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10 Appendix 3 - Formalisation of Syntactic Structure

10.1 Formalisation

In all of the below there is a set of atomic symbolsA = {a1, a2, …, an} and a sufficient

supply of variable symbols,V = {v1, v2, …} that are distinct from each other andA. The

brackets in the below are punctuation.

10.1.1 The syntax of trees

Let L be a set, then the set offinite ordered finitely branching trees labelled from L

(or ordered trees for short),TL, is built up recursively:

O1: if  then(l, ∅) ∈ TL;

O2: if  andb1, …, bn ∈ TL then(l, (b1, …, bn)) ∈ TL.

Given a set of variables,V, that are distinct from other symbols the set ofvariable

trees based on L and V, TL
+, is built up as follows:

V1: if  then (t, ∅) ∈ TL
+ ;

V2: if  andb1, …, bn ∈ TL
+ ∪ V then(l, (b1, …, bn)) ∈ TL

+.

Given a variable tree,t, the variables,v(t), can be re-collected as follows:

C1: if t = (v, ∅) andv ∈ V thenv(t) = {v};

C2: if t = (l, (b1, …, bn)) thenv(t) = v((l, ∅)) ∪ ∪i=1,…,n(v(bi)).

10.1.2 The syntax of rules

Given a set of syntaxesSS = S1, …,Sn, therules, RSS, are built up as follows:

R1: (⇒) ∈ RSS;

R2: if (a1, …,an ⇒) ∈ R andx ∈ TA
+ then(a1, …,an, x ⇒)∈ RSS;

R3: if (a1, …,an ⇒) ∈ R, x∈ TA
+ and{v1, …, vn} = v(x)∪ ∪i=1..m(v(ai)) then(a1, …,an ⇒

x, v1 ∈ S1, …, vn ∈ Sn) ∈ RSS.

10.1.3 The syntax of syntactic structures:

The set ofsyntactic structures, S, is built up as follows:

l L∈

l L∈

t L V∪∈

l L∈
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S1: (∅,∅) ∈ S;

S2: if {S1, …,Sn} ⊆ S then({S1, …,Sn},∅) ∈ S;

S3: if SS = {S1, …,Sn}, (SS,∅) ∈ S, and{r 1, …, rk} ⊆ RSS then(SS, {r1, …, rk}) ∈ S.

If (SS, R) is a syntactic structure thenSS is its sub-syntaxes andR is its rules. A

syntax isdependant on a second if either this second syntactic structure is a sub-syntax of

it or it is a sub-syntax of another syntactic structure that it is dependent on. Note that this

definition includesonly those syntactic structures that can be built up recursively like this,

so there are no 'circular' structures with syntactic structures being dependent on

themselves. If you draw a graph with syntactic structures as nodes and the relation of

being a sub-syntax of being a directed arc then any collection of syntactic structures forms

an acyclic digraph.

10.1.4 Generation from syntactic structures

Each syntactic structure,S=(SS, R), generates a set of trees,Gen(S), as follows:

G1:  if (⇒ x, v1 ∈ S1, …, vn ∈ Sn) ∈ R andt1 ∈ Gen(S1), …, tn∈ Gen(Sn) then(⇒ x, v1 ∈

S1, …, vn ∈ Sn)[t 1, …,tn] ∈ Gen(S);

G2: if (a1, …,am⇒ x, v1 ∈ S1, …, vn ∈ Sn) ∈ R, t1 ∈ Gen(S1), …, tn ∈ Gen(S) such that

a1(v1/t1)…(vn/tn)∈Gen(S),…, am(v1/t1)…(vn/tn) ∈ Gen(S) ands1, …,sk are thet1,

…,tn such that the corresponding v1, …,vn do not occur as subtrees of any of

a1, …,amthen(a1, …,am⇒ x, v1 ∈ S1, …,

vn∈Sn)[a1(v1/t1)…(vn/tn), …, am(v1/t1)…(vn/tn),s1, …,sk] ∈ Gen(S);

whereA[b1, …,bn]  is the tree withA as the top node label andb1, …,bn are the

branches anda(x/y) is the treea with every subtreex replaced by subtreey.

Thus the treesgenerated by a syntactic structure like this are trees with rules as node

labels and branches of the antecedents and other substitutions to be used in an application

of the rule.

10.1.5 Production from trees

Each tree,t ∈ Gen(S), produces a tree,Prod(t), by recursively applying the rules at

each node to theproduction of its branch trees and the substitutions from the generation of

lower syntactic structures, thus:
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(where in the belowt = (a1, …,am⇒ x, v1 ∈ S1, …, vn∈Sn)[s1, …,sm, t1, …,tn] )

P1: if t = (⇒ x, v1 ∈ S1, …, vn∈Sn)[t 1, …,tn]  thenProd(t)= x(v1/t1)…(vn/tn);

P2: if t = (a1, …,am⇒ x, v1 ∈ S1, …, vn∈Sn)[s1, …,sm, t1, …,tk]  and

s1= a1(v1/r1)…(vn/rn), …,sm= am(v1/r1)…(vn/rn) where{t1, …,tk} ⊆ {r 1, …,rn} then

Prod(t) = x(v1/r1)…(vn/rn).

10.1.6 Complete production

When a the process ofproducing from a tree,t, extends recursively downwards to its

substitutions, we get acomplete production, ComProd(t), thus:

CP1: if t = (⇒ x)[]  thenComProd(t) = x;

CP2: if t = (⇒ x, v1 ∈ S1, …, vn∈Sn)[t 1, …,tn]  andc1= ComProd(t1), …,cn= ComProd(tn)

thenComProd(t) = x(v1/c1)…(vn/cn);

CP3: if t = (a1, …,am⇒ x, v1 ∈ S1, …, vn∈Sn)[s1, …,sm, t1, …,tk] ,

s1= a1(v1/r1)…(vn/rn), …,sm= am(v1/r1)…(vn/rn) where{t1, …,tk} ⊆ {r 1, …,rn} and

c1= ComProd(r1), …,cn= ComProd(rn) thenComProd(t) = x(v1/c1)…(vn/cn).

A complete production of a tree has only symbols as the labels of its nodes and not

rules.

10.1.7 Complete productive generation from syntactic structures

Each syntactic structure,SS, can recursively generate the productions of all trees in

Gen(SS), called thecomplete productive generation, CPG(SS), thus:

CPG:if t ∈ Gen(SS) thenComProd(t)∈ CPG(SS).

It is CPG(SS) that we usually associate with a syntax in normal logical parlance.

10.2 The Expressivity of Syntactic Structures

For any phrase structured grammar (PSG), there is a SS whose complete productive

generation is the language generated by the PSG.

Proof Outline:

Let the PSG be defined in the usual manner by: a starting symbol, S; a set of

variables, ; a set of terminal symbols, ; and a setV S A B C…, , , ,{ }= T a b c …, , ,{ }=
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of production rules, P, of the form  where , where  indicates

the set of finite sequences made from the setL.

Basically I simulate the sequences of symbols with equivalent trees plus a count of

how many non-terminals are left and then extract these to another syntactic level. Then the

production rules of the PSG translate across in a straight forward manner.

Define aSS, , where  includes the following rules:

PSG1: ⇒W(S,s(0)) - the starting symbol

PSG2: W(a,p(b,s(c)))⇒W(a,p(s(b),c)) - associativity of P

PSG3: W(a,p(b,0))⇒W(a,b) - answer of p

PSG4: W(a,m(s(b),s(c)))⇒W(a,m(b,c)) - associativity of m

PSG5: W(a,m(b,0))⇒W(a,b) - answer of m

PSG6: W(J(a,J(b,c)),x)⇒W(J(J(a,b),c),x) - associativity of J

PSG7: W(J(J(a,b),c),x)⇒W(J(a,J(b,c)),x) - associativity of J

The intention is that: W(a,n) represents a word, a, being processed in the PSG with n

non-terminal symbols in it; S corresponds to the PSG’s starting symbol; 0 is zero; s(n) is

the successor function (i.e. n+1); p is for plus (i.e. p(a,b) is a+b); m is minus (i.e. m(a,b)

represents a-b with a lower bound of zero); and J is the string concatenation operator (i.e.

J(a,b) is the string of the a as a string followed by b as a string).

 also includes rules to reflect the production rules in the PSG.

For each rule in the PSG of the form  there corresponds a SS rule of

form

PSGi: ,

where  has the same depth as the number of non-terminals in

.

For each other rule in the PSG of the form  there corresponds

a SS rule of the form

PSGj:

gi gi→ gi gi, V T∪( ) *∈ L
*

S1 ∅ R0,( )= R0

R0

S a1a2…an→

S W J a1 J a2 J …J an 1– an,( ) …( ),( ),( ) s s …s 0( ) …( )( ),( )⇒

s s …s 0( ) …( )( )

a1a2…an

a1a2…an c1c2…cp→

W J f J J a1 J a2 J …J an 1– an,( ) …( ),( ),( ) g,( ),( ) s s …s 0( ) …( )( ),( )( )
W J f J J c1 J c2 J …J cp 1– cp,( ) …( ),( ),( ) g,( ),( ) p s s …s 0( ) …( )( ) i,( ),( )( )⇒
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if it increases the number of non-terminal symbols in the PSG, where i is the

increase in the number of non-terminals represented in the form .

Finally for each other rule in the PSG of the form  there

corresponds a SS rule of the form

PSGk:

if it decreases the number of non-terminal symbols in the PSG, where i is the

decrease in the number of non-terminals represented in the form .

If one rewrote the above SS rules by: w (n) for W(w,n); 1 for s(0); 2 for s(s(0)); …;

n+1 for s(n); b+c for p(b,c); b-c for m(b,c); and ab for J(a,b) they would look like:

PSG1: ⇒S (0)

PSG2: a (m+(n+1))⇒a ((m+1)+n)

PSG3: a (b+0)⇒a (n)

PSG4: a ((m+1)-(n+1))⇒a (m-n)

PSG5: a (n-0)⇒a (n)

PSG6: a(bc) (n)⇒(ab)c (n)

PSG7: (ab)c (n)⇒a(bc) (n)

PSGi: , where n is the number of non-terminals,

PSGj:

PSGk:

where n is the number of non-terminals on the LHS and i in the increase

(respectively decrease) in the number of terminals due to the action of the PSG rule.

Then all the trees of the form a (0) correspond to the resulting words in the PSG (i.e.

those with zero non-terminals in them).

Finally I define a second SS,  with the single rule:

T:

s s …s 0( ) …( )( )

a1a2…an c1c2…cp→

W J f J J a1 J a2 J …J an 1– an,( ) …( ),( ),( ) g,( ),( ) s s …s 0( ) …( )( ),( )( )
W J f J J c1 J c2 J …J cp 1– cp,( ) …( ),( ),( ) g,( ),( ) m s s …s 0( ) …( )( ) i,( ),( )( )⇒

s s …s 0( ) …( )( )

S a1a2…an n( )⇒

a1a2…an n( ) c1c2…cp n i+( )→

a1a2…an n( ) c1c2…cp n i–( )→

S1 R0,( )

W a 0,( ) a a S0∈( ),⇒
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to extract all the trees corresponding to the words generated by the PSG.

10.3 Flattening Syntactic Structures

For any finite collection of syntactic structures{S0, …, Sn} which is closed w.r.t.

sub-syntaxes, there is a correspondingflattened sequence of syntactic structures

(S0', …, Sk'), such that:

1. for each Sj, there is a Sk' with a generated set of trees that is identical;

2. for each i=1, …,k, free variables in rules in Si' only refer to one other Sj', where

i<j.

Proof Outline:

Reorder the collection{S0, …, Sn} as(T0, …, Tn) such that no Ti has a sub-syntax with

a greater index than itself, with the permutationθ:{1,…,n} → {1,…,n}. This is possible

since{S0, …, Sn} can be represented as an acyclic digraph.

Ensure that included in the atomic symbolsA = {a1, a2, …, an}, there is a distinct

symbol for each of(T0, …, Tn) plus one more, that are not used in any of the rules of any of

(T0, …, Tn), call theset0, …, tn, n.

For each syntactic structure,Ti = (SSi, Ri), in (T0, …, Tn), construct another

Ti' = (SSi', Ri'), to form a new sequence(T0', …, Tn') such that:

(a) For each Tj in SSi, put Tj' in SSi';

(b) for each rulerk = (a1, a2, …, am ⇒ c, v1 ∈ Tn1, …, vp ∈ Tnp) in Ri, put a rulerk' =

(ti(a1'), ti(a2'), …, ti(am') ⇒ ti(c'), v1, …,vp ∈ Ti-1) in Ri, where each aq' or c' is the

result of replacing all occurrences of thev1, …, vp by tn1(v1), …, tnp(vp). Also one

extra rule,(⇒ v, v∈ Ti-1), toRi'.

Essentially the generated results of the syntactic structures are accumulated up the

sequence, with the origin of each preserved by the extra symbols.

Finally append a sequence of extra syntactic structures(S1', …, Sn') which will

correspond to the original collection,{S0, …, Sn}, such thatSi' = ({T θ(i)'}, {t θ(i)(v) ⇒ v}).

This selects and strips the appropriate elements for the syntax.


