
Syntactic Measures of Complexity

- page 86 -

5 Applications of Complexity to Formal Languages

5.1 Types of Complexity Involving Formal Languages

As noted in the previous section, complexity is relative to the kind of difficulty that

concerns one most. Frequently this is the limiting factor in a task.

For example, if one has already programmed a computer for a certain search task,

the remaining difficulty is represented by the time and memory this search will take to

complete. If, further, one is in the happy circumstance where the speed and capacity of

computers is growing exponentially (as it has been in the last few decades), then a critical

factor will be whether the time and memory requirements also grow exponentially with

the size of problem, or merely in a polynomial fashion. If the later is true, one will only

have to wait, for the problem to become tractable (assuming the current trend in

computing power continues), while this is not the case, the program is likely to remain

intractable using this algorithm. This sort of question is dealt with by the measures of

Computational Complexity (see section 8.47 on page 162).

Similar examples of possible limiting factors include the size of matrix required for

discriminating the independence of expressions (section 8.40 on page 158), the ease with

which expressions can be compressed (section 8.2 on page 136), the length of proofs

(section 8.19 on page 146), the predictive difficulty of modelling using regular languages

and a language’s position in the Chomsky hierarchy [122].

One I wish to concentrate on is that corresponding to the difficulty in analysing

expressions in a formal language, which I will call the “analytic complexity” of an

expression. In order to analyse an expression, one tries to trace its roots, i.e. to decompose

it according to some system. The language within which one attempts this will be critical.

For example some logical theorems may be quite simple to decompose as an expression

but difficult to decompose in terms of proof, for other theorems the opposite might be the

case.

Such an analytic process can be seen as a possible strategy fordeducing the overall

properties of a model or expression. In this light, analysis by decomposition is

complementary toinducing the properties by seeking a model for there properties. In other

words the ease with which a model can be decomposed reflects that model’s accessibility

to analysis and in this way obviates the need for a lengthy inductive search process. So in

Syntactic Measures of Complexity

- page 87 -

situations where analysis is feasible it becomes the critical factor in the search for an

overall formulation of its behaviour.

5.2 Expected Properties of “Analytic Complexity”

Firstly I will look at what properties one might expect of such an “analytic

complexity” in the context of formal languages.

5.2.1 Independent of the particular symbols used

A measure of complexity on statements in a formal language should be independent

of the particular symbols used; it is the pattern of the expression that encodes its meaning.

It should be immaterial whether you write “a∧b” or “statement1 and statement2” if the

corresponding formal languages are isomorphic.

5.2.2 The complexity of sub-expressions should be less than the whole

That a sub-system or sub-expression should be no more complex than the system or

expression it is part of, is perhaps the most commonly accepted property of complexity. It

is rare that a proposed measure of complexity does not obey this rule (but Abstract

Computational Complexity is a rare counter-example, section 8.1 on page 136).

If one considered that, in some circumstance, an expression was less complex than

one of its parts then, presumably, there would be some mechanism for preventing this

“buried” complexity from being fully realised in the whole. In this case, only an

abstraction of the full expression is being considered, in which case the complete

representation of this abstraction would be different from the complete expression.

Sometimes this is because of a confusion between the syntactic content of an expression

and some other aspect.

So, for example, in a first-order logic with equality one might consider all

substitution instances of identity equally simple because from a proof theoretic view they

perform a similar role, despite the fact that some of these instances seem to (syntactically)

contain arbitrarily complex sub-expressions. Either for their purposes they are considering

all such instances as thesame as identity, in which case a different language (where this

identity is enshrined) is essentially being used, or they are considering the expression from

within the language of its proof theory. In either case the language used is not the syntax of

the expressions (over which the sub-expressions are being taken) but the syntax of some

Syntactic Measures of Complexity

- page 88 -

proof theory, so it is not surprising that it does not have these complex parts when

expressed in these ways.

5.2.3 Expressions with no repetitions are simple

Since I am, for the moment, considering complexity over a potentially wide range of

languages I need to define what I mean by atomic statements. By atomic statements I

mean expressions that have no constituent syntactic parts (in that language). Of course it is

possible that in some systems there are no atomic statements (see section 4.1.2 on page

76).

Atomic expressions are assyntactically simple as you can get. It is reasonable to

allocate them a minimal complexity. Similarly, in a proof theory, a one line proof just

listing an axiom would be a minimally complex proof.

One might object that syntactically atomic symbols may have complex meanings,

but if we were to attempt tomeasure the semantic complexity of models, we would need

to formalise this in a language so as to distinguish the relevant semantic properties. The

“semantic complexity” would be relative to this new language.

Expressions with unrepeated atomic symbols, do notuse the reference denoted by

such a symbol, because for there to be any meaning one needs somehow to establish an

identity indicated by a symbol and then make some statement about it. If the only

reference by a symbol is made once then that reference specifies its sole property (for the

expression), there can not be anything more. It is like answering the question “Who wrote

the Iliad?” with the name “Homer”, but if thesole property of the name “Homer” is that it

is the author of the Iliad then it does not get you very far. If we knew anything else about

Homer (for instance that he was a single historical being45), then the appellation could be

meaningfully used, and some complexity appear.

Of course, if one is talking about a language which relatesgroups of

sub-expressions, then the symbol may be meaningfully repeated elsewhere (in another

sub-expression) to establish its purpose. Logical constants in various proof theories have

this role. Again, it is necessary carefully to distinguish between the complexity of

expressions within a syntax and the complexity of proofs within the syntax of a proof

theory.

45.I am told that this is unlikely.

Syntactic Measures of Complexity

- page 89 -

For example, an expression with no repetitions, like “When at a constant pressure,

heat causes gases to expand.”, may have a complexity within a language of scientific

verification, as the definitions of the words are all established elsewhere. If, on the other

hand, this sentence was used where none of the words had a definition or defining context,

it could, on its own, perform no complex role.

5.2.4 Small size should limit the possible complexity

In very small systems, there might be a limited number of different relationships

between its components. In this case, one would expect that there would be a limit to its

complexity. However, the complexity of a system can grow extremely quickly with its

size, for example there is a Turing machine with only five internal states that halts after

exactly 23,554,768 steps [303].

5.2.5 There should be no upper limit to complexity if the language is suitably

generative

In most situations one feels that there is a limit to how far one can simplify

statements, but it is always possible to complicate them. The whole point of a generative

language is that one can construct an expression as complex as necessary. So it would be

very surprising if there was an general upper complexity limit for expressions in such a

language.

If there were such a limit, what could it mean? One possibility is that although the

expressions may appear more complicated they were not “in fact” so, but in this case we

are no longer dealing with the expression itself but that expression from within a different

language context represented by the meaning of “in fact”. For example, there is an upper

limit to how Algorithmically Complex (section 8.2 on page 136) you can prove strings to

be fromwithin a wide range of formal systems but this does not mean there was a limit to

the Algorithmic Complexity of strings. On the contrary, most strings have an Algorithmic

Complexity close to their length; it is a limitation on the power of proofs within the

systems that is at the root of this limit.

Another possibility could arise if the expression's syntax were limited in some way

so as impose an upper limit on its possible complexity. If such a language was generative

it would have to generate an infinite number of expressions of limited complexity. Thus

most of these expressions would have to not get more complex as they increased in size.

Syntactic Measures of Complexity

- page 90 -

This would make for an odd language indeed, stuffed with unwieldy but simple

expressions. They do exist. An example is a language with an infinite supply of atomic

symbols and a connective “→”, where only atomic symbols and only expressions of the

form x→y are allowed where x and y share no atomic symbols. In most general expressive

languages I would not expect this to be the case.

5.2.6 The complexity of irrelevant substitutions

One way of dealing with complex systems is to try and break them down into a

number of simpler systems. If they are not broken down intoindependent sub-systems,

there is a risk of losing some aspects of the original system in the process. If all the

subsystems are mutually irrelevant to each other, then nothing will have been lost in the

analysis. In this case the complexity of the whole system would be wholly in these

sub-systems, for there is no other interaction between them at the system level.

In particular, if a sub-expression is substituted for an atomic symbol into another

expression and this sub-expression is irrelevant to rest of the main expression, then the

resulting expression could be completely and successfully analysed into those two parts.

Thus we would think of as a substitution instance of identity

 with substituted for x; in some systems the two levels would not

syntactically interact. In the example the complexity of derives

completely from the complexity of and the complexity of .

Here we would have to be careful to separate out the complexity of the expression's

syntax from the complexity of its proof theory. If, in the logic's proof theory,

and were inter-derivable and interchangeable then there would be some interaction

between the levels in the sense that it would mean that an implication could imply another

implication (itself).

There might well be a close connection between the complexity of an expression's

syntax and its derivation (or theory) in a particular logic, but this is not necessarily the

case. For example, in some inconsistent systems of Logic, the atomic proposition,a, might

be derivable after a lot of work and so it might not have a simple derivation.

Another example is a system of differential equations. Some such systems are

linearly separable, in which case the solutions can found separately for distinct variables.

The variables do not interact, except that they both occur in this set of equations. You can

a b¬∨() a b¬∨()→

x x→ a b¬∨()

a b¬∨() a b¬∨()→

x x→ a b¬∨()

a b¬∨()

b a→

Syntactic Measures of Complexity

- page 91 -

meaningfully talk about each separately without going into the details of their solutions

and add the complexity back again by substituting the solutions later, without invalidating

any of the previous discussion.

5.2.7 The complexity of relevant relating of expressions

When two relevant expressions are related then this relation is more complex than

either of the parts. The sub-expressions A and are relevant to each other.

The joined expression is clearly at least as complex as either of

the sub-expressions it contains (by the sub-system property) and the top-level implication

could add to this complexity.

In a densely connected system, where every part is relevant to every other, it is

difficult to reduce the system to simpler subsets of the original, without losing important

information. A popular way of expressing this is by saying that the whole is greater than

the sum of its parts.

Imagine a very incestuous party, where everybody has known everybody else for a

very long time. Here it is not possible to gain a complete picture of the system of

relationships by studying sub-groups. Every time study is restricted to a subgroup of the

total information is lost about some of the relationships which effect those in the

subgroup. Conversely recombining these subgroups into the whole again is accompanied

by a regaining of this lost complexity.

The simplest party is one where nobody interacts with anybody else. Such parties

are no fun at all; nothing can come out of them. Everybody understands exactly what is

going on.

A normal party is amenable tosome analysis into expressions for sub-groups,

classes, etc. but there are usually enough cross connections to rule out anycomplete

understanding of the situation. We are thus sometimes surprised by their outcome (maybe

this is why we have them).

5.2.8 Decomposability of expressions

Many of the above criteria are concerned with the decomposability of formula. Thus

we will see that such decomposability is strongly related to analytic simplicity, as the

easier it is to decompose without loss, the easier it is to analyse.

B B→() A→

B B→() A→() A→

Syntactic Measures of Complexity

- page 92 -

A statement in a formal language will be called decomposable if some coherent part

of it (larger than a single sign) can be substituted for a symbol so that that part is irrelevant

to the resulting statement. Thus the decomposability of a statement will be dependant on

the syntax of the language and the definition of irrelevance (or relevance). The idea is that

if such a substitution is possible then the two parts of the statement can be considered

separately, as their only connection is though the symbol that now stands for the

substituted part.

Relevance too will be defined relative to the syntax we are considering. I will take

two statements to be irrelevant to each other if they do not contain any of the same

sub-formula (in that syntax or in sub-syntaxes). This is a conservative definition of

irrelevance; no doubt many statements (or examples of reasoning) that do share some of

the same sub-structures could also be considered irrelevant to each other.

Thus a formula that can be repeatedly decomposed as described above will be

considered simple compared to one that can not. This reflects our intuitive feeling of the

complexity of such formula.

For example, the formula is considered as

identity with the sub-formula substituted forx. On the other hand

the formula can not be simplified in the same

manner.

I have argued that an number of constraints should apply to the complexity of

formulas: a formula with no repetition of its sub-formulas is ultimately simple (I will refer

to such formulas as “simple”) - it can be completely decomposed into single symbols; if a

formula can be irrelevantly decomposed into parts then its complexity is just the sum of

these parts; and that a formula must necessarily be at least as complex as any of its

sub-formulas.

There will be formulas that can not be decomposed at all in this manner (in the same

syntax). I will call such formulas “complex”. Thus I still have the question of how I

compare such complexes with respect to their complexity. One way would be to call all

such complexes equally complex (producing something akin to a discrete metric space),

but this would not reflect our intuitions very well; identity would be as complex as

suffixing!

a b→() c→() a b→() c→()→

x x→ a b→() c→

a b→() c→() b c→() a→()→

Syntactic Measures of Complexity

- page 93 -

5.3 Measures of Analytic Complexity

The above properties (listed in Section 5.2 immediately above), provide constraints

on possible numeric measures of complexity. The characterisation of measures which

meet these constraints and some simple results are now considered. I am not concerned

with finding a set of axioms that show the existence and uniqueness of a measure but

rather the converse – given the above properties I wish to find what measures exist which

satisfy them. This reflects my stance that complexity orderings are not innate but are rather

models of aspects of our descriptions to reflect the difficulty we have in finding or

analysing them.

A practical result of this is that often the assignment of numbers to reflect the

complexity comes before a complexity ordering. Occasionally these assignments are

intended to give an indication of the exact level of difficulty (as in storage space),

sometimes they are intended to merely give an indication of the order of magnitude of the

difficulty, but often they are only intended to induce a complexity ordering of expressions.

Thus the measures fall somewhere between the ‘ratio’ and ‘ordinal’ measures as

categorised by Stevens in [423].

A decision to model the difficulty of finding or analysing a model description by

complexitymeasure (i.e. a homomorphism into the reals) relies on the implicit assumption

that the domain is sufficiently constrained so that it is meaningful to assume that a

complexity ordering relation will be connected (that is for every pair of itemsx, y either

x≤y or y≤x). Usually this is entailed by the numerical definition of complexity on the

whole domain of possible expressions.

5.3.1 Notation

Let X ≡df X0UX1UX2, be a set of symbols, whereX0, X1 andX2 are disjoint sets. It is

intended thatX0 be a set of constants and variables,X1 be a set of unary symbols andX2 be

a set of binary connectives46.

46.Although I only consider up to binary symbols here, the results could easily be extended.

Syntactic Measures of Complexity

- page 94 -

Let L be a context-free language with the obvious production rules:

c∈X0 ⇒ c∈L

u∈X1,x∈L ⇒ (ux)∈L

b∈X2, x,y∈L ⇒ (bxy)∈L.

The maximum depth of a formula,depth(x), is defined recursively in the

normal way:

x∈X0 ⇒ depth(x)=0

depth(ux) = 1+depth(x)

depth(bxy) = 1+max{depth(x), depth(y)}

Similarly with the size of a formula,|x|:

x∈X0 ⇒ |x|=1

|ux| = |x| + 1

|bxy| = |x| + |y| + 1

Let ℘(x) be the set of well formed subformula ofx. Note thatx∈℘(x).

Thusx is a subformula ofy iff x∈℘(y). This is a reflexive and transitive relation.

DefineR(x,y) to be a minimal syntactic relevance relation onL thus:

R(x,y) ≡df ℘(x)∩℘(y) ≠ ∅, (Defn R)

i.e. x and y share a common subformula. This is equivalent to sharing a

common variable or constant. This is a symmetric and reflexive relation.

I will assume in all below that there is a sufficient supply of symbols inX0, so that

one can always find a symbol that is irrelevant to any particular formula. Formally:

x∈L ⇒ ∃c∈X0,¬R(x,c). (Suff Symbols)

If there is not add a suitable sequence of irrelevant symbols toL47.

Let xy/z (or sometimesx(y/z)) be the notation for the formulax where every instance

of y in x is replaced byz. If y∈X0∩℘(x) and¬R(x,z), xy/z will be called anirrelevant

47.There are two ways of doing this: by adding a infinite sequence of symbols into X0 or a sufficient but

finite supply of symbols toL without the production rules applying to them.

Syntactic Measures of Complexity

- page 95 -

substitution, as the formulaz is irrelevant to the formula it is being substituted into. If the

formula being substituted,z, is not a member ofX0 and the formula being substituted for is

a proper subformula of the formula it is being substituted into – I will call this anon-trivial

irrelevant substitution. This will form an important part of the theory.

A complex is a formula that can not be decomposed using a non-trivial irrelevant

substitution.

i.e.x is a complex if

¬∃y∈℘(x)-{x}-X0;¬R(xy/c,y), where c∈X0-℘(x). (Defn Cp)

where the sufficiency of symbols assumption above (Suff Symbols) ensures

that such ac can be found. The idea is that ifx∉Cp then there is a proper subformula,y,

(that is not a member ofX0), so thatx can be thought of as the join (by substitution) of two,

mutually irrelevant parts:xy/c and y.

Let the set of all complexes inL be calledCp. Note that trivially all members ofX0

are complexes since℘(x)-{x} is empty.

Following Krantz et al. in [271] I take ameasure onL to be a homomorphism from a

structure onL (e.g.<L, ⊕, ≤>) into a suitable structure on the reals (e.g.<ℜ+, +, ≤>),

where ⊕ is some concatenation operator defined onL, and≤ is an ordering relation onL.

For the structures given immediately above this is a functionC:L→ℜ+, defined onL into

the non-negative real numbers such that, for allx,y∈L:

C(x⊕y) = C(x) + C(y)

x≤y ⇔ C(x)≤C(y).

I will use ‘≤’ for both the ordering onL and the normal ordering on the reals.

Which I am referring to should be clear from the content. Similarly I will writex<y where

x≤y but noty≤x andx~y if x≤y andy≤x.

In all below assume x,y,z∈L andc,k∈X0.

5.3.2 Weak complexity measures

There is no natural and general concatenation operator onL since, in general, how

and where expressions are joined matters (due to the tree structure of members ofL).

Substitution is a general and natural operation, but this is essentially a ternary operation.

Syntactic Measures of Complexity

- page 96 -

However, there is a special case of substitution that can act in a similar way to a

concatenation operator, this is the case of irrelevant substitution. This corresponds to the

intuitions discussed in section 5.2.6 on page 90 above. This concatenation would be

defined:

x⊕y = xc/y, where c∈X0∩℘(x), ¬R(x,y)

but clearlyx⊕y is not uniquely defined as an operation inL since there can be

more than onec∈X0∩℘(x). However the intention is that the complexity of the result of

any irrelevant substitution for a member ofX0 will be the sum of the complexities of the

original formula and the formula substituted into it. In this way irrelevant substitution

performs a similar role to concatenation with respect to acomplexity measure. For clarity

and to ensure that the measures are well defined I will retain the use of explicit substitution

(e.g.xc/y) within L (instead of⊕, which I will reserve for use as an implicit relation as in

x⊕y=z, by which I will mean thatz is the result of an irrelevant substitution ofy into x).

The idea of a measure will remain that of a homomorphism between + inℜ+ and any

irrelevant substitution inL.

Translating the above formalisation of a measure using the substitution operation we

get: aweak complexity measure is a homomorphism from<L, ⊕, ≤> into

<ℜ+, +, ≤>, that is a functionC:L→ℜ+, defined onL to the non-negative real numbers

such that,∀x,y∈L:

c∈X0∩℘(x), ¬R(x,y) ⇒ C(xc/y) = C(x) + C(y) (Irrel Subs)

x≤y ⇔ C(x)≤C(y). (Subform)

To start with I will impose no constraints upon the ordering relation onL

(other than those implied byIrrel Subs).

Some simple results

Irrel Subs implies that the measure of all nullary symbols (X0) to be zero, that is:

c∈X0 ⇒ C(c)=0 (Nullary Zero)

Syntactic Measures of Complexity

- page 97 -

Proof:

Choose k∈X0, k≠c

C(k) = C(cc/k) as cc/k=k

= C(c) + C(k) by Irrel Subs

..................

This means that a complexity measure cannot be a positive measure, i.e. it is

not true to say that:

x⊕y > x.

An alternative form of irrelevant substitution is sometimes useful:

y∈℘(x), ¬R(xy/c,y), c∈X0-℘(x) ⇒ C(xy/c) = C(x) - C(y) (Alt Irrel Subs)

Proof:

C(x) = C(xy/c
c/y) as x = xy/c

c/y

= C(xy/c) + C(y) by Irrel Subs.

..................

If x andy are essentially the same formula but with differentX0 symbols (I will write

x≈y) then they have the same complexity (as argued for in section 5.2.1 on page 87

above).

Formally this is equivalent to repeated applications of:

c∈℘(x)∩X0, k∈X0-℘(x), ¬R(x,k) ⇒ C(xc/k) = C(x) (Symbol Change)

Proof:

C(xc/k) = C(x) + C(k) by Irrel Subs

= C(x) by Symbol Zero.

..................

Syntactic Measures of Complexity

- page 98 -

Decomposition (Decomp)

The first result, suggested byIrrel Subs, is that any formula can be decomposed into

complexes. i.e. for anyx∈L there area0,…,an∈Cp andc1,…,cn∈X0 such that

x = a0
c1/a1…cn/an

and for i<n, ¬R(a0
c1/a1…ci/ai,ai+1) (so the above could be written as the

relation:x= a0⊕…⊕an

and so

C(x) = C(a0) + … + C(an).

Note that this decomposition is not necessarily unique.

Proof:

By simple induction on length of x using a non-trivial irrelevant substitution when

x∉Cp. See section 9.3 on page 169 for this.

..................

The length of a decomposition is defined as the number of irrelevant decompositions

that are required (i.e.n in the above).

A weak complexity measure is determined by its values on the complexes,Cp. That

is, a function,g, onCp in L, g:Cp→ℜ+, such that:

x∈X0 ⇒ g(x)=0,

x≈y ⇒ g(x)=g(y)

x≤y ⇒ g(x)≤g(y).

will generate a unique complexity measure,C:L→ℜ+, onL via:

C(x) ≡df g(a0) + g(a1) + … + g(an),

for some decomposition: x = a0
c1/a1…cn/an, into complexes: a0,…,an∈Cp-X0,

n≥0, as above (unlessx∈X0, in which case it is its own decomposition) and hence extend

the ordering,≤, from Cp to the whole ofL, via:

x≤y ⇔ C(x)≤C(y).

Proof:

Syntactic Measures of Complexity

- page 99 -

Proof is by induction on the maximum size of formulas. In the induction step there

are two things to prove: thatC is well defined and that theIrrel Subs condition holds. The

first is shown using a lemma that one of¬R(x,y), y∈℘(z) or z∈℘(y) holds. The second

then comes out as a consequence of decomposition into complexes. Details can be found

in section 9.4 on page 170.

..................

Of, course the reverse is trivially true: a weak complexity measure onL results in a

generating function as above by simple restriction of its domain toCp. Thus there is a

one-to-one correspondence between weak complexity measures and such functions on the

complexes ofL.

I can now demonstrate the existence of (non-trivial) weak complexity measures by

generating such a measure from the functiong:Cp→ℜ+ defined:

x∈X0, u∈X1 ⇒ g(ux) ≡df 1,

Otherwise ⇒ g(x) ≡df 0.

This generates a complexity measure which “counts” the number of instances

of unary symbols in a formula that can be decomposed out by a non-trivial irrelevant

substitution. SoC(c)=0, C(uc)=1, C(u(uc))=2, C(u(u(uc)))=3, C(u(u(u(uc))))=4 etc.

but C(bc(u(u(u(uc)))))=0. Thus by simply increasing the size of the formula in this

uninteresting way we can increase its complexity – as discussed above (section 3.4.1 on

page 57) this is not very satisfactory,

Syntactic Measures of Complexity

- page 100 -

5.3.3 Weak complexity measures where simple repetition does not increase

complexity

I now add a condition so as to distinguish more sharply weak complexity measures

from those concerned with size, by ruling out measure such as the example above. The

extra conditions are:

c,k∈X0, c≠k, u∈X1, b∈X2

uc ≤ c (Unary Zero)

bck ≤ c (Binary Zero)

Thus

C(uc) ≤ C(c) = 0 and C(bck) ≤ C(c) = 0 soC(uc)=C(bck)= 0. (Zero)

This has the consequence that the complexity of an irrelevant join of expressions

using a binary connective is the sum of the complexities of its parts:.

¬R(x,y) ⇒ C(bxy) = C(x) + C(y) (Irrel Join)

Proof:

Choose c,k∈X0 such that¬R(x,c), ¬R(x,k), c≠k (Suff Symbols)

Then

C(bxy)= C(bx(cc/y))

= C((bxc)c/y) as c can not occur in x

= C(bxc) + C(y) by Irrel Subs

= C(b(kk/x)c) + C(y)

= C((bkc)k/x) + C(y) c ≠ k

= C(bkc) + C(x) + C(y) by Irrel Subs

= C(x) + C(y) by Zero.

..................

Syntactic Measures of Complexity

- page 101 -

Similarly

C(ux) = C(u(cc/x)) = C((uc)c/x) = C(uc) + C(x) = C(x)

By simple induction we can see that any formulas where there are no

repetitions of theX0 symbols that occur in it then it is has zero measure. Thus the above

conditions meet the requirement that expressions with no repetitions are simple that

resulted from the arguments in section 5.2.3 on page 88.

As above, a weak complexity measure under the extra ‘zeroing’ conditions is

determined by its values on the complexes,Cp.

A function,g, onCp in L, g:Cp→ℜ+, such that:

x,y∈X0, u∈X1, b∈X2 ⇒ c(x)=0, c(ux)=0, c(bxy)=0

x≈y ⇒ g(x)=g(y)

x≤y ⇒ g(x)≤g(y).

will generate a unique complexity measure,C:L→ℜ+, onL via:

C(x) ≡df g(a0) + g(a1) + … + g(an),

for some decomposition: x = a0
c1/a1…cn/an, into complexes: a0,…,an∈Cp-X0,

n≥0, as above (unlessx∈X0, in which case it is its own decomposition) and hence extend

the ordering,≤, from Cp to the whole ofL, via:

x≤y ⇔ C(x)≤C(y).

Proof:

Proof is identical to the generation theorem above, except for the extra condition on

the generating function,g, which transfers directly to the resulting complexity measure,C

– details of the previous proof can be found in section 9.4 on page 170.

..................

An example of this type of measure is generated from the functiong:Cp→ℜ+ thus:

x∈X0, b∈X2 ⇒ g(bxx) ≡df 1.

Otherwise g(x) ≡df 0.

Syntactic Measures of Complexity

- page 102 -

This produces a complexity measure which “counts” the number of instances of

complexes of the formbcc that can be decomposed out by a non-trivial irrelevant

substitution. HereC(c)=0, C(bcc)=1, C(bc(bcc))=0, butC(bk(bcc))=1 (whenc≠k).

5.3.4 Weak complexity measures that respect the subformula relation and

where simple repetition does not increase complexity

There is a natural constraint on orderings ofL, namely that of the subformula

relation (as discussed in section 5.2.2 on page 87). So next I consider measures from

<L, ⊕, ≤> into <ℜ+, +, ≤>, that is a functionC:L→ℜ+, defined onL to the non-negative

real numbers such that,∀x,y∈L:

c∈X0∩℘(x), ¬R(x,y) ⇒ C(xc/y) = C(x) + C(y) (Irrel Subs)

x≤y ⇔ C(x)≤C(y). (Subform)

wherex∈℘(y) ⇒ x≤y as well asbck, uc ≤ c.

All the above results still hold except the generation of measures from a function on

Cp, which needs to be adapted.

Such a weak complexity measure is determined by its values on the complexes, but

now we do not have as much freedom to allocate values onCp. So now a function,g, on

Cp in L, g:Cp→ℜ+, such that:

x,y∈X0, u∈X1, b∈X2 ⇒ c(x)=0, c(ux)=0, c(bxy)=0

x≈y ⇒ g(x)=g(y)

p0
c1/p1…cn/pn∈℘(q)-{q}

⇒ Σig(pi)≤g(q)

will generate a unique complexity measure,C:L→ℜ+, onL via:

C(x) ≡df g(a0) + g(a1) + … + g(an),

for some decomposition: x = a0
c1/a1…cn/an, into complexes: a0,…,an∈Cp-X0, n≥0,

as above (unlessx∈X0, in which case it is its own decomposition) and hence extend the

ordering≤ to the wholeL, via:

x≤y ⇔ C(x)≤C(y).

Syntactic Measures of Complexity

- page 103 -

Proof:

Again, the proof is identical to that in section 9.4 on page 170, except that we have

to check that the subformula constraint on≤ in L holds:

Now if y∈℘(q)-{q}, q∉Cp, then by the decomposition theorem above

y=p0
c1/p1

c2/p2…cn/pn for some p0,p1,…,pn∈Cp.

Now, C(q)

= h(q) by construction

≥ Σig(pi) by (3)

= C(y) by construction

..................

An example of this type of measure is generated from the functiong:Cp→ℜ+

thus:

x,y∈X0, u∈X1, b∈X2 ⇒ g(x) ≡df 0, g(ux) ≡df 0, g(bxy) ≡df 0.

Otherwise c(x) ≡df 1.

This produces a complexity measure which “counts” the number of non-trivial

complexes in the decomposition of a formula. HereC(c)=0, C(bck)=0 where c≠k,

C(u(ux))=0, C(bcc)=1, C(bc(bcc))=1, andC(b(bcc)(bcc))=2.

The trouble with the above method of generating a complexity measure is that it is

not easy to see what generating functions would satisfy the conditions. The following

alternative is a little clearer.

Any non-negative functionh:Cp→ℜ+, recursively generates a strong complexity

measure onL, thus:

p,q∈X0, u∈X1, b∈X2 ⇒ C(p)=0, C(up)=0 and C(bpq)=0,

x∈Cp ⇒ C(x)=C(a0) + … + C(an), where x has a decomposition: a0
c1/a1…cn/an,

Otherwise C(x)=h(x) + max{C(y)| y∈℘(x)}.

In other wordsg specifies the “extra” complexity assigned to a complex above the

greatest complexity of any of its subformula and the complexity of decomposable

formulas is built up in the normal way as the sum of the complexities of the complex in a

decomposition.

Syntactic Measures of Complexity

- page 104 -

Thus since any such complexity measure generates a non-negative function and a

non-negative function generates such a complexity measure in reverse, there is a one-one

correspondence between non-negative functions on the Complexes and these complexity

measures.

5.3.5 Strong complexity measures

Relevant Join

In the above measures what I call the ‘relevant join’ property does not necessarily

hold. This property is:

R(x,y) ⇒ bxy > C(x), bxy > C(y)

This deficiencies will be corrected with the setting up of “strong complexity”

measures below. Firstly I prove that the following three conditions are equivalent on a

weak complexity measure, in particular the version in (section 5.3.3 on page 100), for

b∈X2, x,y∈L:

(i) R(x,y) ⇒ C(bxy) > C(x), C(bxy) > C(y) (Rel Join)

(ii) y∈℘(x)-{x}, c∈X0-℘(x), R(xy/c,y) ⇒ y < x (Rel Subform)

(iii) y∈℘(x)-{x}-X0, x∈Cp ⇒ y < x (Subform of Complex)

Proof:

First I show that condition (i) implies the subformula property, then prove in turn

(i)⇒(ii); (ii) ⇒(i); (ii) ⇒(iii); and finally (iii)⇒(ii). This proof can be found in section 9.5

on page 175.

..................

Note that (as a result of the proofs in section 9.5 on page 175) any of the three

conditions above implies the subformula property, namely:

y∈P(x) ⇒ y ≤ x.

I can now define astrong complexity measure as a weak complexity measure

together with any of the three constraints above.

Again, in an almost identical way as above, we can generate strong complexity

measures from measures onCp, the set of complexes.

Syntactic Measures of Complexity

- page 105 -

A function,g, onCp in L, g:Cp→ℜ+, such that for allp,q∈Cp:

(1) p,q∈X0 ⇒ g(p)=0, g(up)=0 and g(bpq)=0

(2) p≈q ⇒ g(p)=g(q)

(3) p0
c1/p1…cn/pn∈℘(q)-{q}

⇒ Σig(pi) < g(q)

will generate a unique complexity measure,C:L→ℜ+, onL via:

C(x) ≡df g(a0) + g(a1) + … + g(an),

for some decomposition: x = a0
c1/a1…cn/an, into complexes: a0,…,an∈Cp-X0, n≥0,

as above (unlessx∈X0, in which case it is its own decomposition) and hence extend the

ordering≤ to the wholeL, via:

x≤y ⇔ C(x)≤C(y).

Proof:

Again, the proof is identical to that in section 9.4 on page 170, except that we have

to check that the subformula constraint on≤ in L holds:

Now if y∈℘(q)-{q}, q∈Cp, then by the decomposition theorem above

y=p0
c1/p1…cn/pn for some p0,…,pn∈Cp.

Now, C(q)

= g(q) by construction

> Σig(pi) by (3)

= C(y) by construction

..................

Obviously, any strong complexity measure has a unique restriction toCp that obeys

(1), (2), and (3) above. Thus there is a one-one correspondence between such functions on

Cp and strong complexity measures.

Syntactic Measures of Complexity

- page 106 -

This time anystrictly positive function on the non-trivial somplexesh:Cp-X0→ℜ+,

recursively generates a strong complexity measure onL, thus:

p,q∈X0, u∈X1, b∈X2 ⇒ C(p)=0, C(up)=0 and C(bpq)=0,

x∉Cp ⇒ C(x)=C(a0) + … + C(an), where x has a decomposition:a0
c1/a1…cn/an,

Otherwise C(x)=h(x) + max{C(y)| y∈℘(x)}.

Thus since any strong complexity measure generates a strictly positive function and

a strictly positive function generates a strong complexity measure in reverse, there is a

one-one correspondence between positive functions on the complexes and strong

complexity measures.

Perhaps the most straightforward of such functions,h, mentioned immediately

above is the constant functionh(x)=1. This measure captures the maximum length of a

chain of stepwise decompositions by (possibly relevant) non-trivial substitutions. This is

analogous to the Krohn-Rhodes measure of complexity based on the decomposition of

semi-groups (section 8.23 on page 148).

Other strong complexity measures include: the cylomatic complexity of the minimal

directed acyclic graph representation of formula (see section 5.4 on page 106 immediately

below), and the logarithm of the number of spanning trees of the same representation (see

section 8.31 on page 153).

Thus strong complexity measures have all of the properties argued for analytic

complexity above in sections 5.2.1 to 5.2.7. This still leaves a lot of choice, to allow the

capturing in such measures of different types of difficulty. I now look at one such in more

detail.

5.4 The Cyclomatic Number as a Measure of Analytic Complexity

I will define a possible way of comparing the complexities of complexes. Two ways

of breaking a complex up are by substituting for a (non-atomic) repeated sub-formula and

by breaking the top level connective into the separate parts. For example in seeking to

“break up” the formula we could substitute for to

make and or break the top implication to make and

. This is not a decomposition in the above sense as both methods lose some of the

essential structure of the formula (the whole is more than the sum of the parts).

a a b→()→() a b→()→ a b→

a x→() x→ a b→ a a b→()→

a b→

Syntactic Measures of Complexity

- page 107 -

Call the damage inflicted by such a breaking the number of sub-formula the two

parts now have in common. Now keep breaking the formula up until all the parts are

simple. Call the total damage of such a process the “analytic loss”. Now call the

complexity of the original formula the minimum such loss possible by such an “analysis”.

Note that here I am seeking to talk about the analytic complexity of the formula relative to

its syntax and above definition of irrelevance; I am not talking about the complexity of any

particular analytic process.

For example, we could first break into

and (with a damage of 1) and then broken into andx (with a

damage of 1). Thus the complexity of the formula would be no greater than 2. The only

other possibilities are to first break the formula into and (with a

damage of 3) or substitute for a (which does not progress the “analysis”. Thus the loop

complexity of the formula would be 2.

This, of course is quite a coarse account of the damage inflicted in such an analysis.

It says nothing of thesort of structural information lost in the process.

It turns out that this is bounded below by the cyclomatic number of a directed graph

when the formula is represented as a minimal graph. (see section 9.2 on page 169).

For example the formula can be represented by the

following tree in figure 19.

 Figure 19.A formula represented as a tree

a a b→()→() a b→()→ a x→() x→

a b→ a x→() x→ a x→

a a b→()→() a b→

a a b→()→() a b→()→

a a b→()→() a b→()→

a a b→()→ a b→

a b→a

a

a b

b

Syntactic Measures of Complexity

- page 108 -

but this is not minimal. There is a repetition of leaves that can be eliminated by

combining the nodes of identical sub-formula to produce the collapsed graph shown in

figure 20.

 Figure 20.A formula represented as a collapsed tree

The cyclomatic number of this graph is then the number of connecting arcs minus

the number of nodes plus one. This gives us a complexity of two. Another way of

calculating this is just by counting the number of “independent” closed loops [436].

Thus this definition is consistent with all that I specified above. Simple formula can

be broken with no damage and hence have a complexity of zero. If a formula can be

decomposed into parts then its complexity is the sum of those parts and the complexity of

a formula is at least as great as any sub-formula. See section 5.6.1 on page 113 for a

comparison of complexity measures on such formulas.

One advantage of such a measure of complexity is that it is applicable to a wide

range of structures and certainly any statement in a wide range of formal syntaxes.

5.5 Layers of Syntax and Complexity

One method frequently used (by humans) to attack such complexes is to change the

language they are expressed in. A formula that may be complex in one language might be

simple in another. For example, the complexity of a formula in a language’s formula

syntax may have no obvious connection with the complexity of a derivation of such a

formula as a proof in the proof theory's syntax (see section 5.6 on page 113).

Thus in order to study what is still difficult within this more subtle situation we need

to be able to consider varying syntaxes where it is the formula that essentially remains

constant. To do this we need a formalism that will encapsulate both the formula syntaxes

a a b→()→() a b→()→

a a b→()→

a b→

a b

Syntactic Measures of Complexity

- page 109 -

as well as the syntaxes of proofs. I could do this as a generalised language defined by the

production of strings of symbols but this does not clearly preserve for study the distinction

between the structure of a syntactic derivation and its result. I want a very clear distinction

between the structure of a derivation (like a proof) and its result (a formula) as these

belong to different syntaxes. Also a linear string is, in many respects, an artificial

representation of formal statements, requiring the use of such devices as brackets and

parsing. Thus for the purposes of this study I will define a generalised description of a

substantial class of syntaxes as tree structures.

I will define a general syntactic structure recursively. Presume there is a set of

primitive symbols called P and also a set, V, of variables that will be used in the definition

of its generative rules. A syntactic structure, S, is then a pair (X, R) where X is set of

sub-syntactic structures (possibly empty) and R is a set of rules of the form:

,

where the are trees with the nodes labelled with primitive symbols or variables

from the syntax,C is the result of the rule, the are variables and the are members of

X - the “lower” syntaxes that this one draws on for formulas, symbols etc. In addition

there is the restriction that every symbol appearing in C must either have appeared in one

of the , be a symbol from P or be one of the .

The idea is that if the occur in the syntax thenC will as well, with any

occurrences of being replaced with an item from the sub-syntax generated by .

For convenience I will write the rule like this:

.

Such a syntactic structure will generate a syntax being the set of all trees recursively

constructible from the rules.

I will make this clearer with some examples. In these let the set of primitive

symbols, P, include x,→,), ¬ and V include u, v, w.

5.5.1 Example 1 - a supply of variable names

Let be the syntax where consists of the rules:

N1.

N2. , (or when allowing suffix notation).

Ai … An, ,() C v1 X1,() … vm Xm,(), ,{ }, , 
 

Ai

vi Xi

Ai vi

A1 … An, ,

vi Xi

A1 … An, , C v1 X1∈ … vm Xm∈, ,(),»

S1 ∅ R1,() R1

∅ x»

v ′ v()» v v′»

Syntactic Measures of Complexity

- page 110 -

This generates (in a way that will be specified) the set which could be written as

 but more pedantically written as .

This could be used as an infinite supply of pairwise distinct names. There is an important

distinction here between , which are the structures

of the possible derivations and which could be considered as the result of

preforming the derivations. This is illustrated in figure 21.

 Figure 21.A single layer syntactic structure

In this first example they can be safely conflated as they have a one-to-one structural

correspondence, but in the next examples this will not hold.

5.5.2 Example 2 - WFFs of the implication fragment

Now let be the syntax , where consists of the rules

F1.

F2. , (or using infix notation).

This generates the syntax of pure-implication propositional formulas, which could

be written as . The

first rule allows for the inclusion of trees generated by and the second the recursive

construction of the pure implicational formulas in the normal manner.

Here we have a two-layer system of syntactic structures, illustrated in figure 22.

x x′ x″ …, , ,{ } N1 N2 N1() N2 N2 N1()() …, , ,{ }

N1 N2 N1() N2 N2 N1()() …, , ,{ }

x x′ x″ …, , ,{ }

S1

∅ x»
v v′»

x x′ x″ …, , ,
generates

S2 S1 R2,() R2

∅ v v S1∈(),»

v w, → v w,()» v w, v w→»

v v' v v v v' v' v v' v'→ v'' v v→() v v v'' …,→,→, , ,→,→,→, ,{ }

S1

Syntactic Measures of Complexity

- page 111 -

 Figure 22.A two layer syntactic structure

5.5.3 Example 3 - The implicational fragment of E

Now let be the syntactic structure where consists of the rules

P1.

P2.

P3.

P4.

which will generate a syntax of proofs of pure implicational tautologies. Note that

the brackets in rulesP1, P2 and P3 are for human convenience only.

 really stands for the structure shown in figure 23.

 Figure 23.The actual structure of the assertion axiom

S1

∅ x»
v v′»

x x′ x″ …, , ,
generates

S2

v w, v w→»

∅ v v S1∈(),»

v v' v v v v' v' v v' v'→ v''
v v→() v v v'' …,→,→

, , ,→,→,→, ,
generates

used in

S3 S2 R3,() R3

∅ v v→() w→() w→() v w, S2∈(),»

∅ v w→() w u→() v u→()→()→() v w u, , S2∈(),»

∅ v v w→()→() v w→()→ v w, S2∈(),»

v v w→, w»

v v→() w→() w→

→

→

→

v v w w

→

→

→

v w

OR

Syntactic Measures of Complexity

- page 112 -

In this example we have three levels of syntactic structure for constructing distinct

propositional names, formulas and proofs. This is shown in figure 24.

 Figure 24.A three layer structure

5.5.4 Discussion of syntactic structures

A syntactic structure generates a syntax, which is the closure under the rules of the

empty set. Thus in order to be non-empty at least one rule must have an empty set of

antecedents (like the rulesN1, P1, F1 or F2 above). I call such rulesleaf nodes.

There are two kinds of common leaf nodes: those where the consequent is

constructed purely from the set of primitive symbols (like ruleN1 above) and those whose

antecedent is constructed with a substitution from a sub-syntax (likeP1, F1 or F2).

Thus the syntax is composed of a set of derivation structures constructed from the

rules and specific substitutions of items from the syntaxes of sub-syntactic structures. For

example the syntax generated by would include the proof for

which could be represented as , i.e. the rule

S1

∅ x»
v v′»

x x′ x″ …, , ,
generates

S2

v w, v w→»

∅ v v S1∈(),»

v v' v v v v' v' v v' v'→ v''
v v→() v v v'' …,→,→

, , ,→,→,→, ,
generates

used in

used in

S3

∅ v v→() w→() w→() v w, S2∈(),»

∅ v w→() w u→() v u→()→()→() v w u, , S2∈(),»

∅ v v w→()→() v w→()→ v w, S2∈(),»

v v w→, w»

generates

etc.

S3 x x→() x→() x→

P1 v F1 v N1←()← w F1 v N1←()←,()

Syntactic Measures of Complexity

- page 113 -

P1 with x substituted for bothv andw from the syntax generated from . Thisx is the

ruleF1 with the ruleN1 substituted from the syntax generated from .

A higher level derivation structure can be 'executed' to produce a result from a lower

syntax. Thus the above structure can be

executed to the structure

 which I

would normally write as the string .

In section 10.1 on page 182 in Appendix 3 - Formalisation of Syntactic Structure, I

formalise the above notions of syntactic structures and the generation from them. I also

show (section 10.2 on page 184) that they have at least the expressive power of a general

phrase structured grammar.

In Appendix 4 - A tool for exploring syntactic structures, complexity and

simplification, I describe a software tool I developed for exploring such structures. It can

deal with a sequence of syntactic structures, where each SS is dependent on the one below.

In section 10.3 on page 187 of that appendix I outline a proof that the restriction to such a

linear chain does not reduce the overall expressive power of such systems.

5.6 Application to Axioms and Proof Systems

5.6.1 Axiom complexity

Elegance has long been a desirable characteristic in formal mathematics and logic.

During the first half of this century this has frequently been associated with parsimony. In

particular there was a drive to find formal logical systems with the fewest rules, axioms or

variables.

In Hilbert-Frege style axiomatisations [162, 222], the number of rules is reduced to

two, substitution (subs) and Modus Ponens (MP)48, so that the properties of the logic are

determined solely by the axioms which thus have a dual role as starting points for proofs

and inference tickets (i.e. as the major premiss of an application of an MP rule). This

focused attention on the number and length of the axioms.

Many different axiomatisations have been suggested. In 1910, Whitehead and

Russell produced an axiomatisation of the disjunction-negation fragment using 5

48.Or just MP if one considers axioms as axiom schemas.

S2

S1

P1 v F1 v N1←()← w F1 v N1←()←,()

F2 F2 F2 F1 v N1←() F1 v N1←(),() F1 v N1←(),() F1 v N1←(),()()

x x→() x→() x→

Syntactic Measures of Complexity

- page 114 -

axioms [467] (later one was shown to be a consequence of the others)49. All the other

connectives were introduced as definitions of these.

This was followed by many other suggestions, many of which favoured parsimony.

In 1929 Lukasiewicz produced an axiomatisation of the implication-negation fragment of

classical logic using just three axioms50:

(1) ;

(2) ;

(3) .

In 1949 he exhibited a single axiom system for the pure implicational fragment,

proving its minimality [300]:

(4) ,

followed by several systems by Meredith [320, 321] in the 50’s including a single

axiom version of the implication-negation fragment:

(5) .

There was also an investigation into the minimal number of connectives used. In

1918 Nicod exhibited a single axiom with a single connective equivalent to

involving 11 occurrences of that connective and 5 variables51.

Similarly there was also a drive to reduce the number of variables used. Lukasiewicz

“improved” upon Nicod’s axiom by finding one of the same length but only involving 4

variables52. Later Diamond and McKinsey showed that one needed at least one axiom

with three variables in it [139] and recently Ulrich proved more about the necessary length

of axioms using matrix techniques [448].

Perusing the above it is obvious that mere parsimony does not correspond to any

relevant sense of complexity, with respect to such axiomatisations. While Lukasiewicz’s

three axioms above are amenable to a natural interpretation (versions of transitivity,

necessity out and inferring from a contradiction), this is very difficult to do for the single

axiom systems. Thus going by the definition of complexity herein the only way in which

they could be said to be simpler is due to the difficulty of storage of the axiomatic

49.Frege had already exhibited this type of system [162], but his notation was cumbersome.

50.Listed using the standard infix style notation rather than Lukasiewicz’s.

51.I will not show this, suffice to say it is incomprehensible!

52.As reported by Prior in [362].

p q→() q r→() p r→()→()→

p¬ p→() p→

p p¬ q→()→

p q→() r→() r p→() s p→()→()→

p q→() r¬ s¬→()→() r→() t→() t p→() s p→()→()→

p q∧()¬

Syntactic Measures of Complexity

- page 115 -

description given the logical theory it needs to produce, and the difficulty of storage must

be one of the least of one’s problems with such systems.

In appendix 4 (section 12 on page 193) I have tabulated all the propositional

formulas in the implication-negation fragment up to those with 6 symbols (not including

brackets), sorted by five methods: size, number of variables, depth, breadth and

cyclomatic number. All these rankings give credibly low rankings to simple formulas but

can differ widely on the rest.

Table 2 on page 193 shows these formulas sorted by size. Here formulas such as

 or are ranked highly, despite their analytical

straightforwardness. In general, as with other size based measures of complexity, size can

be important if there are sharp limitations on storage (such as short term memory), but

otherwise do not usually pose the most difficult problems.

In Table 3 on page 194, we see the ranking by the number of (distinct) variables.

This will always rank formulas of the form the furthest down the

list. In particular here, is lower than . The number of

distinct variables has been closely linked to measures ofsimplicity. Kemeny [254] and

Goodman [186] elaborate this by also introducing extra criteria concerning symmetry. I

argue that complexity is sensibly distinguished from such measures which are perhaps

better though of as rough measures on information (see section 6.5 on page 129).

Table 4 on page 195 looks at the formulas in terms of their (maximum) depth.

Clearly depth (as to a lesser extent size) can impose difficulties in terms of computation

both in inference and induction. Nevertheless formulas like appear well down

the list. Such a ranking may be important if the operator (in this case negation) itself

implies a more complex interaction (such as a modal operator might imply between

possible worlds).

The breadth of formulas is shown in Table 5 on page 196. This is a weak measure of

complexity as the formulas can be indefinitely large, deep and still be fairly

interconnected. Primarily this could be seen as a limit on the input to the formulas, or

alternatively representing a limit on a hypothetical top-down search on the structure of the

formulas. A formula like , which

intuitively represents merely a multiple use of substitution in identity will have maximal

a¬¬¬¬¬ a b c→()→

a b c …z→()→()→

a¬ a→() a→ a b c→()→

a¬¬¬¬¬

a a→() a a→()→() a a→() a a→()→()→

Syntactic Measures of Complexity

- page 116 -

breadth, but it is analytically simple (this would not help you, of course, if you have to

process it top-down in ignorance of the content of its leaves).

Finally Table 6 on page 197 shows them ranked by the cyclomatic number of the

formula’s minimal directed acyclic graph (as explained in section 5.4 on page 106). Again

formulas can be of indefinite size and depth, for a given ranking, but only if a suitable

number of distinct variables are introduced (or if you are merely iterating negation).

Formulas of the form are always maximally simple in this way,

representing the fact that the formulain itself does not encode any complexity of

relationship. Non repetitive but involved formulas referring to variables repeatedly but in

different ways come out as complex.

The different rankings of a selection of formulas are then directly compared in

Table 7 on page 198. The cyclomatic number of the graph of the references in a formula

gives a much better measure of an intuitive idea of theiranalytic complexity than the

others.

Of course, as I have repeatedly stressed above, the complexity of an expression

depends on its context (composed of language, goals and viewpoint). Thus it is important,

for example, to keep in mind whether one is talking about the complexity of interaction

encoded as facts about the natural world represented in formulas or talking about the

properties of the connectives themselves by using axioms and the like. The difference

comes out particularly in the appropriate relevance relation: if you are talking about the

natural world then the relevance between identically named variables in separate formulas

reflects the uniform reference intended by these formulas; if you are implicitly specifying

the properties of the connectives (as in formal logic) then the appropriate reference is also

intended between identical connectives between the axioms. Thus in these two different

situations a different relevant relation needs to be used and this would affect the model of

analytic complexity.

a b c …z→()→()→

Syntactic Measures of Complexity

- page 117 -

5.6.2 Proof complexity

Systems with minimal axioms are very difficult to use to prove anything. The few

but flexible rules mean that the form of the desired theorem gives one little indication as to

how to proceed. The proof, of identity, using (4) is shown in figure 2553.

 Figure 25.The proof of identity in Lukasiewicz’s single axiom system

In practice logicians tend to deal with the difficulty of producing proofs in these

circumstances by developing an elaborate system of derived rules. Thus they implicitly

change both their language of representation of the problem of producing such proofs in

terms of these derived rules as well as the original axioms and rules. The greater simplicity

of the problem is a result of an implicit change in the language of representation.

For any particular theorem, however complicated, one could trivially invent a proof

system where its proof was simple by adding it as an axiom. Likewise for any theorem,

53.The proof is displayed using polish notation and using a substitution rule instead of axiom schemas in

order to shorten it.

1 CCCpqrCCrpCsp Axiom

2 CCCCpqrCCrpCspCCCCrpCspCpqCrCpq Subs. inst. of 1

3 CCCCrpCspCpqCrCpq MP 1, 2

4 CCCCCrpCspCpqCrCpqCCCrCpqCCrpCspCtCCrpCsp Subs. inst. of 1

5 CCCrCpqCCrpCspCtCCrpCsp MP 3, 4

6 CCCpqCpqCCCpqpCsp Subs. inst. of 1

7 CCCCpqCpqCCCpqpCspCCCCpqrCCrpCspCCCpqpCspSubs. inst. of 5

8 CCCCpqrCCrpCspCCCpqpCsp MP 6, 7

9 CCCpqpCsp MP 1, 8

10 CCCCpqpCspCCCspCpqCrCpq Subs. inst. of 1

11 CCCspCpqCrCpq MP 9, 10

12 CCCpqpCpp Subs. inst. of 9

13 CCCCpqpCppCCCpqpCspCpp Subs. inst. of 11

14 CCCpqpCspCpp MP 12, 13

15 Cpp MP 9, 14

Syntactic Measures of Complexity

- page 118 -

however simple, one could add intermediate steps necessary to make its proof as difficult

as wanted. The complexity of proof production is thus a separate matter from the analytic

complexity of individual formulas.

Thus, in this section I concentrate on characterisations of the complexity of the

proof tree of a theorem. This is an abstraction of the uses of the axioms and inference

rules, where the axioms are the leaves and the inference rules the nodes. For example the

proof immediately above (figure 25 on page 117) could be represented as in figure 26

below.

 Figure 26.An example proof net

The complexity of the proof would alter dramatically if we included and related the

formula that were introduced via the substitution rules. Here we have a case where the

complexity of the derivational structures in the proof syntax would be more complex if we

Axiom

MP

Subs

Subs

SubsMP

MP

Subs

Subs

MP

MP
Subs

Subs
MP

MP

Syntactic Measures of Complexity

- page 119 -

also included the derivations of the formulas used in the substitution steps. Of course, for

some purposes this would not be relevant to the task at hand, but it would be for others

where one was trying to trace the referents as they were manipulated by the proof rules.

In many proof systems attempts at proof construction are made incrementally, in

either a top-down fashion, starting at the target theorem or bottom-up fashion, starting

with the axioms (or, of course, a combination of these). In this case the search space of

potential proof trees grows exponentially with the depth. Thus there is a strong connection

between the depth of the proof tree and the computational complexity of a “brute force”

automatic search for a such a proof.

An analytic approach to constructing such a tree may, of course, proceed in a more

“intelligent” fashion, by analysing the possible proof choices. Thus the analytic

complexity of such a proof will, as in the consideration of analytic complexity of axioms

etc., depend upon the ability to decompose a proof into separate subtrees. The tractability

of such a tree will depend upon the relevance relation between the nodes of such a tree.

Different kinds of analysis will lead, as ever, to different measures of its analytic

complexity. For example if the relevance relation was expressed just in terms of which

axioms were used in the sub-proof tree then one would get a different measure than if one

also included what formulas were used to be substituted into those axioms (which would

be different again from the situation where every different instance of an axiom schema

was considered as different).

Different kinds of proof procedure exhibit different degrees of decomposability in

the proof production process. A Hilbert system with the minimal number of axioms will

thus produce proofs that are more analytically complex than, for example, those produced

using a Fitch based procedure, where the proof of intermediate steps can be recursively

constructed tosome extent independently to the rest of the proof. Of course, such a

decomposition of the proof process may, in some circumstances, be illusory in that the

sub-task may be as hard (or even harder) to prove than the original. This does not prevent

Fitch-style procedures aiding considerably in the decomposition of proof tasks for a wide

range of systems and for a wide range of target theorems. Thus the claim that Fitch proofs

are simpler is borne out, even if in some cases (e.g. in R due to the undecidability of

theoremhood there) it may not help with the most difficult cases.

Syntactic Measures of Complexity

- page 120 -

Even if you restrict yourself to Hilbert style systems the set of axioms chosen can

make a difference to the complexity of proof. For example, Robinson [380] exhibits a

“nice” set of axioms composed of groups of axioms for each connective, such that you

only have to use the axioms that correspond to the connectives in the target theorem. This

is in contrast to many systems, for example in many classical axiomatic systems one has to

use the properties of negation to prove the theorem , even though it

does not mention negation. In this way Robinson’s axioms allow the partial partitioning of

the proof space by the type of connective. This partitioning represent’s an analytic

simplification of the proof process.

5.7 Application to Simplification

In this section I briefly look at five possibilities for systematic simplification given

the above analyses of complexity: those of searching for equivalent expressions; searching

for equivalent derivations; by specialising the syntactic level in the underlying language;

by more generally searching over different languages; and by sacrificing accuracy or

specificity.

5.7.1 Searching over equivalent expressions within a language

The most obvious way to proceed in simplification is to attempt to search all

acceptable expressions in some language for the most simple one. So one might look

through all proofs starting with the simplest and working up (in terms of depth) until one

arrived at one which proved the desired theorem, which would then be the simplest. Of

course a slightly more intelligent procedure would involve a lot of intelligent pruning of

the search space before hand, but unless this pruning can be arranged so that it drastically

reduces the search space, such a procedure would have limited practical applicability.

In some cases this is not only impractical but impossible. The question is given

some formal language,L, some equivalence relation,~, defined onL, some measure

C: , and a specific expression, , is there a program that can always find a

expression , such that with minimal? In general the answer is,

unsurprisingly, “no”. For example, it is well known that the problem of finding the

minimum sized program for computing a pattern is uncomputable [286] (thus in this case

L is the space of programs,C is their length and iffm and l compute the same

pattern).

a b→() a→() a→

L ℜ+→ l L∈

m L∈ m~l C m()

m~l

Syntactic Measures of Complexity

- page 121 -

Even if such a question was computable for someL,C and~ there will typically be

no way of avoiding searching the space of available expressions L and checking them all

(unless P=NP, which is considered unlikely [231]).

5.7.2 Searching over equivalent derivations within a language

Part of the problem with the above approach is the possible ineffectiveness of the

equivalence relation,~. If we have step-wise procedures for computing equivalent

expressions the task becomes easier. For example, if one were seeking to simplify an

algebraic expression like one would have a range of

possible transformations one could apply to the expression based on the properties of

simple arithmetic: factorisation, expansion, association, permutation of commutative

operators etc.

This would make the search procedure considerably more tractable and several

effective techniques would become available. One such is genetic programming [270].

This is a version of the standard genetic algorithm [228], but where the genes that are

evolved according to an evaluation of fitness are tree-structured expressions instead of

merely strings of a fixed length. In the case of arithmetic simplification the trees that

would be evolved would be possible applications of transformations to the original

expression with the fitness of such a gene being decided by the simplicity of the result.

The algorithm proceeds by starting with a random population of such compound

transformations represented as tree-like structures, then evaluating these expression’s

fitness (some inverse of complexity) and creating the next population by a combination of

propagation and a sexual operator called “crossover”54 on parents chosen probabilistically

in proportion to their fitness. Genetic programming techniques have be used in many

domains and there are now many refinements and variations on the technique (see for

example [15] and [261]).

5.7.3 Specialising the syntactic level

Consider the following 1-level syntactic structure for generating the propositional

implication-negation wffs:S=(,) where rules are defined

as follows.

54.In this a random subtree is chosen inside each parent and then these are swapped around.

2x
2

yz y
3

–() xy 3–() 1 xyz–()+

∅ R1,R2,R3,R4{ } R1,… R4,

Syntactic Measures of Complexity

- page 122 -

R1:

R2:

R3:

R4:

The first two rules produce an indefinite supply of unique variable names

 and the second two are the normal syntactic production rules for negation and

infix implication.

Now if one’s definition of relevance is that two expressions are relevant if they share

a symbol in the syntax, then everything will be relevant to everything else because all

expressions generated byS will share the symbolv. Clearly, although there is a sense in

which all variablesare related in this system, it might beintended that different variables

(ones with a different number of primes) not be related. In this case a structure that is

closer to what was intended would be , where V was defined as

follows

V:

and , where are defined as above. Now the

generation of variable names is done byS1 and the building of formulas is done byS2.

Now by the definition of relevance different variables will not be relevant to each other in

the sense above. Thus the formula would have a cyclomatic complexity of 1 inS

but of zero inS2, i.e. changing the language fromS to S2 has resulted in a simplification.

Of course, this is equivalent to suitably changing the relevance relation inS, but here the

separation of the syntax allows for a more natural and clearer analysis of the intended

situation.

The above is a very artificial example, but such shifts of syntactic level do occur.

The sentence “Throughout June I sought her in vain.” will have a different complexity if

you are considering the mapping between words and referents than if you look at the

correspondence between spelling and phonemes (e.g. the intricacies of the “ou” spelling in

English).

In logic, the formula is often treated as a special substitution

instance of identity, for the purposes of inference, rather than as signifying something in

its own right in detail.

∅ v»

x x'»

x x¬»

x y, x y→»

v v' v'' …, , ,

S2=(S1,{V,R3,R4})

∅ x x S1∈()»

S1 ∅ R1,R2{ },()= R1,… R4,

v v'→

a b→() a b→()→

Syntactic Measures of Complexity

- page 123 -

Another example comes from chaos theory. It is well known that the ‘tent map’55

can generate sequences that are indistinguishable from purely random ones. If one models

this process by considering all different numbers as irrelevant to each other (i.e just

another number), then this seems very surprising - we have what seems to be a simple

deterministic process producing random behaviour. Closer inspection reveals that the

source of randomness comes from the initialisation of the system, as almost every56

(abstract) real number has a ‘random’ decimal expansion, and the tent map merely

“unpacks” this expansion and returns it digit by digit.

Two other examples from the literature57 are: seeking to simplify the execution of

programming languages by reduction over programming language hierarchies [179] and

simplifying the visual presentation of graphs by reduction and abstraction [258].

One final example is arguably this thesis itself; the pushing of much of the detail into

appendices is intended to simplify the presentation of the main argument.

5.7.4 Searching over equivalent languages

Perhaps the most radical but also the most natural mechanism for simplification is to

change the language of representation. Changing the syntactic level (as described above in

section 5.7.2 on page 121) is a particular example of this. Another example is when we

enrich our proof language to simplify proofs (as described in section 5.6.2 on page 117).

Part of the problem with formalising complexity is that we humans seem to be very

good at “flipping” between sub-languages in order to make things simpler. Since

complexity, as I have argued, is relative to the language of representation, the complexity

will change with each “flip”. Things can seem very different on the page, because we often

fix the formal language (at least for the purposes of display of formal properties) and

investigate the properties in that language.

In order to formalise such a procedure for simplification one needs some mechanism

for fixing the reference and structure of a formula whilst changing the language it is

embedded in. This can be done using the syntactic structures described above (section 5.5

on page 108). The idea is to fix the “lower” structures and vary the top one. For example if

55.The iterated map if and if see [39] for details.

56.‘almost every’ in the sense that it is true for every number except the rationals

57.Although these are not discussed therein from the same perspective.

x 2x→ 0 x 0.5≤ ≤ x 2 1 x–()→ 0.5 x 1≤<

Syntactic Measures of Complexity

- page 124 -

one were searching for a proof system that gave as simple derivations as possible (for a

target set of theorems) one could define a syntactic structure to generate all the possible

expressions and another syntactic structure to select the target set. Then consider a range

of equivalent syntactic proof structures that will derive the same target set. The idea is

represented below in figure 27 on page 124. The solid lines represent the sub-syntax

relation and the dotted lines represent generation.

 Figure 27.A setup for varying languages

Of course, in general searching over equivalent languages will be at least as hard as

searching over equivalent expressions. One could quite well represent the syntactic

structures in a tree-like structure upon which a genetic programming algorithm would

work, but it would frequently be computationally onerous to check that such a structure

generated the same target set (and sometimes this would be totally uncomputable).

If, however, we knew of some acceptable transformations of the syntactic structure

which preserved the target set we could search over the possible transformation sequences

in a way similar to that outlined in section 5.7.2 on page 121. This, however is a matter

well beyond the scope of this thesis.

5.7.5 Simplification via trade-offs with specificity and accuracy

All the above methods of simplification maintain the same model content, which is

appropriate in formal systems. However perhaps the most common methods of

Fixed Syntactic Structure

Target set of formulas

possible
derivation
structures Structure

to select
target set

Syntactic Measures of Complexity

- page 125 -

simplification is where the content of the model is allowed to change so as to trade-off the

simplicity of a model with the model’s accuracy or specificity.

Consider first complexity-specificity trade-offs. In some cases, especially when the

data can be separated into what might be seen as random noise and an ‘underlying’ signal,

a slightly less specific model of the data can be a lot simpler. So, for example the diagram

on the right in figure 14 on page 62 representing complete randomness would take a

model of high complexity if it were to be modelled in every detail. If on the other hand a

model of it as just a random pattern retaining only the granularity, density, and the

probabilities of occurrences of black and white dots were used then this might be a lot

simpler. Associating the complexity of the pattern with the complexity of its most

appropriate model restores our intuitions about them. It is the insistence of an ultimately

specific model of these patterns (for example via its reproduction via a Turing Machine)

that leads to the unintuitive result that a random pattern holds the most information.

A model can be made less specific in several ways, the simplest being the relaxation

of its predictions from a precise value to an range (as is implicit in the notation

12.6cm±1mm); another way is to narrow the conditions of application of the model58.

Where the distribution of the randomness can be more precisely specified this might be

characterised in terms of a probabilities.

Another trade-off is the complexity-accuracy trade-off. This can have a similar

effect to the complexity-specificity trade-off: here an increase in error may be acceptable

if it results in a sharply simpler model, especially if it is thought that the more elaborate

model might not be robust. After all,some level of error is deemed acceptable in almost all

experimental science – we accept that it is usually not sensible to reject a theory due to the

presence of a residual level of error. A famous case of this is the Michelson-Morley

experiment, which despite the fact that it seemed to show a positive ether drift of about

5m/s (which was eventually explained in the 1960’s), did not justify the rejection of the

special theory of relativity.

An example of an explicit trade-off of accuracy for simplicity in the induction of

decision trees is investigated by Bohanec and Bratko in [69].

58.This makes the model less specific overall because outside these conditions of application the model does

not restrict what might happen, i.e. it says anything can happen then.

