Syntactic Measures of Complexity

9 Appendix 2 - Longer Proofs

9.1 (Non-existence of) Complexity Measures on Strings

Definitions
Let L be the set of non-empty strings with symbols fréns {3 b ¢...} , Le.
L ={aaaah bh...}
If x and y are the same pattern, but using different symbols, | will write , €.0.
aab= bbc

Let C:L —~ 0" be a function to the non-negative reals (this is the intended
complexity function.

| will write the concatenation of andy asxy.

Let O (xX) be the set of non-empty substrings »f(including itself), e.g.
O (aba) = {a, b ah ba aba.

I will show the substitution ofy for c S throughout x asx(c/y) , e.g.
aba(a cg = cdbcd

Two patterns are irrelevant to each othiefx, y) , if they have no symbols in
common, i.,el (x,y) =0 (x) n O (y) =0 , e.d(aaba,cc)but notl(babcb,ddad)

When x and y are irrelevant to each other | will denote their concatenatign:

Let X" be shorthand for the string concatenated with itselfi-1 times, e.g.
(ab)® = ababah

In all of the below w,xy zOL ; abrstdS; and

a,i,n,m,s,s,, ..., t;,t,, ... ON (whereN is the set of natural numbers).
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Theorem

If Shas at least three distinct symbols then there is no non-trivial measure from
<L, [J<>into <O+, +, <>, that is, if theres a functionC:L - [0+, defined onL to the

non-negative real numbers such that,yL:

C(xly)y = C(x) +C(y) (Irrelevant Join)

X<ye= C(xX) <C(y) (Subform)
such that:

xOO (y) O x<y (Subpattern Property)

I(X,y),sO00 (x) O C(x(y) =C(X) +C(y) (Irrelevant Substitution)
Then forall x,C(x) = 0.

There needs to be at least 3 symbols for the technical reason that sometimes
you sometimes temporarily need a third symbol to apply “Irrelevant Substitution”. For all
of the below | use a constakt>0 , definedCqs9 . The triviality of the measure will
come from a proof thadt = 0

Proof:

Lemma 1
C(s =0

Proof of Lemma

Chooset 1S s#t , now

C() = C(t(V9) = C(1) +C(9 .

Lemma 2

If x has no repetitions of any symbols in it, thefx) = 0

Proof of Lemma

Letx = s;s,...s,, wheres, 1 S are pairwise distinct.

Now using repeated instances of Irrelevant Join and Lemma 1 we have:

C(sS,...5,) = C(s) +C(s,...5)) = ... =C(s) +...+C(s) = 0.
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Lemma 3:

If x=y,thenC(x) = C(y) . (TheSubstitution of Symbgls

Proof of Lemma

Let s;,S, ...,s, be the symbols that occur ik and t,t, ...,t. be the

corresponding symbols
Now using Lemma 1 and repeated applications of Irrelevant Substitution we have:
C(x) =C(X¥) +C(t) +...+C(t) = C(x(g/t)) ... (s,/t)) =C(y).
Lemma 4:
CES m% mCEsnE

Proof of Lemma

By induction onm.

Base stepCES E CBS E = 1. CES”E

Inductive step:

O™t O pan™0 On"0 , n On"0 O n0 Onp"0  0On0
CDS 0= CDSnn 0= CDtn Dt/sn[D CDtn D+CDSnD CDS 0+ CDSD

= gmcada+cas'm = (m+1)cash

Lemma 5:
cEs®VH = mk

Proof of Lemma

This is a special case of Lemma 4, witk2.

Lemma 6:
CDS = klog,n.

Proof of Lemma

now givenm=1 , choose (m) >0 such thaf <M< 2% *
o m cx+1

Soa” isa substring d'  whichisa substnngaof

By thesubpatterrproperty, we have
cx m cx+1
cre’ nscr pscd o

therefore by Lemmas 4 and ka < mCHaan k(a+1)
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o 0 nQ oa+1
k=< <k
SO o Choan o

But by the choice ofi

sincem>0 .

asmlog,nsa+1

sok2 < klog,n < kKL !
m m

,asm>0 .
Given thatm can be arbitrarily IargeC;HanH must be arbitrarily closéltag,n
Lemma 7:
CEX'H = Klog,n + C(X) .

Proof of Lemma

Using Lemma 6, we have:

CHX”H = CHSn (s/ X H = CHSHH+ C(x) = klog,n+ C(X .

Lemma 8:
If x is a rotation ofy thenC (x) = C(y)
(wherex is a rotation o if 0w, zO L((wz= 3y O(zw=1))).

Proof of Lemma

letw andz be strings such that= wzy = zw

Forn>1, (w2 "lisa sub-pattern dfzw) " whichis a sub-patterif\wg) et
so by the sub-pattern property
co(w) "B ca(zw "B cawl "'
0 klog, (n—1) + C(w2 <klog,n+ C(zw <klog, (n+1) +C(w32
(using lemma 7)
0 klogzg%l% C (w3 <C(zw) < klogzg%l% C (w3

Sincen can be arbitrarily largeC (w2 = C(zw)
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Now to show thak = 0

k + klog,3

=k+ CHce’H Lemma 6
=k+ CHCBH+C(a) +C(b) Lemma 1
=k+ CHCSH+ C(ab) Irrelevant Join
=k+ CHC3 (c/ (ab)) H Irrelevant Substitution
= k+ C(ababab Substitution expanded
> k+ C(ababg Sub-pattern
= k+ C(abaal Lemma 8
= CHCZH+ C(abaah Definition ofk
= Clilc2 (c/ (abaab) H Irrelevant Substitution
= C(abaababaalp Substitution expanded
> C(abaababaa Sub-pattern
= C(baaabaaba Lemma 8
> C(baaabaab Sub-pattern
= C(aabbaaab Lemma 8
> C(aabbaaa Sub-pattern
= C(aaaaabb Lemma 8
= CHa5H+ CHbZH Irrelevant Join
= klog,5 + k. By the definition of k and Lemma 7

Finally I will show thatlx 0 L;C(X) = O , which will prove the theorem.

Letx be a string containing the followingpairwise distinct symbols,, ..., s,

Construct a new string = f (f, _,(...f;(x)...)) from using n applications of the
following: f,(X) is constructed fronf,_,(x) (using the convention th{k)  x)idby
replacing all instances ¢f #_,(x) that were alsxin using these four steps:

(1) rotatex until the first symbol is the chosen instanceof ;

(2) append the string;...s; _, to the front of the rotated string;
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(3) rotate the new string until the chosen instance of  is at the end;

(4) append the string , ;...s, at the end.

Fact 1:

C(f(x)) =2C(f,_,(x)) since a rotation does not change a string’s complexity by
Lemma 7 and appending symbols at the beginning or end of a string can only increase its

complexity due to the subpattern assumption.

Fact 2:

By constructionX = (s;...s) A , since by construction every symbolxirs
replaced by the string, ...s,

By repeated applications of fact 1, we h&vgX) = C (x)

So C(x) <C(X% SCE(sl...sn) ‘X‘E = klog,|x| + C(s,...s,) =0, sincek =0

ands, ...s, contains no symbol repetitions (Lemma 2).

9.2 Cyclomatic Number as a Lower Bound for Minimal Damage Cut

The cyclomatic number can be calculated as the number of arcs minus the number of
nodes plus the number of disjoint partitions the graph is in. Each cut of the formula that
incurs “damage” removes at least one arc and the formula is not fully “analysed” into
components until you are left with a collection of trees and the cyclomatic number of a

collection of trees is zero.

9.3 Decomposition of Formulas into Complexes
The proof deferred from section 5.3.2 on page 95.
Any formula can be decomposed into complexes. i.e.

For anyx[L there are,...,a,l0Cp andc,,...,c,[1X, such that
X = a,Ya,...%/a,

and fori<n, -R(a,%/a,...%/a,c) so that
C(x) =C(ay) + ... + C(c,).

Note that this is not necessarily a unique decomposition.

Proof:
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By induction on length af:

Base Step

x is of lengthl 0 xOX,00 xOCp
and thus is its own decomposition.

Induction Step

xOCp O trivial decomposition of itself

xOCp O yOPX)—{x}-X,; ~R(X/.,y) Defn Cp
Now by the induction hypothestg/. andy have decompositions:

x/, =a’ya,...%a,

y = b,Syb,... Kb,
These two decompositions are irrelevant to each other, so

X = (x1.)l,

= aa,...%a blb,. Kb,  as-R(a,a,...Ca, b /b,...Kn/b,)

Now Oi<n ~R(a,%/a,...%/a,a.,), ~R(a,a,...%/a,,b,)
and fordj<m -~ R(a,%a,...%/a,¢/bS/b,...Xib,b..), since~R(x//..y).
Now, of course,

Cx)=C(a,) + ... +C(a, +

C(b,) + ... + C(b,).

9.4 Generating a Measure from a Function on the Complexes

The proof from section 5.3.2 on page 95. First a lemma | will use in the proof:

Lemma
y,z00 (X), ¢,kOX,—0 (x), ~R(X/,,y), ~R(x?,2)
O =R(y,z) oryd (z) or zIO (y)

Proof:

By induction on the depth of formulas.
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Base (depth 0):

depth(x)=0 O xOX, O O (X)={x}
y,z00 (x) O y=x=z O yOO (2)

Induction step:

Assume lemma is true for all formulas of depth less #h@epth(x)>0).

One of:
(1) X = uw
(i) X = bst

For somew,s,t0L, udX,, b0IX,, depth(w), depth(s), depth(t) < depth(x)
Case (i):x = uw
y,z00 (uw) = {uw} O O (w)

There are essentially three possibilities: eiff@@rbothy andz equaluw, (b) only

one of them ofc) neither. Take each case in turn:
(@) y=uw=z O ydO (z)
(b) (w.l.o.g.)y=uw, z[OO (w) O zOO (uw)=0 (y)
(c) y,zU0 (w)
by the inductive hypothesis sinedR(xv/.,y), “R(x?/,,z) O = R(w/,y), “R(w?/,,z)
one of=R(y,z), ydld (z) or zOO (y) holds
Case (ii):x = bst
y,z00 (bst) = {bst} 00 O (s) O [ (t)

Here there are essentially four possibilities (modulus the obvious symmetses of

andt): either(a) bothy andz equalbst, (b) one is equal tbst and the other is a member
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of O (s), (c) both are members af (s) or (d) one is a member a@f (s) and the other a

member of] (t). Taking each possibility in turn:
(@) y=bst=z [0 y[O[ (2)
(b)  (w.lo.g.)y=bst, zOO (s) O zOO (bst)=0 (y)
(c) (w.l.o.g.)y,zOOI (s)
= RX1,y), “R(X?/,z) O ~R(s.,y), “R(s%,,2)
and so by the inductive hypothesis one:8%(y,z), y[I[I (z) or z[I[I (y) holds

(d) (w.l.o.g.) yOIOI (s)-0J (t), zOO (t)-0O (s)

~R(XY/..y)
O = R((bst)/.,y) asx=bst
O =R(b(s/)ty) yoo (b)
O O (b(sY/)t)n U (y)=0 Defn R
O [{b(s/)t00 (s4/)00 (H)]n O (y)=0
0 00 (y)=0

Similarly
“R(x4,y) O O(s)nU (z)=0
Now if qOO (x) then either: g=bst, qOO (s) or qOO (t). If g=bst then
qUO (y)nO (z) by the assumptions of(d). If qUU(s) then qUU (z) since
O (s)n0O (2)=0. If gOO (t) thenqOO (y) sincel () nO (y)=0. In any of these cases
qUO (y)nU (z) so we havel (y)nO (z)=0, i.e.~R(y,z).
This completes the proof of possibilifg), hence case@) and (i) and thus the

induction step.

Now for the main proof.
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A function,g, onCp in L, g:Cp - -,
xOX, O g(x)=0
x=y 0 9(x)=g(y)
x<y O g(x)=g(y)-
will generate a unique complexity measuee, - [+, onL, thus:
C(X) = 9(a0) + 9(a) + g(@) + ... +g(a.),

for some decomposition:x = aS /a,%/a,...%/a, into complexes:
a,,a,,8,,...,a,1Cp, as above and hence an ordermygpn L:
X<y = C(X)<C(y).

Proof:

We have to check two things:
That C is well-defined, that is given two decompositionstbe sum ofy over these

is the same, that is:
(1) x = a,/a,...5a, = bf/b,.. . Kn/b,,
O g(ay) + g(a) + ... + g(a,) = g(b,) + g(b,) + ... + g(b,).

And that the complexity of the result of an irrelevant substitution is the sum of the

complexity of the formula that is substituted in and the formula it is substituted into:
(2) kOX,nO (x), =R(x,y)
0 C(x4,) = C(x) + C(y)
I do this by induction on the maximum size of formulas.
Base (size 1)
Ix|=1 O xOX, 0 C(x) =0 =g(x)
and so C is well defined, showifit).
kOX,n O (X)
O k=x
O x4,=y
0 C(x,) = C(y) = C(y) + 0= C(y) + g(x) = C(y) + C(x)
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showing(2).
Induction Step
Assume(1) and(2) hold for all formulas with size less than thaof

Suppose thatx can be decomposed by two different non-trivial irrelevant

substitutions. So that:
Oy,zO0O (X)-{x}, [c,kOX,-0 (X), =~ R(X,Y), " R(x4,,2)

If we could show thatC(x/.) + C(y) = C(x#,) + C(z), then by the induction
hypothesisC would be a well defined measure xnh, y, x4/, andz and thus we would

have showr{1) for all formulas up to and including sipq.

Now if kOO (x)n X, = R(X,y), X andy have decompositions into complexes:
X = a,%/a,...%/a,, Oi<n = R(a,"/a, /a,...%/a, a..)
y=bKy/b,.. Kb, Djsm =R(b /b,... /b, b..)
0 C(x,)
= C(a,%/a,...%/a,(k/(bK/b,.. Knlb,)))
= C(a,%a,...S/(aK/(bK/b,...nb,)))...Cva,) as for ond<n, kOa,
= C(a,%/a,...%laki(bf/b,.. Kn/b,).. .C/a,) ask only occurs i,
= C(a,%/a,...%akKbk/b,.. Kb, ... %/a,)ask,,...k, do not occur im,,...a,
=g(a) t ... +g(@) + g(by) + ... + g(b,) + g(a..) +... + g(a,)
sinceC is well-defined ora,,...a,,b,,...b, by induction hypothesis
=g(a,) + ... +g(@,) + g(b,) + ... + g(b,) by rearranging
= C(x) + C(y)

So all we have left to prove igy,zOO (X)-{x}, [,kOX,-O(X), =R(X,y),
- R(x4,z)

O C(x/,) + C(y) = C(x#/,) + C(z) for formula of sizdx|.

Using the Lemma immediately above, either:

(i) ~R(x.y)
(i) yOO (z) orzOO (y).
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Case (i)
“R(X/,y) O ~R(X4I.y) as—R(k,)y)
O C(xz) = C(xal) + C(y) by induction hypothesis g§%/,|<|x|

similarly C(x/,) = C(x!/#,) + C(z)

Now x andy occur separately i soxz/y/, = xi/2,, and thus
C(xvl) - C(z) = C(x/2l,) = C(xell) = C(xel,) - C(y)

Case (i)
y0d (z) or zOO (y).

W.l.0.g. sayyl[I (2).

~R(X,z) O =R/ 2O, (221.)) asyOO (z), yoO (x,)
c(xl) = C(x/ @91 x(z1.) asxv/l, = xv1. D0 (z1)
= C(x/ D) + C(21) as—R(x/. &9}, (z11))
= C(x,) + C(2'1) asx/ &0} = xf,

s R(xv/.,y), /1,00 (x/.) O =R(z'/.,y)

C(z) = C(zl 1) = C(zvl,) + C(y) as-R(z.,y)

Cl) =C(xd) + C(z) - C(y) substituting ouC(zv/.)
Which rearranged show&(x//,) + C(y) = C(x#/,) + C(z)

9.5 Three Conditions that are Equivalent on a Weak Complexity
Measure

This is the proof from section 5.3.5 on page 104. But first | show that condition (i)

implies the subformula property.

() O the Subformula Property
If R(x,y) O C(bxy) > max{C(x),C(y)} then

yOP(x) O C(y) < C(x)
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Proof:

The casg/=x is trivial SO assumg#x.
By induction on depth of:
Base:

xOX, O yOX, O C(y)=0=C(x)

Induction Step:

x is of the form
(1) uz
or (2) bzw
Case (a)x=uz
yOP(z)asy#x
0 C(y)
<C(2) by induction hypothesis
=C(uz) = C(x)
Case (b)x=bzw
0 yOO (z) or yOO (w), say w.l.o.gyQdd (z)
if =R(z.w)C(x) = C(bzw)

= C(2) + C(w) by Irrel Join
> C(y) + C(w) by induction hypothesis
2 C(y)

if R(z,w) C(x) = C(bzw)
> max{C(y), C(w)} by Rel Join
= C(y).
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The following three conditions are equivalent on a weak complexity measure, for
bOX,, X,y[OIL:

0] R(x,y) O C(bxy) > max{C(x),C(y)} (Rel Join)
(i) yOO (x)-{x}, cOX,-(x), R(x/,y) O C(y) < C(x) (Rel Subform)
(i)  yOd (x)-{x}-X,, xOCp O C(y) < C(X) (Subform of Complex)

Note that | have written them here in terms of the ordering on the reals rather
than the orderings on L, for convenience. The equivalence is assured due to the
homomorphic mapping between them.

Proof: (i) (ii)

By induction on the maximum depthxf
Assumingy (x)-{x}, cO0 X,-(x), R(x//.,y)
Base:

xOX,, vacuously true alsl (x)-{x}=0

Induction step:

either(a) x is form (z) for someul1X,, z[OL

or (b) x is of form pwz) for someb1X,, w,z[JL
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Case (a)x=uz
cOXo-0 (x) O cOXe-0 (y)
- R(uc,y)d ~R(uy’/,y)

0 = R(xy/C,y)

O yzuy otherwiseR(uyv/,,y)
0 y#zz
ydO (z) asylO (uz)=0 (x)

R(x/.,y) O R(uz.y)
O R(2,y)
0 C(y)
< C(2) by the induction hypothesis
= C(uz)
= C(x).
Case (b)x=bwz
If R(w,z)
xzy O yOO (w) or yOOO (z), say w.l.o.gyd (w)

C(x) =C(bwz)

> max{C(w),C(2)} from (i).
2 max{C(y),C(2)} asylP(w) O C(y) < C(w)
= C(y)
If =R(w,z)
yZw andy#z
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as, if not, say (w.l.o.gy=w then:
R(xv/.,y) O R(bwzV,y) by assumption Case (b)
O R(byzi.y) by assumptiory=w
0 R(bc(z1.).y)

0 R(z,y) as-R(y,c) by choice ofc
0 R(z.y)
0 R(z,w) asy=w

which is contrary to assumption.
O yOO (2)-{z} or ydOO (w)-{w}
R(x/,y) O R(2/,y) or R(wvl.y), as—R(w,z)
say w.l.o.gR(zV/.,y) [0 =R(wW/.y) as-R(w,z)]
If yOI (z), ¥z then
Cly) <C(2 by induction hypothesis
< C(x) asz00O (x)
If yOO (w)-{w}
thenR(wv/,,y)
or else if=R(w/.,y):
R(x/,y)O R((bwz)/.y)
O R(bw/)(2/.),y)

0 R(z'.y) as- R(wv/.,y)
0 R(zyy)
0 R(z,w) asyld (w)

which is contrary to th€ase (b)Jassumption
O C(y)< C(w) by the induction hypothesis

< C(x) asw0[ (x)
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Proof: (i) 0 (i)

R(x,y) O R(bxc,y) for suitably choser[1X,
O R((bxy)'l..y)

Now yO[ (bxy)-{bxy} so C(y)<C(bxy) by (ii)

Likewise C(x)<C(bxy)

O C(bxy) > max{C(y),C(x)}.

Proof: (iii) => (ii)

yOO (x)-{x}, cOX,-0O0 (x), R(x"/..,y)
By induction on the length of the decompositiorxof
Base:
xOCp O C(y)<C(x) by (iii)

Induction Step:

xOCp 0O there is a0 (X)-{x}-X,, zZOCp; = R(x4,,z) KIX,-0 (X)
0 y#z asR(xV/,,y)
0 C(x) =C(xd,) + C(2) by Irrel Subs

*) O C(x/)<C(x) andC(z)<C(x)
yO0d (x), = R(x#,,z) means either
(i) you (x)
or (i) yOO (2)
Case (i):
if y=x/, then x/,00 (x) but—R(k,x) askOX,-0 (x)

SoOy#X,.
R(xv/.,y) O R(xl.,y) as-R(x4,,z) andy (x4/,)
O C(y)< C(x,) by induction hypothesis
< C(x) from (*)
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Case (ii):
zOCp
0 Cy)<C(2) by (iii)
< C(x) from (*).

Proof: (ii) O (iii)

yOd (x)-{x}, xOCp

XX, asd (x)-{x}z0
yOX,

O R, Y) by DefnCp
O C(y) <C(x) by (ii).
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