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3 Problems and Properties

3.1 Examples of Common Usage

I will introduce this section with some concrete examples, and recount some

common sense perspectives on them. These will be referred to later and used as a

motivation for the forthcoming discussion.

3.1.1 A case of nails

It would be very unusual for someone, on opening up a large chest of nails, to

exclaim “Oh, how complex!”. This indicates that the mere fact that there are a great many

nails is, at least in some circumstances, insufficient for the assembly be considered

complex (this would not prevent someone modelling the forces inside the pile17

considering it complex).

3.1.2 Writing a thesis

A thesis is easier to write with a complex tool (a word processing package with

advanced features), than with a simple one (a ballpoint pen). This illustrates that the

complexity and difficulty of a process can not be naively associated. Here it is the

complexity of theproblem that is associated with the level of difficulty, and the tool

chosen forms part of the framework for tackling this.

3.1.3 Mathematics

If anything is intuitively complex then abstract mathematics is. This complexity

seems inherent in the subject matter despite the fact that questions of mathematics can be

purely formal. Even when the mathematician has complete information about the rules

and components of a problem, producing a solution or proof can still be very difficult.

3.1.4 A gas

The macroscopic physical properties of a gas are fairly simple. Even though we

know this is the result of a multitude of interactions between its component parts. If we

had to explain these properties via an explicit and deterministic model (i.e. this particle

collided with this one which…), this would be a formidable task. If we take as our base a

17.That this is a difficult modelling problem see the chapter in [91] on sandpiles
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level of description that ignores a lot of the detail and ascribes this to an unanalysed

randomness, then the task is considerably easier.

3.1.5 An ant hill

In this example the interactions between the parts (i.e. the ants) are non-trivial, so an

adequate model would probably have to include details on this. Now the task of explaining

the macroscopic behaviour, given a model of the interacting parts, is challenging

irrespective of whether the macroscopic behaviour is simple and predictable or not. This is

the case, even if the ant colony looks very simple to someone else who views it as a rather

stupid and reactive single animal that just happens to consist of physically separate parts.

3.1.6 A car engine

Consider three views of a car engine18.

The first view is of the engine as a single inexplicable unit, a sort of glorified random

number generator - it either works or it doesn’t. No explanation is required or deemed

relevant, its running is a matter of irreducible luck. If it does not start you ring a mechanic

who magically starts it for you. This is the engine as a simple, if malevolent, entity.

The second is a view involving a partial knowledge of the engine. The parts are

roughly identified as well as some of the interactions. However these interactions, taken

together, are far too complex to understand. If something goes wrong, you can look inside

the bonnet and try to identify the cause. Simple experiments in terms of fixing it are

possible. Sometimes, with luck, this seems to fix it. Unfortunately, this action often has

unforeseen consequences and causes greater long-term damage. When fixing it is beyond

this level of understanding, the mechanic is called, who must be (from this viewpoint) a

craftsman of deep skill and have a sophisticated understanding of the machine. This is an

engine at its most complex.

The third view is (hopefully) that of mechanics. They have an understanding of the

decomposition of the engine into functionally near-independent parts. They can use this

model to systematically analyse the problem by eliminating possible causes, until the

search narrows down to the actual cause. They can then fix this cause, having a good idea

18.This subject was suggested by my supervisor as a pertinent example, John Chidgey.
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of the possible side-effects of this action. This is the engine as manageable complex, due

to the appropriateness and utility of the mechanic’s model of it.

3.1.7 A cell as part of an organism

When considering a cell and the organism of which it is part, from the same frame of

reference, it seems obvious that the cell is simpler than the organism. This is true

irrespective of the complexity of the cell, for other cells can not take away from the

complexity already there in the cell.

Such a comparison is not so obvious if both are compared from within different

frameworks. A cell under a microscope might seem much more complex than the potato it

was taken from, viewed with normal vision.

3.1.8 Computer programming

As with thewriting a thesis example in section 3.1.2 on page 44, the choice of

programming language can greatly effect the complexity of a programming task. A

language like BASIC may be relatively easy to learn, but difficult to use for a large

programming task. Compare this to a language like Smalltalk which has a sophisticated

object-orientated organisation allowing a high degree of modularisation and flexibility and

a large set of pre-programmed classes that you can adapt and re-use. This takes

considerably more time to learn, but can then make the task of programming much easier.

3.2 Complexity as a Comparison

In the common sense world complexity is not so much measured as compared. “a

computer is more complex than a calculator”, or “although the rules governing

unemployment benefit are more complex than those concerned with income support, those

covering disability benefit are the worst” are two examples of this.

Such comparisons are easiest to see when you are comparing a sub-system with the

whole, from within thesame frame of reference, as in the cell example above (section

3.1.7 on page 46). In other cases it is not at all clear, as when comparing the complexity of

a computer and a poem. Here we have no natural common basis from which to make a

comparison. We could artificially construct such a basis but there would be little

likelihood that this would agreed upon by others. Without an appropriate framework
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within which to represent both, any such judgement of relative complexity would be

arbitrary.

3.2.1 The emergence of life

One paradigm of emergent complexity is the appearence of life. Most people would

say that the complexity of the biosphere has increased with the emergence and

development of life. That is, if one compares the solar system as it is now and how we

think it was 5 billion years ago, then the obvious conclusion is that it has becomemore

complex in important respects. The fact that the subsystems which exhibit the change are

not great in terms of mass or volume does not significantly alter this judgement.

3.3 What the Property of Complexity Could Usefully Refer to

I this section I will argue that regardless of whether our models reflect reality in

other respects, complexity is most usefully attributed to thedescriptions of our models and

is only projectable back onto natural phenomena when constraints on our choice of

models make this coherent.

One could attempt to distinguish what complexity was anintrinsic property of, and

thus argue that complexity was an extrinsic property of natural systems but an intrinsic

property of model descriptions. Such a route is fraught with difficulties and would not

further the purpose of this thesis, which is pragmatic. I am concerned here with

developing a characterisation of complexity thatusefully captures our intuitions of the

concept.

3.3.1 Natural systems

I will argue that complexity is not a propertyusefully attributed to natural systems. I

list the arguments below.

1. Estimates for the lower bounds of the complexity of natural systems can always be

increased by the inclusion of more aspects of the system

By increasing the level of detail considered, a lower bound for the complexity of

almost any natural system can be arbitrarily increased until it is well beyond our means of

representation, understanding and modelling ability. There is no apparent upper bound to

how complex things can appear. It seems that most things have the potential to be
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arbitrarily complex, just dependent on the number of aspects and the level of detail one is

willing (or able) to consider.

This can be seen as a consequence of our intuition that a sub-system is less complex

than the whole. By expanding the context of consideration (or equivalently using a more

general framework) one includes more complex sub-systems. This forces us to conclude

that the complexity of the whole system is greater than these sub-systems (unless one is

allowed to ignore the effects of these sub-systems using appropriate modelling

assumptions).

For example, a brick is a fairly simple object if you consider only its macroscopic

properties but is much more complex at the level of its component particles. This

particulate complexity is averaged out at the macroscopic level at which we usually relate

to them, so we can usually abstract from the details, but if you are insisting on an entirely

objective basis (what ever that would mean) then you have to allow for the inclusion of

this particulate complexity. The complexity further increases beyond our comprehension

when we consider such a macroscopic object, such as a brick, at the sub-atomic level of

detail.

2. Estimations of the practical complexity of natural systems can change critically

when the framework in which they are considered is varied

Changes of goal, language of representation, aspect, and scale can all greatly effect

the practical complexity of natural systems. The point above is a result of the potential to

include more detail by changes of scale and generalising so as to include more aspects of

the system under study.

In the ant colony example (section 3.1.5 on page 45) whether your goal was merely

predictive of behaviour at a purely macroscopic level or was seeking to explain this

macroscopic behaviour explicitly in terms of the behaviour of individual ants, affects the

practical complexity of the modelling task.

One example of how the language of representation can critically affect the

complexity is in the representation (or exclusion) of elements as noise. Often ascribing

some parts of some natural phenomena to noise can allow the drastic simplification of the

representation of a natural system. For example in the gas example above (section 3.1.5 on

page 45) being able to assume that the detailed movements of the particles in a gas are
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random allows a model of the macroscopic properties to be related in a simple way to the

microscopic ones.

Thus intuitive assessments of the complexity of systems, often differ far more with

changes across frameworks than across changes of subject matter.

3. Attributing complexity to natural systems does not help explain the existence or

process of simplification

The ascription of complexity directly to natural systems also makes an account of

simplification difficult. One would be forced to judge all equivalent models of a natural

system as equally complex. Thus an account of planetary orbits using an infinite series of

epi-cycles would be as simple as one using ellipses. Similarly there would be no

simplification of mathematical systems if complexity was a property of thecontent of

these systems, since all we would be doing is changing their description.

One method of simplification (discussed in section 5.7.5 on page 124) is to trade-off

complexity for the specificity or accuracy of the model. A less specific model is one which

has either narrower conditions of application or else its predictions are over a broader

range – for example, the use of fuzzy-logic and fuzzy-set theory has been suggested as a

means for dealing with complexity in some situations by Zadeh [488]. A less accurate

model is one with a greater level of error with respect to the data model – for example, one

might decide that some variation in the data could be attributed to noise so that accepting a

greater level of error might result in a much simpler model. The ‘stochastic complexity’ of

Rissanen [378] is an attempt to find a principled trade-off between error and model

complexity.

In fact simplification and elaboration (for the want of a better antonym) are

frequently what we are concerned with when we talk about complexity – complexity has

somehow arisen and we need to deal with it. Some strategies for simplification are

discussed in section 5.7 on page 120.

4. Our intuitions about the complexity of natural systems can be nicely accounted for

by associating them with the complexity of the systems ‘best’ model

If we have a natural system which is producing what seems to be random data as its

output (where we know that this is not attributable to a separate and discountable source of

noise) it can still be sensible to say that this data is simple on the grounds that it is random.
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Here the complexity of the system has been taken from its most appropriate model, which

in this case isnot the most descriptively accurate but is a less specific model. A

probabilistic model is more appropriate in circumstances where we know the detail of the

individual sequence is not relevant. We lose the possibility of completely accurate

predictions for a considerably simpler model.

In cases where our models of these systems are considerably constrained (by nature

or by practice) we are sometimes in the fortunate position of only having one candidate

model in which case it is safe (in that context) to project this model’s complexity upon the

natural system. As Cartwright puts it:

“It is precisely the existence of relatively few bridge principles that makes possible

the construction, evaluation and elimination of models… it strongly increases the

likelihood that there will be literally incompatible models that all fit the facts so far as the

bridge principles can discriminate.” [84] p.144

One of these principles is surely that we exclude models that are prohibitively

complex. Reinberger recently said:

“Reduction of complexity is a prerequisite for experimental research.” [374]

All of the above difficulties come down to the same nub: if natural systems do

have complexities, then they are unmanageablely large. Thus at the moment, and quite

possibly absolutely, it is not useful to try to do this. If we choose only one aspect and one

scale, we are no longer dealing with the complete object, but an abstraction of it.

This can be traced to why weever consider properties to be of things rather than our

models of them in the first place – because they can be said to have the “same” properties

independent of the observer or the models19 (e.g. mercury or thermocouple models of

temperature) - there is no evidence that this is true of complexity judgements.

There are several possible arguments against this. I consider these below.

1. Some complexity comparisons concerning natural systems are objective.

An example is “An amoeba is objectively simpler than a human”. There are two

ways of interpreting this argument, firstly as a variant of the cell example (section 3.1.7 on

page 46), i.e. that an amoeba is simpler than a humanhowever you look at it, and secondly

19.This is a simplistic account – accounting for why we call a property the same from different frameworks

is not straightforward.
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as an implicit call on upon a privileged (and hence common) framework, i.e. there isone

sensible framework to use and within this the amoeba is simpler.

The first argument assumes that the comparison is valid,regardless of the

framework. This is an immensely strong assumption, one that seems to draw its strength

from an identification of the amoeba with a human cell20 and invoking the sub-system

property that I noticed in the cell example. Otherwise it would seem possible to choose a

framework where the amoeba differed substantially from the cell (its method of

encapsulation and subsequent digestion of food?), where the judgement of relative

complexity was not so clear. If one then argues that this is an inferior or more specific

judgemental framework, this would bring us to the second interpretation.

The problem with arguing for a uniquely (or even relatively) privileged framework

is that of its justification, given that it does not allocate impractically large complexities to

almost everything (or that a framework revealingmore complexity is not always better).

Also that in practice there are always pragmatic choices of factors like scale, so that a

privileged framework is no use for actual complexity judgements. Finally the very identity

of many things seems inextricably linked to which aspects you are considering (e.g.

‘society’).

2. Claiming that complexity is not a property of natural systems is just a category

mistake.

It could be argued that even if it is admitted that complexity comparisons can only

be meaningfully via our models, the complexity refers to the natural systems themselves,

and that it is only due to our limitations (in particular our understanding) that we see

different complexities from different viewpoints.

This is a possible standpoint, but it is hard to see how this could be then applied in

practice withoutin effect attaching the property of complexity to the models rather than

the original systems, as otherwise in practice the complexity of such systems would

change arbitrarily depending on the model chosen. Such a view would be comparable to

that attributing primality to sets of real objects rather than numbers. One could

characterise number by equivalence classes of things, i.e. five is the class of all possible

20.Or alternatively an identification of the functional organelles of an amoeba with the corresponding

functional parts of a human, though this does not alter the argument.
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sets of five objects. This still would mean attributing a property such as primality to

something other than the things themselves. It is difficult to see this as anything other than

a contrivance.

3. Attributing complexity only to model descriptions would make objective complexity

judgements impossible.

If a framework is agreed upon then the complexity of something can be objectively

determined by different observers with respect to this framework. So once this framework

is established complexity judgements can be consistently made irrespective if who is

doing it as long as they keep within the rules that the framework entails. This is not so

different from many other ‘objective’ judgements and facts – such frequently rely upon

such contextual bases (what Suppe calls the ‘disciplinary framework’ [428]).

For example in the physical and mathematical study of chaotic systems a framework

which implicitly disregards some level of detail as noise is so familiar that it has become a

background assumption (see the section on Noise on page 206). Researchers in this field

seem to uniformly agree that a perfectly disordered system is simple (like the gas example,

section 3.1.4 on page 44, where this uniform randomness makes it a candidate for a level

of simplicity akin to a crystal21). Of course, it is advantageous to make these background

assumptions explicit, so that if necessary they can be checked.

4. There are real causes of complexity

This may be true but not a compelling argument for the use in considering

complexity as pertaining to natural systems. It derives from a confusion between accounts

of how we are to characterise complexity and what cancause it. To take an analogy heat

can becaused by a variety of forms of energy whichare themselves not represented as

heat.

In the end pragmatic considerations prevail; it isuseful to attribute a property

to a natural system when this is largely independent of our models of it but more useful to

consider it a property of the models if it is not (e.g. beauty is partially attributed to the

21.For a classic account of this see Grassberger [194].
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beholder, because is known to be at least partially culturally dependent - 60's tower blocks

- Miss World competition). As Suppes said:

“We can only hope to have a concept of complexity for explicit models of

the world and not for reality itself or even small parts of it.”[433].

3.3.2 The interaction of an observer with a system

In response to these problems many authors (e.g. Casti [87]) have stressed that

complexity only makes sense when considered as relative to a given observer22. Thus they

put an observer into the picture which controls or otherwise affects the target system, and

then observes (or is effected by) that system. This establishes a split between the “system

complexity” and the “observer complexity” (see figure 12). The system complexity is the

complexity of the system w.r.t. the observer and the observer complexity is the complexity

of the observer w.r.t. the system.

 Figure 12.Observer–system pair

You can look at this analysis in two ways: extrinsically and intrinsically. In the first,

there is no essential difference between the two systems - from an external point of view

one just sees two systems interacting. In the second, we are describing the situation from

the observers point of view.

If you take the extrinsic interpretation, then there is nothing special about the

observer system. The ‘loop’ in the diagram (figure 12) is misleading as there may be

multiple parallel and re-entrant interactions between the two systems and between

22.This distinction is basic to systems theory, going back to Ashby [23, 24].
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is effected by
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different sub-systems of the observer and object system (as in figure 13 on page 54). In

this case we are merely dealing with one system composed of the pair of object system

and observer. The observer and object may or may not be easily separable or have

effectively separate identities. All we are dealing with is a particular decomposition of a

single system. So the observer and system complexity become merely the complexity of a

sub-system with respect to the rest.

If you take the intrinsic view then there are still some problems with this approach,

namely:

1. It is still difficult to ascribe useful meaning to the complexity of the observer w.r.t.

the system unless the system is an observer too, otherwise the observer is itself

unobserved and so the complexity undefined in the same way as with natural systems

(section 3.3.1 on page 47).

2. The complexity of the system w.r.t. the observer will still vary according to which

aspect of the observed system is being considered by that observer.

The observer could be taken as to refer to a particular identified individual. This

individual could use several different internal representations to model the system and

interact differently according to each at different times. If these act in some way such that

they can be considered together as a composite model then you are back in the situation

illustrated in figure 12 on page 53. Such a scenario is illustrated in figure 13.

 Figure 13.An observer-system pair with multiple models

Observer

System

effects/controls

observes/
is effected by

Models of
the Object

System
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Either the separate models can be said to be interacting with the system (through the

observer) or the internal models can be said to form some sort of a composite model. If, in

the former case, the separate models would not qualify as separate observers, then

problems of complexity being changeable according to the particular viewpoint chosen

reappear. In other cases the situation can be further abstracted as to be between the

model/representation and the system.

So which ever way you interpret the observer-object system analysis, you

come back to the same problem of practical reference to an embedding framework

drastically effecting the effective complexity of the observed model.

3.3.3 Patterns

Next I will argue that complexity is not a useful property to ascribe to patterns23. In

other words, to make a meaningful judgement as to the complexity of a pattern you need a

syntax.

Consider two patterns generated by a random process; how can you judge them as

differently complex? One may seem to be more meaningful and the other not but this is

maybe just happenstance, it may be that they are both equally probable and generated by

the same process. It is only through the interpretation of some process that they may be

said to differ (for example by compression to a minimal length Turing machine that would

output it, see section 8.2 on page 136). The trouble is that the same pattern can be

decomposed or interpreted in many different ways. Each decomposition might give a

different picture of its complexity. In Appendix 2 (section 9.1 on page 164) I show that

given some reasonable assumptions that there is no non-trivial complexity measure on

one-dimensional patterns. This counter-example relies on the possible multiplicity of

decompositions - it contrasts with the demonstration of complexity measures upon a

structured language given similar assumptions.

The usual manner for dealing with the complexity of patterns is not to compare the

patterns themselves, but to compare the respective sets of rules for generating these

patterns (even if these rules are merely guessed at). This explicitly provides them with a

syntax, and hence they become more than a pattern.

23.By a pattern, I mean data that is ordered (typically in time or space) but is not restricted by a

combinatorial syntax.
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3.3.4 The modelling relation

Rosen [385], Casti [89] and others, have formalised the process of modelling in

terms of a “modelling relation”. This was explained in section 2.4 on page 38. The

intention is that a chain of causation in the natural system is modelled by first encoding the

initial conditions into the formal system, then following the chain of formal causation and

finally mapping this back into the natural system. This is illustrated in

figure 11 on page 41.

If the modelling relation commutes the formal system is said to be amodel of the

natural system. Rosen then characterises “complexity” as an attribute of a natural system,

if there are many such “inequivalent” models (see section 6.7 on page 131). Casti

quantifies this as the number of inequivalent models (section 8.29 on page 152).

In order for there to be many such models, there must be many possible encodings

of the natural system. In order to allow for the existence of several such encodings, the

whole must lie within a larger framework. In order for “inequivalence” to be well defined,

this larger framework mustitself be sufficiently defined. Finally, this framework must be

limited in scope, otherwise all natural systems would trivially have many models and thus

be “complex” in this sense, in which case it would not be a useful propertyof such

“natural systems”, as it would be coincident with the property ofbeing a natural system. It

is unclear in this case thatany natural systems would be counted as simple by this

criterion.

Thus, in order to be meaningful, this approach to attributing “complexity” to natural

systems, must be defined relative to a larger framework. To the extent that this framework

is well-defined, then this approach will be also. Some of the advantages and difficulties of

this approach will be discussed in section section 4 on page 72.

3.3.5 A model with respect to a specified framework

In view of the above analyses I contend that complexity, if it is to be a useful

attribution, needs to refer to a model relative to the modelling framework. That this is a

possible or useful approach will be demonstrated in section 4 on page 72, where I will give

a working definition of complexity and apply it to some examples.
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3.4 Some Unsatisfactory Accounts of Complexity

Here I will briefly discuss some ideas that are frequently conflated with complexity,

but which are, at best, very weak models of it. In each case conflating the concept with

complexity will mean the loss of a useful analytic distinction. In doing so I hope to

motivate some of the details of the next sections concerning the desirable properties of a

complexity measure and its definition.

3.4.1 Size

There is clearly a sense in which people use “complexity” to indicate the number of

parts, but it seems rarely usedjust to indicate this, as was shown in the case of nails

example (section 3.1.1 on page 44). Contrast this example with that of an intricate

(mechanical) watch, where the appellation of complex might be more appropriate.

The difficulties raised by size are real, but can be weak when compared to other such

difficulties; it is likely that simple problems such as size can be dealt with in simple (albeit

possibly expensive) ways24.

Intuitively there are large but simple systems, such as a book of random numbers, or

the list of facts behind ‘Trivial Pursuit’ questions (where there is no intended relevance

between the questions other than the categories of sport, entertainment etc.). Doubling the

size of either would not significantly increase their complexity.

Size seems not to be a sufficient condition for complexity. On the other hand a

certain minimum size does seem to be a necessary condition, it is very hard to imagine

anything complex made up of only one part. This minimum size can be quite small, there

is a Turing machine defined with only five states that comes to a halt after exactly

23,554,768 steps and the task of finding the maximum number of steps a seven-state

Turing machine could definitely halt in has been described as “hopeless” by

Machlin [303].

If a system is broadly symmetrical in terms of the relations between its parts (for

example in a peer organised computer network), then size might be a good indicator of

complexity, but otherwise the structure of the system might have a far more critical effect.

24.This is not to deny that if there a size limitation is a critical factor this may not qualitatively change the

situation to a complex one (as Anderson [13] points out).
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Broadly size seems to limit the potential for complexity, rather than determine it. See

section 8.38 on page 157 for examples of size used as complexity.

3.4.2 Size of rules

A variation on a purely sized-based measure would be to base a measure on the size

(in some sense) of thedescription of a system (in some language). This produces far more

acceptable results, for example the book of random numbers would be judged in its

complexity by the size of rules that generated it, rather than the size of the results.

However this still has many of the same problems as simple size measures have.

One can imagine a case where a system was generated by hundreds of independent rules

(e.g. 1001 unrelated tips about how to succeed). Thus the interaction between the rules

must be still important as to the overall complexity. Of course, it is hard to imagine

examples in natural language where there is absolutely no relevance relation between

separate descriptions, due to the involved and intricate nature of language. This does not

stop it being the case that the amount and structure of this interaction or relevance between

the parts of the description will effect the complexity of the result.

One can imagine further elaborating this sort of approach by then taking the

description of the description of the pattern and thus further improving this way of

measuring the complexity of the original object. This improves the suitability of this sort

of measure for complexity in that it encodes more about the structure inherent in the

object, but in this case one is abstracting further and further from the basic model of size

as a measure. The complexity of the original object is now far more encoded in the

language of description than the eventual associated size. On the whole it seems that the

more a judgement of complexity encodesstructure rather than meresize, the more it fits

our intuitive picture of complexity. This puts size measures in their place, they encode

only the most basic property of structure - the number of parts the structure is to be built

from. Thus if simple size could be seen as a measure of complexity it would be amongst

the weakest possible of such measures. See also section 8.39 on page 157 on size of

grammar for examples of this approach.

3.4.3 Minimal size

This brings us to a further elaboration of size as a complexity measure: that of the

minimal descriptive size in some language or by some compression process (see also
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section 8.24 on page 149). The most commonly used form of this is “Kolmogorov” or

“Algorithmic Information” complexity (AIC) - the size of the smallest Turing machine

that would generate the object pattern (see section 8.2 on page 136).

AIC represents the high end of minimal descriptive size measures - those using the

most powerful compressive machinery (alternatively those using the most expressive

language). The compressive machinery is so powerful that it gives a highly unpredictable

measure. For example the second 1,000,000 digits of Pi are indistinguishable to most

people from a list of 1,000,000 random numbers, but the first would have a small AIC and

the second would (almost certainly) have a large AIC25. Here the relation of the size of the

minimal program and the object are only marginally related - a fact that is starkly

illustrated by the fact that the AIC size is uncomputable, in general, from the original

object. I argue later (section 4.3.4 on page 84) that AIC is a more appropriate measure of

information.

At the other end of the scale, if the compressive machinery is very weak (the

associated language is inexpressive), then this is not much better than a measure based on

simple size, since the size of the object and the size of the minimal description will be

highly related.

Measures based on minimal descriptive size could be an acceptable complexity

measure if the relevances between the parts of the original that the compressing machinery

exploited (i.e. the redundancies) were the appropriate ones for the system and purpose in

mind. In any case this is now primarily no longer an issue of size but structure.

3.4.4 Processing time

It is hard to imagine a difficult task that can be done without some time spent on it,

either in execution or preparation. Thus the complexity of a task can come to be associated

with the amount of processing time it requires (see section 8.47 on page 162 for

examples).

That this is a probable consequence of complexity and not a sufficient condition for

it can be seen in the existence of intuitively simple but time-consuming tasks. Trying out

all the possible colorations of a checker board of a certain size, is a simple task, but given

m colours and a board of sizen there are  possibilities, so trying out the colouration of

25.It is overwhelming likely that the AIC of a random string is not less than the length of that string [284]

m
n

2
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a 20 by 20 board with 10 colours would be far above the maximum possible computation

performable by the whole universe since the beginning of time [75].

Secondly, like size, if processing time is a measure of complexity (see section 4.3.3

on page 84) then it is a fairly weak measure, relatively unreflective of the structure of the

task. Processing time may sometimes be an insuperable difficulty in practice but it is a

simple difficulty, solvable by simple means (more time)26. Personal experience tends to

suggest that the process of writing a program often presents a more fundamental level of

difficulty than the time it takes to run.

Like size the application of processing time as a measure of complexity can be

applied at a more abstract level, for example, to the time taken to write a program to

preform a certain task. This brings this sort of measure closer to the intuitive meaning of

complexity, but at the cost of the direct appropriateness of the “processing time” measure.

In the above example, in order for the programming time to be well-defined, the

programming environment and methods would need to be specified, then the complexity

of the task is more encoded in that environment than in the programming time taken.

3.4.5 Ignorance

Complexity is a major cause of ignorance - if a problem is complex, we often do not

know how to solve it. Ignorance is sometimes a cause of complexity - due to our ignorance

we can choose an inappropriate framework for considering a problem and this makes

solving it more complex. It is thus tempting to associate the two. I will argue that

information (or the lack of it) and complexity are more usefully considered as different

aspects of a problem.

Firstly, there are some tasks where we seem to know everything, but they are still

complex. This depends upon your scope of “everything”. In many puzzles and games one

has complete knowledge of the rules and situation, but finding the solution is still

complex. If one broadens the scope to include knowledge of the solution (or optimal

playing strategy), finding the solution may be no longer difficult, but implementing it may

be. Some games and puzzles have noeasy solution (e.g. chess).

Secondly, there are situations where increasing the knowledge about the solution

does not make it simpler. Imagine a task of designing the best program to check the code

26.This does not prevent questionsabout processing time being complex.
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of another program to see if it will halt, given a particular input. We know that there are no

techniques that do this in general [443]. Knowing this does not make the task less

complex!

So although ignorance and complexity can interact27, they should be considered as

separate sources of difficulty - requiring different types of solution. Separating these two

factors will also allow the study of their interaction - which could be very useful. See

section 8.15 on page 144 for examples of this approach.

3.4.6 Variety

Simple systems themselves do not display great variety28. Thus complexity can be

associated with variety. An animal with a greater variety of shapes of invertabra is said to

be more complex (in this respect) than one with fewer (e.g. McShea [316]).

An immediate increase in variety, can however, be accompanied by a decrease in

complexity. A list of prime numbers up to a certain size is not less complex than a list of

all such natural numbers, despite the fact that there must be at least as much variety in the

list of natural numbers by construction. It is implicit in this comparison that it is not the

sequence itself that is really being considered, but the rules/source of it - thus the rules to

generate prime numbers are more complex than those for a sequence of all numbers. So

the application of variety shifts to these rules, but this does not completely avoid the

problem, as a base ofall possible rules might not produce very complex behaviour.

Another possibility is that you measure variety by minimal description length

described above (section 3.4.1 on page 57), but then the arguments of section 3.4.3 on

page 58 would apply. See section 8.48 on page 163 for examples of this approach.

27.See, for example the “problem complexity” of Waxman in [463].

28.Although categories (or systems) of simple systems do.
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3.4.7 Midpoint between order and disorder

Complexity is sometimes posited as a mid-point between order and disorder.

Grassberger [194] considered three patterns similar to those in figure 14 below.

 Figure 14.Complete order, chaos and complete disorder

The immediate reaction is to judge that the first and last patterns are simple and the

middle one relatively complex (leading to diagrams such as figure 15 on page 62, e.g.

in [297]), but this is due to the facts that our perceptions ‘filter out’ the complexity of the

right-hand pattern and that we interpret it asrepresenting a situation withno rules29 (i.e.

random). Thus, we are not judging these uniformly; it may well be that the right hand

pattern representssuch a complex situation that we don’t recognise it. To illustrate this,

consider the possibility that there may be a small version of the left-hand pattern included

in the middle and a small version of the middle pattern included in the right-hand pattern

(as in figure 16 on page 63).

 Figure 15.Presumed graph of disorder against complexity

29.Or a single rule involving randomness. Whether this would be a complex rule would depend on whether

you judge randomness as fundamentally complex or whether it is an allowed atomic rule form.

1. Order 2. Chaos 3. Disorder

Complex

DisorderOrder

Simple
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If this is the case, we are forced to judge the patterns in order of increasing

complexity from left to right. We see the importance of the language of representation. If

we were considering the complexity of some (assumed) rules to generate these patterns,

then the original intuitions might be preserved. As noted in section 3.3.3 on page 55 the

confusion comes because such patterns do not have an inherent language30 - we have to

impose one on them.

 Figure 16.Possible diagrammatic inclusions

A footnote of Grassberger’s is particularly revealing here. It says:

“Some people hesitate between the middle and right panels when being

asked to point out the most complex one. But once told that the right one is

created by means of a (pseudo-) random number generator, the right panel is

usually no longer considered as complex.” [194] (page 491).

“Not being completely ordered” and “not being completely disordered” may be

necessary conditions of complexity, but this gives us no way of comparing intermediate

cases which are differently structured. The degree of variety and constraint involved in a

system is only a rough measure of a systems structure, and thus is not an ideal measure of

complexity.

3.4.8 Improbability

In many physical systems (particularly systems in equilibrium), complex behaviour

at a macroscopic scale is very unlikely; a uniformly disordered state at the microscopic

level is normal.

30.Except maybe an assumed one, which may be different for different observers.
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There is a marked contrast here between the different levels of description. A

simple, uniform equilibrium state at the macroscopic level hides very complex and highly

disordered detail at the microscopic level. Conversely, more complex behaviour at the

macroscopic level is often based upon a more ordered state of affairs at the microscopic

level because a disordered state (high entropy) tends to be very stable.

In terms of information the most efficient coding that can be devised will use less

information to specify or record probable events than unlikely events. In this sense a

probable event gives you less information because you expected it anyway [408].

Thus a high probability macroscopic state coupled with a highly disordered (high

information) microscopic state is associated with low complexity and a low probability

macroscopic state with an ordered (low information) microscopic state with high

complexity. Thus entropy and other probability based measures are linked with

complexity.

There are also low entropy states associated with low complexity, like cold perfect

crystals, so the connection between entropy (of some of the other probability/information

based measures) and complexity is not straightforward, as shown by Li [287]. In some

highly dissipative systems with noise, however, complex behaviour is almost certain and a

lack of it would be very surprising. An example is convection in a fluid between two

parallel plates with a sufficiently great temperature gradient between them [361]. Thus the

association of complexity with improbability only holds for a restricted set of equilibrial

systems.

Part of the problem here is in the implicit determination of the appropriate scale for

the phenomena to be viewed at, i.e. what level of detail is considered meaningless “noise”

(see the section on Noise on page 206). The improbability of a complex state is entirely

dependent on this scale, for without such an approximation every state is equally probable

and meaningful.

Finally, complexity measures based on probability do not directly apply to purely

deterministic systems without some form of course graining applied to them as above.

See section 8.22 on page 148 for examples.
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3.4.9 Expressivity

If a type of statement can express a lot of things, i.e. it has expressive power, then it

is likely to contain some more complex statements than a type which has a more restricted

range. It is certain to include more such complex statements than a sub type could. You

can not describe some complex phenomena without sufficient expressive power, and the

theory of more expressive types is, in general31, more difficult than the theory of less

expressive types. So an indication of the complexity of a statement is the least type it

belongs to, i.e. the minimal expressivity needed to encode it. Examples of this are Logical

Complexity (section 8.20 on page 146), and Kemeny's measures (section 8.18 on page

146).

The effect of this analysis can depend on how fine-grained the type classification is.

If the difference between adjacently expressive types is large then this analysis will not

specify much about the expression, as many different possible expressions will be possible

within each classification, all differing in complexity, allowing the possibility that an

expression of a higher type could be intuitively simpler than that of a lower. This is

especially likely if the hierarchy of expressivity only encodes one aspect of the

expression’s potential complexity. For example comparing arithmetic expressions over the

integers and reals, the solution set of  can only be expressed in the reals, but is

much simpler in every other respect than many equations over the integers32, similarly the

task of computing the number of zeros of an equation is computable over the reals but not

over the integers [128].

If the analysis is fine-grained and fairly complete in its coverage of the potential

aspects of complexity in an expression, then this comes close to a language of

specification to which the complexity of the expression can be judged.

3.4.10 Dimension

The number of dimensions a modelrequires is some indication of its complexity.

Simple systems can often be depicted with one or two dimensions, whilst if a model needs

many dimensions, it might indicate that the relationship between these are necessarily

31.This is not always the case, for example compare the theory of real and integral arithmetic, many of the

problems (e.g. uncomputability) disappear when you move to reals.

32.As in the equation constructed in Chaitin [102], where the solution set is, in a real sense, unformalisable.

x
2
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complex, in that they can’t be reduced to fewer. Cognitive complexity (section 8.5 on page

139) and the dimension of the attractor in chaotic systems (section 8.9 on page 141) use

this approach.

The number of dimensions is essentially a limitation on the expressiveness of the

possible formulations. This is thus really a sub-case of complexity as expressivity (section

3.4.9 on page 65).

Dimension is thus at best a coarse limitation on one aspect of a formulation’s

complexity. For example, to characterise the full range of cylinder shapes you need two

dimensions: height and radius, but there may be no relation between the two; to

characterise the cylinder shapes of fixed aspect ratio, such that their heights are prime

numbers (in some unit of measurement) takes only one dimension.

3.4.11 Ability to surprise

It is difficult to model complex systems, so it is likely that any model we have is

incomplete in some respect. If we have come to rely on this model (for instance when the

system has conformed to the model for some time or under a variety of circumstances) and

the system then deviates from that model, then we are surprised. The ability to surprise is

not possessed by very simple and thus well-understood systems, and consequently comes

to be seen as an essential property of complex systems.

This is not useful as a complete categorisation of complexity for several reasons.

Firstly, it is only relative to the sophistication of the model and our reliance on it. Secondly

such surprise could be the result of other things like simple ignorance or error in model

formulation. For example, we do not know whether the processes behind some apparently

unpredictable quantum effects are due to a complex internal chaotic process or a simple

fundamentally random one. Chaos theory tells us that completely deterministic

mechanisms can generate sequences of data that are statistically indistinguishable from

random sequences. This poses the question of whether such “random” processes are, in

fact, just very complex ones and hence merely reflections of our paucity in modelling (see

also section 6.2 on page 126 and the section entitled Order and Disorder on page 203).

3.4.12 Logical strength

One can think of statements as “holding within themselves” their logical

consequences, which are revealed when one applies the machinery of a logic's proof
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theory to them. This picture is formalised when one identifies a formal proposition with its

logical theory. Combining this picture of propositions with the principle that systems are

at least as complex as their subsystems leads to the conclusion that logically stronger

propositions are more complex33. Löfgren [293] uses logical strength as the basis for a

measure of ‘interpretative complexity’.

Viewing propositions like this compels one to accept that either the logic has been

effectively simplified by identifying all equivalent propositions with the same theory or

that each theory has a complex (and often infinite) set of labels. Propositions would

essentially be considered only from the point of view of their proof theory and not from

other frames of reference (e.g. their syntactic structure). This is especially obvious when

the contradiction  is considered, this is the strongest possible in classical

propositional logic and so by this characterisation must be themost complex!

3.4.13 Irreducibility

Irreducibility is a source of complexity. A classic example is the three body problem

in Newtonian mechanics, where the goal is to solve the equations of motion of three

bodies that travel under mutual gravitational attraction. This is analytically unsolvable and

hence is qualitatively different from any reduction to several separate 2-body problems34.

To characterise complexity as irreducibility is too extreme, for two reasons. Firstly,

this would mean that many formal systems would be counted as simple (see the example

in section 3.1.3 on page 44). Secondly this would rule out many meaningful comparisons

of complexity, for example if comparing three systems (primordial mud, a simple

organism, and us), one would be forced to categorize two of these as equal in complexity

(this is also the case with the second example in the “Complexity as a comparison” section

above (section 3.2 on page 46).

If irreducibility is to be allowed degrees and can be meaningfully defined so that

formal systems do not necessarily come out as simple then these problems are mitigated.

For examples see section 8.17 on page 145.

33.Or, at least, not simpler.

34.The five-body problem is even worse: five bodies travelling at finite speed initially can interact so that

they all disappear to infinity in a finite amount of time.

p p¬∧
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3.5 Complexity is Relative to the Frame of Reference

Repeatedly, in the analyses immediately above, we saw that the effective complexity

depended on the framework chosen form which to view/model the system of study. This

framework is very close to what Suppe called the ‘disciplinary matrix’:

“The disciplinary matrix contains all those shared elements which make

for relative fullness of professional work, models, ontological commitments,

symbolic generalisations, a language, with meanings specific to that

community, some interpretive symbolic generalisations, and so on.” [428]

p.495

In this subsection I will highlight some of the aspects of this framework in order to

prepare the ground for the definition of complexity in the next chapter.

3.5.1 The level of application

In the section on complexity as the midpoint between order and disorder (section

3.4.7 on page 62), we saw how the level of description greatly affected the interpretation

of its complexity. When we looked at the patterns themselves we came to a different

conclusion than when we were considering possible rule sets to generate those patterns.

This is also inherent in many of the examples (e.g. the gas example in section 3.1.4 on

page 44) or analyses above.

In fact, complexity often appears when we are seeking to cross levels. In the ant

colony example (section 3.1.5 on page 45), I noted the great contrast between a

macroscopic and a component view of the system; the complexity occurred when I sought

to explain the former in terms of the latter. When we keep to a very similar or even unitary

framework, systems are often simpler; when we sought to explain the behaviour of the ant

colony in terms of both stimulus and response to the whole colony our task seemed a lot

easier.

The criticality of scale in the modelling of phenomena leads Badii and Politi [36] to

focus their characterisation of complexity solely on such hierarchical and scaling effects.

As they say:

“The study of the scaling behaviour of physical observables from

finite-resolution measurements appears, therefore, as an essential instrument

for the characterisation of complexity”[36] p.249
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3.5.2 Goals - type of difficulty

In the gas example (section 3.1.4 on page 44), the complexity of the gas depended

on whether we were trying to explain its behaviour statistically or deterministically (i.e.

with or without “randomness”).

When considering processing time as a measure of complexity, (section 3.4.4 on

page 59), in the checker-board colouring example the difficulty in terms of time was more

fundamental than that of program space: the AIC (section 8.2 on page 136) of all the

coloured checker-boards is small, but the computational complexity (section 4.3.3 on page

84) is large. In other examples, like that of producing a random sequence, the AIC will be

large but the computational complexity small, illustrating how the complexity is relative

to the task in hand, which is of course relative to your goals.

Another contrast is between the difficulty in trying to find (or induce) a suitable

model description compatible with set of data and that of trying to analyse a given model

description in terms of the properties of its content. Models that are simple to analyse can

sometimes be very hard to find.

3.5.3 Atomic parts

We saw how the base units of our descriptive framework affected the complexity of

our models. This was illustrated by the gas example (section 3.1.4 on page 44) - whether

we included “randomness” or “noise” as a basic (and thus unanalysed in this framework)

element of our framework effected the complexity of the description.

Similarly in the ant colony example (section 3.1.5 on page 45), whether we took the

individual ants as the atomic units of our description or just looked at the colony as a

whole mattered greatly.

Which parts are considered “atomic” (or merely more basic or primitive) is just one

aspect of the language of modelling or description, but it is important as it ‘anchors’ what

one’s starting points are to be. For example, the complexity of determining the tape that

results from the action of Turing machine may be very different from determining the

Turing machine that will terminate with a given tape.

3.5.4 The language of description

That the language of representation and modelling is critical to the effective

complexity, is clearest in the programming language example (section 3.1.8 on page 46).
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Here the language is completely explicit and makes a clear impact upon the task in hand.

This example has many parallels with the mathematics example (section 3.1.3 on page

44). In mathematics there are two distinct difficulties: learning to use abstract and

expressive mathematical languages and using these to solve a problem. Frequently if a

problem appears insoluble the solution lies in shifting to a more powerful and expressive

language to attack the problem from35. Toulmin goes further, he says:

“The heart of all major discoveries in the physical sciences is the

discovery of novel methods of representation, and so of fresh techniques by

which inferences can be drawn – and draw in ways which fit the phenomena

under investigation. The models we use in physical theories,… are of value to

physicists primarily as ways of interpreting these inferring techniques, and so

of putting flesh on the mathematical skeleton.” [438] p.34

In the car engine example (section 3.1.6 on page 45) we saw how the different ways

of modelling it effected not only our perception of its workings but also our method for

interacting with it. These models depended crucially on the framework of mechanical

understanding we had. If we had looked at a slightly different engine (e.g. a steam engine)

we would form slightly different models of it, but these would very probably be on a par in

terms of sophistication with those we formed of the car engine. The critical determinant of

the complexity of our models arose not so much from the happenstance of the particular

example as from our language of understanding and representation of engine mechanics.

I will, like others (e.g. Kauffman [249]), restrict my application of the concept of

complexity to representations within specific language systems. Thus talking about

complexity will necessitate indicating the language of representation that this is relative

to. Here I intend the term “language” to have a wide interpretation which includes, but is

not limited to, formal and natural languages. I am essentially using language as the most

powerful idea available to capture the interaction and dependence of expressions of

models to a framework.

35.See also Simon in [412].
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The closeness of the relation between models and the language they are expressed in

is implied in the following quote from Kuhn:

“So if anyone asks:’ What more is there to look at in science besides the

models, the actual phenomena, and the relationships between them?’ we can

answer ‘The structure of the language used in a context where a scientific

theory has been accepted.’” [161] p.44


