it about 20 times with the same parameters to 
get an idea of the variation in output etc. etc. Use your imagination. 

Further reading and resources. A good general introduction to modelling, aimed 
at the social scientist is (Gilbert & Troitzsch 2005). This sets the context and motivation 
for simulating social phenomena, as well as giving useful modelling examples. 

If you are just starting out to model, then the NetLogo modelling language is very 
accessible, with a clean, easy-to-read syntax and good quality documentation. Many of 
the entities, tasks and tools you might use for modelling are already built in to it. This 
is a fully powerful programming language – it does lack a couple of features advanced 
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practitioners might want (step-by-step debugging facilities and user-defined hierar-
chical classes of object) but is otherwise complete. NetLogo comes as a complete pack-
age, with a good library of example models and many extensions. Furthermore the 
NetLogo website has many useful pointers and other resources, including pointers to 
user groups where you might find further help. 

The CoMSeS.net website is a wide-ranging repository of resources for serious agent-
based modellers. It has discussion forums, tutorials and a large library of simulation 
models with their code and documentation. It covers all systems for modelling. 

For an idea of some of the range of different purposes for modelling, read Epstein 
[10] who lists 16 reasons, other than prediction, why one might build a model. 

2 For those who want to present their model to an audience for 
discussion (e.g. workshop, discussion paper, etc.) (level 2) 

So you have a model that seems to show interesting results. You are all enthusiastic and 
want to (or have to) present it to others. However, it is easy to waste other people’s time 
in this way if you have been sloppy, made a mistake in your code or just not sufficiently 
understood your own model to answer questions about it. Here we outline some modest 
steps that will give you more confidence in your understanding, and which will make 
presenting your model more productive. Workshops are for discussion and comments 
upon emerging work, what is called ‘work in progress’ – if you are intending to publish 
mature work in a journal or top-level conference you should also do level 3. 

General advice. Here we recommend that you adopt a much less friendly attitude 
to your model. That is, it is helpful to think of your model as a con-artist that is trying 
to deceive you – you are trying to probe it sufficiently that any such deceit is revealed 
(and if necessary fixed). One reason why this is necessary is that modelling affects 
one’s perceptions – one starts to see the world ‘through’ one’s ideas about the model – 
one selects what one notices by what is consistent with that model so you may well not 
notice things (e.g. aspects of the model behaviour) that is not part of that story [15]. 
However, even without this, computer programs can be fundamentally complex [24] so 
that things might be happening in your model that you have not appreciated. 

One approach to this is using a kind ‘threat analysis’. In this approach you first iden-
tify limits/possible weaknesses in your own modelling, then plan what you are going to 
do to mitigate/deal with these, and finally assess the success of those measures and 
remaining limits [25]. Of course, the weaknesses are relative to what you are trying to 
achieve with your model, so before anything you need to be clear on your modelling 
goal. This approach is also helps being honest about what your model achieves. 

Document your modelling clearly. The first step in documenting your model goes 
way back before you start coding – starting with your purpose in doing the modelling. 
This is the declared goal that you are suggesting that your model be judged against – 
sometimes this is framed as having a clear “research question” you are trying to answer. 
It is common to have several different destinations in mind for one’s model, but for any 
one presentation/report/paper you should focus on just one goal. Then you need at least 
some description of how you plan to achieve this purpose and a high-level description 
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of the conceptual model (that is the intended ideas, structures, processes etc. that the 
model is supposed to implement). It is helpful to briefly document the sources that in-
formed the design of the model (assumptions, theories, etc.).  

Ideally, someone else will want to dive into the details of your work and maybe even 
do an independent reproduction of your model, but this requires a lot of time by the 
person doing this, so it is not common at this stage. On the whole, others will only 
bother about how your model is made when they have seen interesting results or radi-
cally new ideas – the proof of the pudding is in the eating, not the recipe. To facilitate 
others to get into the details of your modelling, make your code easily available to 
others and provide good documentation. 

Actively prevent bugs in your code. Bugs can be very subtle so they do not neces-
sarily come to light during the exploration of model results. Rather, one needs to take 
some active steps to check that your code corresponds to your conceptual model..  

Key to preventing and then identifying any bugs is structuring your code. The most 
important aspect of structuring is dividing up your code into independent (or semi-in-
dependent) chunks that make sense (represent a particular process, entity, calculation 
etc.). Having a clear conceptual model is really helpful for this – making it all up as you 
go along might result in “spaghetti” code that is very hard to de-bug or understand later. 
The main strategy for finding existing bugs is then to test each of these chunks sepa-
rately. You can “turn off” other parts of the code by adding temporary statements into 
other parts to short-circuit their operation or to make them return a default result (e.g. 
a constant or a random value) and then, once you think each part works as intended you 
gradually “turn them on” again until you have the whole simulation working again. 
Also try turning them on in a different order. 

In computer science there are a whole lot of other strategies for planning/checking 
code and eliminating bugs, some of which we will mention in higher levels.  

Do systematic experiments. If you are going to present results then this cannot be 
just cherry-picked examples. It is best to divide your results into two parts: in the first 
aim to give a more general idea about how the model behaves under a variety of con-
ditions and the second focusing on the results you think are interesting. Thus systemat-
ically explore the impact of the important parameters and look at the individual runs 
that result as well as the average of a set of independent runs (to get an idea of any 
central trends but also the variation between runs). Check that changing parameters or 
processes that you do not think are important to the results does not change them sig-
nificantly (including the random number seed). Keep a record of the experiments you 
run, recording: the model version, the parameter values and the data that resulted from 
them and keep this somewhere safe (you may need to refer to them or recreate them 
later). The most common question at such forums is “but what if you did X?” – so it is 
good to be ready for some of these. 

Assess your progress and be honest in reporting this. It is difficult to do, but 
before you write your slides or the conclusions of your discussion paper it is good to 
step back and try to objectively assess the extent that the results you have demonstrate 
that you have achieved your stated aim or that they support your conclusion. In partic-
ular, try to distinguish between what you hope to achieve with your model in the future 
and what you have currently proved (i.e. beyond audience doubt). Try to think of ways 
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in which you might be wrong about this, or alternative hypotheses that would explain 
the same conclusion. A workshop is a good venue for eliciting critiques of current 
weaknesses and helpful suggestions for how to address these – not for showing how 
perfect a modeller you are. Although other modellers might forgive you for being over-
enthusiastic about your results, they will prefer honesty. If there are non-modellers at-
tending to your results they will be annoyed when they find out they have been conned 
(as it will feel to them) – they expect more from us than this. 

Further reading and resources. A good, general motivation for the anticipating, 
mitigating and being honest about possible weaknesses in research is found in [25]. [9] 
is a example of this approach, discussing seven common modelling purposes along with 
an analysis of some of the ways each of these might fail. 

3 For those who want to publish an ABM paper in an 
established journal or at a top-level conference (level 3) 

You are getting serious, thinking you have some robust and significant research to re-
port and so are thinking about publishing in a journal paper or top-level conference 
where the main audience is other academics, modellers or your peers. If your results 
might affect people’s lives (even indirectly) you should also do the steps in level 4. 

General advice.  We are all, to some extent, specialists – those reading your work 
will not have the time to check it, which means that any such paper is far more useful 
if they can simply trust it. Once a paper starts to get cited in the literature this is hard to 
undo, even if the results turn out to be wrong because papers tend to be cited even after 
being refuted. Thus, there is a strong obligation to not present flawed models or over-
hyped conclusions – such papers impair scientific process and cause harm if later used 
to influence decision makers. For example, even if you did not intend it, your code or 
modelling structure might be used in a future model, developed by others, that does 
affect people’s lives. This is a social dilemma – everybody has short-term, individual 
reasons for rushing to publish (they need a paper quickly for their career, they can’t be 
bothered etc.) but this can be detrimental to the whole field in the longer-term. For these 
reasons, at this level, one should be careful, cautious and methodical. If the model was 
developed in a somewhat chaotic or exploratory manner, then you need to go back and 
re-do it properly [17]. Reporting cautious but reliable results that is better than hyped 
results that may disappoint later when limitations come to light.  

Make your model “open” – freely available with complete, multi-aspect docu-
mentation and appropriate licensing. Publishing at this level means that you are en-
tering a dialogue with your peers – inviting discussion and critique. It is almost impos-
sible to see all the flaws and limitations in one’s research, so we have to rely on others 
to do this. This “checking each other’s homework” is one of the pillars of good science, 
and this distinguishes it from many other endeavors. In particular, the analysis, repro-
duction [8] or comparison of each other’s work [4, 6] is important for establishing its 
reliability – without it you just do not know if your code is as you intended it. Unfortu-
nately getting someone else to spend the time and effort to do this is not easy, and this 
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probably has to happen post-publication (if you are lucky enough to get someone to do 
this). 

However, regardless of whether someone actually reproduces or further develops 
your model, it is your responsibility to make your model as accessible as possible to 
other researchers. There is a problem here – understanding someone else’s model is 
hard and needs a lot of time and effort. For this reason one needs a variety of kinds of 
model documentation of the same model to help them do this, including the following. 

• A narrative account of the model which gives the authors account of the important 
aspects of the model, including its declared purpose (by which they want it to be 
judged) and its original context. Knowing what the author thought was important is 
a good starting point for understanding a model as long as one bears in mind that the 
authors might be mistaken (e.g.  [8]). This should be supplemented by a few example 
results which give the reader a feel for what the model typically does.  

• A precise description of the conceptual model that the authors aimed their imple-
mentation at. This is a relatively high-level but complete account of all the aspects 
deemed intentional or significant for the model [22]. This should only include as-
pects thought to be essential for producing the significant model results and not con-
flate this with what was implemented. Techniques such as UML [1], more formal 
specification languages [21] and formal “ontologies” [19] can be helpful for this.  

• A complete description of the implemented model. Standards such as the “ODD” 
standard are helpful here as they can remind you to include aspects you might oth-
erwise forget about. ODD descriptions can be long so they are much better as an 
appendix or other kind of supplement supplied with the main paper or model code. 

• A description of the important experiments done with the model with some example 
results (see step below for more details). 

• Some account of how the model was developed indicating variations tried that turned 
out not to be so important to the declared results. This helps other modellers know 
what else has and has not been tried with the model. The “TRACE” documentation 
standard is helpful in this regard [2]. Parameter settings/variations of the model that 
are not important are usefully included in appendixes or supplementary material. 

• A list of assumptions behind the model formulation is very useful to others, espe-
cially if this indicates the authors’ assessment of their reliability and justification. If 
some aspects of the model come from existing theory, the appropriate references 
should be included, however only citing such sources is not sufficient as theories are 
often vaguely formulated – additional assumptions are usually necessary in order to 
obtain an implementation. If some elements are derived from data or other evidence 
then how this was done should be described (e.g. using the RAT-RS list of questions 
[1]. Whilst highlights from these are use in the main text, a more complete account 
should be left to an appendix or supplementary material. 

• Finally, the code itself, including comments, should be made available on a public 
archive. This is important so that (a) others can try out and mess with your code but 
also (b) it is the ultimate reference document for what was implemented – not many 
people will read the code, but if there is a question that is not answered by the other 
documentation then one can sort this out using the code itself. The code should be 
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accompanied with some instructions as how to run it (e.g. libraries or extensions that 
are needed) and an appropriate open license so that others can legitimately re-use 
and play with your code [18]. 

Use well-structured code which includes internal checks. The code should be easily 
comprehensible. It should be 

• well structured, having a logical structure with related code close to each other and 
using a limited set of control structures – chucks of code should not be too long but 
divided into separate, appropriately labelled sub-procedures or blocks; 

• well formatted, with spacing between procedures, indenting that indicates the inside 
of loops or alternative paths in conditional statements and informative headings to 
indicate separate sections of the code – collecting related code together; 

• with meaningful variable/procedure/function names that would indicate what they 
are to people unfamiliar with them; 

• with lots of comments telling a reader what that bit of code does and why – this 
should include references to the other documentation that link to this – in particular 
anything important, non-standard or are something the author has doubts about. 

Signs of well-structured code is that is reads as close to ordinary language as the pro-
gramming language allows. 

Bugs can be subtle creatures, and it is likely that many of them are never identified. 
This may or may not be important for the results discussed, but can often have an impact 
when the model is used in a different context to the one it was developed for. Thus as 
well as actively testing the code (described in step 2.2 above), one should implement 
code that implements internal checks. That is code that does not aid its normal running 
that checks internal, intermediate results produced by parts of the code for consistency 
with the conceptual model. Some of these might be automatically done by the program-
ming language you are using, but it is better to be explicit, so that a re-implementation 
in another language might include equivalent checks. Such inline checks might be for: 

• that an intermediate result be the right type of entity (e.g. distinguishing the letter 
“O” and the number “0”), 

• that it is in the right range (e.g. all prices should be positive), 
• that conserved entities (money, number of agents etc.) total to the same amount, 
• that numbers that should be truly zero be exactly that (and not something like 

0.0000000000000000001 due to a rounding error). 
• That a filename be of the right format. 

Having many statistical measures, visualisations and graphs concerning what is hap-
pening in the model can also help, since it may become immediately obvious if some-
thing has gone wrong just be looking at these. 

If these checks slow down the running of your model too much, then introduce a 
switch in your code to turn them on and off. Whilst developing and testing your model 
you can have these on, but whilst doing many experimental runs you can turn them off. 

Justification and full description of runs and results. The steps above are con-
cerned with the description, provision and checking of the model as a static object of 



9 

concern. Now is the time to describe and document what you did with the model. In 
other words, what runs you did and what results you obtained. This is necessarily partial 
– there are, almost always, far too many possible parameter/starting configurations to 
try them all out, let alone describe them all. We recommend that you separate out pos-
sible runs/results as follows, for each ‘run’ careful describe the parameter/starting con-
figurations/input data you use and the corresponding significant outcomes that result. 

1. Describe some runs that give the reader some idea of the typical behaviour or behav-
iours of the model in the main text. This gives the reader a reference point.  

2. Exhibit some runs that show the behaviour that you are primarily interested in.  
3. Do a ‘sensitivity analysis’. In other words, systematically vary the key parameters 

(or combination of parameters) showing how some key outcome measures change 
as a result [23]. This gives the reader a more general idea about what the model does 
given different parameters, but also indicates which settings the model is very sen-
sitive to, and which only make a gradual or minor impact.  

4. Finally, describe the key runs that test or otherwise demonstrate your key explana-
tion/hypothesis. The best papers explicitly formulate their key hypothesis concern-
ing the behaviour of the simulation (how outcomes relate to its structures, processes, 
etc.) and then seek to falsify that hypothesis in a series of experiments.  

There are two comments concerning all these descriptions of runs and outcomes. 
Firstly, that it is very useful for those seeking to reproduce the simulation to have some 
precise outcome measures for precise sets of outcomes. This enables those reproducing 
the model to check they have got it exactly right. Secondly, there is a lot of knowledge 
implicitly ‘packed into’ what concerning the simulation outcomes is considered signif-
icant and what is not. In deciding what to show and what to pass over, authors are 
making a statement about what in the simulation is core and what happenstance. To 
take a trivial example, exactly which pseudo-random number generator is used in the 
simulation is probably not important, and one should get essentially the same results if 
another was, in fact, used. The essence of the results might be the average of a value 
over many independent runs or the qualitative behaviour in the longer term, and not lie 
in the precise value of an outcome measure. It is good practice to explain why one is 
highlighting some aspects of a simulation run and not others. 

Strong validation of any conclusions. You have a presented a fully documented 
and tested simulation model, and then you have described sets of simulation runs. Now 
comes the most important (and often most neglected) part of the paper – the argument 
from the results to your conclusion. This argument should be as water-tight as possible, 
and if it is not then moderate the strength of the conclusions until it can be. The conclu-
sions should relate strongly to the declared model purpose. If you were aiming to ex-
plain some phenomena then the simulation experiments should show that the workings 
of the model strongly support that explanation. However, validation is a much contested 
term, especially in ABM. One way of thinking about validation is the process by which 
you rule out the different ways in which you might be mistaken about your conclusions. 
This involves the following steps: 
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1. Be precise about your intended conclusions, which should be an example of your 
declared modelling purpose. 

2. Describe your main reasoning, starting with your results and the design of your 
model and ending with your conclusions. 

3. Think of all the ways in which you could be mistaken about these conclusions. 
4. Design experiments or mitigating measures to prevent or rule-out each of these ways. 

The most important of these should be described in the main body of the paper.  
5. If there are any ways in which you might be wrong, that have not been ruled out, 

then you should moderate your conclusions to take these into account. 

The exact steps taken and the arguments used depend upon your conclusions, so it is 
not possible to be more specific here, but see Edmonds et al (2019) for an analysis of 
some of the main risks and mitigating measures that might be relevant to different kinds 
of modelling purpose, whose summary table of risks is reproduced in Table 1 below. 

Table 1. Summary of Different Modelling Purposes, their features and risks  (from [9]). 

Modelling 
Purpose 

Essential features Particular risks (in addition to 
that of not achieving the  

relevant essential features) 
Prediction Anticipates unknown data Conditions of application unclear  

Explanation Uses plausible mechanisms 
to match outcome data in a 
well-defined manner 

Model is brittle, so minor changes 
in the set-up result in bad fit to ex-
plained data; bugs in the code 

Description Relates directly to evidence 
for a set of cases 

Unclear provenance; over gener-
alisation from cases described 

Theoretical 
exposition 

Systematically maps out or 
establishes the conse-
quences of some mecha-
nisms 

Bugs in the code; inadequate  
coverage of possibilities 

Illustration Shows an idea clearly as a 
particular example 

Over interpretation to make theo-
retical or empirical claims;  
vagueness 

Analogy Provides a way of thinking 
about something; gives  
insights 

Taking it seriously for any other 
purpose 

Social learning Facilitates communication 
or agreement 

Lack of engagement; confusion 
with objective modelling 

 
Using honest and cautious language. Scientific language – that in a formal scientific 
publication – should be careful and precise. That is, it should communicate the research 
honestly and transparently. It should not hype the importance, results, or conclusions. 
This is difficult to do for two reasons: (a) in your enthusiasm you may not have noticed 
all the possible weaknesses and limitations and (b) even if you are crystal clear in your 
mind it may be hard to find the best language to communicate this in.  
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• For each statement written you should think “is this precisely true/justified?” and “is 
this crystal clear?” and if there is any doubt about these, reword it so it is. 

• Language used about the model should be clearly distinguished from that about what 
it models (the intended target of the modelling) [5]. It is good practice to have dif-
ferent sections where you talk about the intended phenomena or ideas of what the 
model is about and those where you describe the implemented model and its results. 
It can also be helpful to use different words to indicate entities in the model and what 
they represent. Never make one statement that you think holds for both model and 
target phenomena – even if avoiding this involves some repetition. 

• We all hope that our models will achieve great things in the future, but should limit 
ourselves to describing what has currently been achieved. For example, we should 
not say something like “This model may be helpful to Y in preventing X” if we have 
not shown that the model can reliably predict X or the conditions when it is more 
likely. This includes optimistic anticipation about the empirical correctness. 

• Whether you have made clear the weaknesses or limitations of your research. 
• It is easy to imply achievements or uses, even if one does not make any such claims 

explicitly but one should make an effort not to do this. A common approach that can 
cause confusion is to motivate the work in strong language and then present the re-
search. For example, stating that solving a particular problem is of high importance, 
then present a model leaving the impression that the model is a significant step to-
wards solving that problem. Ideally, one should anticipate possible misconceptions 
and correct these using explicit statements (e.g. “this is just a proof of concept”).  

If the reader has to work hard to understand what the research has achieved by reading 
footnotes, diving into model detail or reading between the lines like a lawyer, then you 
have not done a good job of describing your research. Rather, the work should be easy 
to understand and assess, with the authors making it clear what was achieved. 

Further reading and resources. The starting point here is [9]. For the systematic 
design of experiments see [16]. To check you have run your simulations enough times 
to justify you conclusions see [20]. For more on UML see [1]. More about keeping the 
conceptual model and implementation distinct see [22]. For active steps to prevent 
‘bug’ or model artefacts see [11]. For more on sensitivity analysis see [23]. 

4 For those whose modelling might influence decisions that 
affect people’s lives (level 4) 

Many grant applications promise “policy relevance” in some form or other. When 
funded, the resulting projects are under an obligation to, at least, try to interest policy 
actors in their results. Others want their work to have relevance outside academic circles 
because they want to be useful or they feel an obligation to do so. Due to the potential 
dangers, this level calls for the highest standards of consultation, validation, transpar-
ency, rigour, and caution [7]. We are not going to describe this level here because it 
would take up too much space and we would like to build more consensus upon it before 
publishing. A future guide could be written for policy actors interacting with modellers. 
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