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9 Appendix 2 - Longer Proofs

9.1 (Non-existence of) Complexity Measures on Strings

Definitions

Let L be the set of non-empty strings with symbols from , i.e.

.

If x and y are the same pattern, but using different symbols, I will write , e.g.

.

Let  be a function to the non-negative reals (this is the intended

complexity function.

I will write the concatenation ofx andy asxy.

Let  be the set of non-empty substrings ofx (including itself), e.g.

.

I will show the substitution ofy for  throughout x as , e.g.

.

Two patterns are irrelevant to each other, , if they have no symbols in

common, i.e. , e.g.I(aaba,cc) but notI(babcb,ddad).

When x and y are irrelevant to each other I will denote their concatenation: .

Let  be shorthand for the stringx concatenated with itselfn-1 times, e.g.

.

In all of the below ; ; and

 (whereN is the set of natural numbers).

S a b c …, , ,{ }=

L a aa ab b …, , , ,{ }=

x y≈

aab bbc≈

C:L ℜ+→

℘ x( )

℘ aba( ) a b ab ba aba, , , ,{ }=

c S∈ x c y⁄( )

aba a cd⁄( ) cdbcd=

I x y,( )

I x y,( ) ℘ x( ) ℘ y( )∩ ∅=≡

x y⋅

x
n

ab( ) 3
ababab=

w x y z, , , L∈ a b r s t, , , , S∈

α i n m s1 s2 … t1 t2 …, , , , , , N∈, , ,
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Theorem

If S has at least three distinct symbols then there is no non-trivial measure from

<L, ⋅, ≤> into <ℜ+, +, ≤>, that is, if thereis a functionC:L→ℜ+, defined onL to the

non-negative real numbers such that,∀x,y∈L:

(Irrelevant Join)

(Subform)

such that:

(Subpattern Property)

(Irrelevant Substitution)

Then for all x, .

There needs to be at least 3 symbols for the technical reason that sometimes

you sometimes temporarily need a third symbol to apply “Irrelevant Substitution”. For all

of the below I use a constant, , defined as . The triviality of the measure will

come from a proof that .

Proof:

Lemma 1

Proof of Lemma:

Choose , , now

.

Lemma 2

If x has no repetitions of any symbols in it, then .

Proof of Lemma:

Let , where  are pairwise distinct.

Now using repeated instances of Irrelevant Join and Lemma 1 we have:

.

C x y⋅( ) C x( ) C y( )+=

x y≤ C x( ) C y( )≤⇔

x ℘ y( )∈ x y≤⇒

I x y,( ) s ℘ x( )∈, C x s y⁄( )( ) C x( ) C y( )+=⇒

C x( ) 0=

k 0≥ C ss( )

k 0=

C s( ) 0=

t S∈ s t≠

C t( ) C t t s⁄( )( ) C t( ) C s( )+= =

C x( ) 0=

x s1s2…sn= si S∈

C s1s2…sn( ) C s1( ) C s2…sn( )+ … C s1( ) … C sn( )+ + 0= = = =
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Lemma 3:

If , then . (TheSubstitution of Symbols)

Proof of Lemma:

Let  be the symbols that occur inx and  be the

corresponding symbols iny.

Now using Lemma 1 and repeated applications of Irrelevant Substitution we have:

.

Lemma 4:

.

Proof of Lemma:

By induction onm.

Base step: .

Inductive step:

.

Lemma 5:

Proof of Lemma:

This is a special case of Lemma 4, with n=2.

Lemma 6:

.

Proof of Lemma:

now given , choose  such that .

So  is a substring of  which is a substring of .

By thesubpattern property, we have

,

therefore by Lemmas 4 and 5: ,

x y≈ C x( ) C y( )=

s1 s2 … sn, , , t1 t2 … tn, , ,

C x( ) C x( ) C t1( ) … C tn( )+ + + C x s1 t1⁄( ) … sn tn⁄( )( ) C y( )= = =

C s
n

m

 
 

mC s
n

 
 

=

C s
n

1

 
 

C s
n

 
 

1.C s
n

 
 

= =

C s
n

m 1+

 
 

C s
ṅn

m

 
 

C t
n

m

t s
n⁄ 

 
 
 

C t
n

m

 
 

C s
n

 
 

+ C s
n

m

 
 

C s
n

 
 

+= = = =

mC s
n

 
 

C s
n

 
 

+ 
 

= m 1+( ) C s
n

 
 

=

C s
2

m( )
 
 

mk=

C s
n

 
 

klog2n=

m 1≥ α m( ) 0> 2
α

n
m

2
α 1+≤ ≤

a
2

α

a
n

m

a
2

α 1+

C a
2

α

 
 

C a
n

m

 
 

C a
2

α 1+

 
 

≤ ≤

kα mC a
n

 
 

k α 1+( )≤ ≤
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so  since .

But by the choice of

so , as .

Given thatm can be arbitrarily large,  must be arbitrarily close to .

Lemma 7:

.

Proof of Lemma:

Using Lemma 6, we have:

.

Lemma 8:

If x is a rotation ofy then

(wherex is a rotation ofy if ).

Proof of Lemma:

let w andz be strings such that .

For ,  is a sub-pattern of  which is a sub-pattern of ,

so by the sub-pattern property

⇒

(using lemma 7)

⇒

Sincen can be arbitrarily large, .

k
α
m
---- C a

n
 
 

k
α 1+

m
-------------≤ ≤ m 0>

α

α mlog2n α 1+≤ ≤

k
α
m
---- klog2n k

α 1+
m

-------------≤ ≤ m 0>

C a
n

 
 

klog2n

C x
n

 
 

klog2n C x( )+=

C x
n

 
 

C s
n

s x⁄( ) 
 

C s
n

 
 

C x( )+ klog2n C x( )+= = =

C x( ) C y( )=

w z L wz x=( ) zw y=( )∧( )∈,∃

x wz= y, zw=

n 1> wz( ) n 1–
zw( ) n

wz( ) n 1+

C wz( ) n 1–
 
 

C zw( ) n
 
 

C wz( ) n 1+
 
 

≤ ≤

klog2 n 1–( ) C wz( )+ klog2n C zw( )+ klog2 n 1+( ) C wz( )+≤ ≤

klog2
n 1–

n
------------ 

  C wz( )+ C zw( ) klog2
n 1+

n
------------ 

  C wz( )+≤ ≤

C wz( ) C zw( )=
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Now to show that .

= Lemma 6

= Lemma 1

= Irrelevant Join

= Irrelevant Substitution

= Substitution expanded

≥ Sub-pattern

= Lemma 8

= Definition ofk

= Irrelevant Substitution

= Substitution expanded

≥ Sub-pattern

= Lemma 8

≥ Sub-pattern

= Lemma 8

≥ Sub-pattern

= Lemma 8

= Irrelevant Join

= . By the definition of k and Lemma 7

Finally I will show that , which will prove the theorem.

Let x be a string containing the followingn pairwise distinct symbols: .

Construct a new string  fromx, using n applications of the

following:  is constructed from  (using the convention that  isx) by

replacing all instances of  in  that were also in  using these four steps:

(1) rotatex until the first symbol is the chosen instance of ;

(2) append the string  to the front of the rotated string;

k 0=

k klog23+

k C c
3

 
 

+

k C c
3

 
 

C a( ) C b( )+ + +

k C c
3

 
 

C ab( )+ +

k C c
3

c ab( )⁄( ) 
 

+

k C ababab( )+

k C ababa( )+

k C abaab( )+

C c
2

 
 

C abaab( )+

C c
2

c abaab( )⁄( ) 
 

C abaababaab( )

C abaababaa( )

C baaabaaba( )

C baaabaab( )

C aabbaaab( )

C aabbaaa( )

C aaaaabb( )

C a
5

 
 

C b
2

 
 

+

klog25 k+

x L C x( );∈∀ 0=

s1 … sn, ,

x̂ fn fn 1– …f1 x( )…( )( )=

fi x( ) fi 1– x( ) f0 x( )

si fi 1– x( ) x

si

s1…si 1–
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(3) rotate the new string until the chosen instance of  is at the end;

(4) append the string  at the end.

Fact 1:

 since a rotation does not change a string’s complexity by

Lemma 7 and appending symbols at the beginning or end of a string can only increase its

complexity due to the subpattern assumption.

Fact 2:

By construction , since by construction every symbol inx is

replaced by the string .

By repeated applications of fact 1, we have .

So , since

and  contains no symbol repetitions (Lemma 2).

..................

9.2 Cyclomatic Number as a Lower Bound for Minimal Damage Cut

The cyclomatic number can be calculated as the number of arcs minus the number of

nodes plus the number of disjoint partitions the graph is in. Each cut of the formula that

incurs “damage” removes at least one arc and the formula is not fully “analysed” into

components until you are left with a collection of trees and the cyclomatic number of a

collection of trees is zero.

9.3 Decomposition of Formulas into Complexes

The proof deferred from section 5.3.2 on page 95.

Any formula can be decomposed into complexes. i.e.

For anyx∈L there area0,…,an∈Cp andc1,…,cn∈X0 such that

x = a0
c1/a1…cn/an

and for i≤n, ¬R(a0
c1/a1…ci/ai,ci) so that

C(x) = C(a0) + … + C(cn).

Note that this is not necessarily a unique decomposition.

Proof:

si

si 1+ …sn

C fi x( )( ) C fi 1– x( )( )≥

x̂ s1…sn( ) x
=

s1…sn

C x̂( ) C x( )≥

C x( ) C x̂( ) C s1…sn( ) x
 
 ≤ ≤ klog2 x C s1…sn( )+ 0= = k 0=

s1…sn
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By induction on length ofx:

Base Step

x is of length1 ⇒ x∈X0⇒ x∈Cp

and thus is its own decomposition.

Induction Step

x∈Cp ⇒ trivial decomposition of itself.

x∉Cp ⇒ ∃y∈P(x)−{x}−X0; ¬R(xy/c,y) Defn Cp

Now by the induction hypothesisxy/c andy have decompositions:

xy/c = a0
c1/a1…cn/an

y = b0
k1/b1…km/bm

These two decompositions are irrelevant to each other, so

x = (xy/c)c/y

= a0
c1/a1…cn/an

c/b0
k1/b1…km/bm as¬R(a0

c1/a1…cn/an,b0
k1/b1…km/bm)

Now ∀i<n ¬R(a0
c1/a1…ci/ai,ai+1), ¬R(a0

c1/a1…cn/an,b0)

and for∀j<m ¬R(a0
c1/a1…cn/an

c/b0
k1/b1…kj/bj,bj+1), since¬R(xy/c,y).

Now, of course,

C(x) = C(a0) + … + C(an) +

C(b0) + … + C(bm).

..................

9.4 Generating a Measure from a Function on the Complexes

The proof from section 5.3.2 on page 95. First a lemma I will use in the proof:

Lemma

y,z∈℘(x), c,k∈X0−℘(x), ¬R(xy/c,y), ¬R(xz/k,z)

⇒ ¬R(y,z) or y∈℘(z) or z∈℘(y)

Proof:

By induction on the depth of formulas.
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Base (depth 0):

depth(x)=0 ⇒ x∈X0 ⇒ ℘(x)={x}

y,z∈℘(x) ⇒ y=x=z ⇒ y∈℘(z)

Induction step:

Assume lemma is true for all formulas of depth less thanx (depth(x)>0).

One of:

(i) x = uw

(ii) x = bst

For somew,s,t∈L, u∈X1, b∈X2, depth(w), depth(s), depth(t) < depth(x)

Case (i):x = uw

y,z∈℘(uw) = {uw} ∪ ℘(w)

There are essentially three possibilities: either(a) bothy andz equaluw, (b) only

one of them or(c) neither. Take each case in turn:

(a) y=uw=z ⇒ y∈℘(z)

(b) (w.l.o.g.) y=uw, z∈℘(w) ⇒ z∈℘(uw)=℘(y)

(c) y,z∈℘(w)

by the inductive hypothesis since¬R(xy/c,y), ¬R(xz/k,z) ⇒ ¬R(wy/c,y), ¬R(wz/k,z)

one of¬R(y,z), y∈℘(z) or z∈℘(y) holds.

Case (ii):x = bst

y,z∈℘(bst) = {bst} ∪ ℘(s) ∪ ℘(t)

Here there are essentially four possibilities (modulus the obvious symmetries ofs

andt): either(a) bothy andz equalbst, (b) one is equal tobst and the other is a member
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of ℘(s), (c) both are members of℘(s) or (d) one is a member of℘(s) and the other a

member of℘(t). Taking each possibility in turn:

(a) y=bst=z ⇒ y∈℘(z)

(b) (w.l.o.g.) y=bst, z∈℘(s) ⇒ z∈℘(bst)=℘(y)

(c) (w.l.o.g.) y,z∈℘(s)

¬R(xy/c,y), ¬R(xz/k,z) ⇒ ¬R(sy/c,y), ¬R(sz/k,z)

and so by the inductive hypothesis one of¬R(y,z), y∈℘(z) or z∈℘(y) holds.

(d) (w.l.o.g.) y∈℘(s)-℘(t), z∈℘(t)-℘(s)

¬R(xy/c,y)

⇒ ¬R((bst)y/c,y) asx=bst

⇒ ¬R(b(sy/c)t,y) y∉℘(t)

⇒ ℘(b(sy/c)t)∩℘(y)=∅ Defn R

⇒ [{b(sy/c)t}∪℘(sy/c)∪℘(t)]∩℘(y)=∅

⇒ ℘(t)∩℘(y)=∅

Similarly

¬R(xz/k,y) ⇒ ℘(s)∩℘(z)=∅

Now if q∈℘(x) then either: q=bst, q∈℘(s) or q∈℘(t). If q=bst then

q∉℘(y)∩℘(z) by the assumptions of (d). If q∈℘(s) then q∉℘(z) since

℘(s)∩℘(z)=∅. If q∈℘(t) then q∉℘(y) since℘(t)∩℘(y)=∅. In any of these cases

q∉℘(y)∩℘(z) so we have℘(y)∩℘(z)=∅, i.e.¬R(y,z).

This completes the proof of possibility(d), hence cases(i) and (ii)  and thus the

induction step.

..................

Now for the main proof.
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A function,g, onCp in L, g:Cp→ℜ+,

x∈X0 ⇒ g(x)=0

x≈y ⇒ g(x)=g(y)

x≤y ⇒ g(x)≤g(y).

will generate a unique complexity measure,C:L→ℜ+, onL, thus:

C(x) ≡dff g(a0) + g(a1) + g(a2) + … + g(an),

for some decomposition:x = a0
c1/a1

c2/a2…cn/an, into complexes:

a0,a1,a2,…,an∈Cp, as above and hence an ordering,≤, onL:

x≤y ⇔ C(x)≤C(y).

Proof:

We have to check two things:

That C is well-defined, that is given two decompositions ofx the sum ofg over these

is the same, that is:

(1) x = a0
c1/a1…cn/an = b0

k1/b1…km/bm

⇒ g(a0) + g(a1) + … + g(an) = g(b0) + g(b1) + … + g(bn).

And that the complexity of the result of an irrelevant substitution is the sum of the

complexity of the formula that is substituted in and the formula it is substituted into:

(2) k∈X0∩℘(x), ¬R(x,y)

⇒ C(xk/y) = C(x) + C(y)

I do this by induction on the maximum size of formulas.

Base (size 1)

|x|=1 ⇒ x∈X0 ⇒ C(x) = 0 = g(x)

and so C is well defined, showing(1).

k∈X0∩℘(x)

⇒ k=x

⇒ xk/y = y

⇒ C(xk/y) = C(y) = C(y) + 0 = C(y) + g(x) = C(y) + C(x)
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showing(2).

Induction Step

Assume(1) and(2) hold for all formulas with size less than that ofx.

Suppose thatx can be decomposed by two different non-trivial irrelevant

substitutions. So that:

∃y,z∈℘(x)-{x}, ∃c,k∈X0-℘(x), ¬R(xy/c,y), ¬R(xz/k,z)

If we could show thatC(xy/c) + C(y) = C(xz/k) + C(z), then by the induction

hypothesisC would be a well defined measure onxy/c, y, xz/k andz and thus we would

have shown (1) for all formulas up to and including size |x|.

Now if k∈℘(x)∩X0, ¬R(x,y), x andy have decompositions into complexes:

x = a0
c1/a1…cn/an, ∀i≤n ¬R(a0

c1/a1
c2/a2…ci/ai, ai+1)

y= b0
k1/b1…km/bm, ∀j≤m ¬R(b0

k1/b1…kj/bj, bj+1)

⇒ C(xk/y)

= C(a0
c1/a1…cn/an(k/(b0

k1/b1…km/bm)))

= C(a0
c1/a1…ci/(ai(k/(b0

k1/b1…km/bm)))…cn/an) as for one i≤n, k∈ai

= C(a0
c1/a1…ci/ai

k/(b0
k1/b1…km/bm)…cn/an) as k only occurs in ai

= C(a0
c1/a1…ci/ai

k/b0
k1/b1…km/bm…cn/an)ask1,…km do not occur ina0,…ai

= g(a0) + … + g(ai) + g(b0) + … + g(bm) + g(ai+1) +… + g(an)

since C is well-defined on a0,…an,b0,…bm by induction hypothesis

= g(a0) + … + g(an) + g(b0) + … + g(bm) by rearranging

= C(x) + C(y)

So all we have left to prove is∃y,z∈℘(x)-{x}, ∃c,k∈X0-℘(x), ¬R(xy/c,y),

¬R(xz/k,z)

⇒ C(xy/c) + C(y) = C(xz/k) + C(z) for formula of size |x|.

Using the Lemma immediately above, either:

(i) ¬R(x,y)

(ii) y∈℘(z) or z∈℘(y).
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Case (i)

¬R(xy/c,y) ⇒ ¬R(xz/k
y/c,y) as¬R(k,y)

⇒ C(xz/k) = C(xz/k
y/c) + C(y) by induction hypothesis as |xz/k|<|x|

similarly C(xy/c) = C(xy/c
z/k) + C(z)

Now x andy occur separately inx soxz/k
y/c = xy/c

z/k, and thus:

C(xy/c) - C(z) = C(xy/c
z/k) = C(xz/k

y/c) = C(xz/k) - C(y)

Case (ii)

y∈℘(z) or z∈℘(y).

W.l.o.g. say,y∈℘(z).

¬R(xz/k,z) ⇒ ¬R(xy/c
(zy/c)/k,(zy/c)) as y∈℘(z), y∉℘(xz/k)

C(xy/c) = C(xy/c
(zy/c)/k

k/(zy/c)) as xy/c = xy/c
(zy/c)/k

k/(zy/c)

= C(xy/c
(zy/c)/k) + C(zy/c) as¬R(xy/c

(zy/c)/k,(zy/c))

= C(xz/k) + C(zy/c) as xy/c
(zy/c)/k = xz/k

¬R(xy/c,y), zy/c∈℘(xy/c) ⇒ ¬R(zy/c,y)

C(z) = C(zy/c
c/y) = C(zy/c) + C(y) as¬R(zy/c,y)

C(xy/c) = C(xz/k) + C(z) - C(y) substituting out C(zy/c)

Which rearranged shows:C(xy/c) + C(y) = C(xz/k) + C(z)

..................

9.5 Three Conditions that are Equivalent on a Weak Complexity

Measure

This is the proof from section 5.3.5 on page 104. But first I show that condition (i)

implies the subformula property.

(i) ⇒ the Subformula Property

If R(x,y) ⇒ C(bxy) > max{C(x),C(y)} then

y∈P(x) ⇒ C(y) ≤ C(x)
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Proof:

The casey=x is trivial so assumey≠x.

By induction on depth ofx:

Base:

x∈X0 ⇒ y∈X0 ⇒ C(y)=0=C(x)

Induction Step:

x is of the form

(1) uz

or (2) bzw

Case (a):x=uz

y∈P(z)as y≠x

⇒ C(y)

≤ C(z) by induction hypothesis

= C(uz) = C(x)

Case (b): x=bzw

⇒ y∈℘(z) or y∈℘(w), say w.l.o.g. y∈℘(z)

if ¬R(z,w)C(x) = C(bzw)

= C(z) + C(w) by Irrel Join

≥ C(y) + C(w) by induction hypothesis

≥ C(y)

if R(z,w) C(x) = C(bzw)

> max{C(y), C(w)} by Rel Join

≥ C(y).

..............
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The following three conditions are equivalent on a weak complexity measure, for

b∈X2, x,y∈L:

(i) R(x,y) ⇒ C(bxy) > max{C(x),C(y)} (Rel Join)

(ii) y∈℘(x)-{x}, c∈X0-(x), R(xy/c,y) ⇒ C(y) < C(x) (Rel Subform)

(iii) y∈℘(x)-{x}-X0, x∈Cp ⇒ C(y) < C(x) (Subform of Complex)

Note that I have written them here in terms of the ordering on the reals rather

than the ordering≤ on L, for convenience. The equivalence is assured due to the

homomorphic mapping between them.

Proof: (i)⇒ (ii)

By induction on the maximum depth ofx.

Assuming y∈℘(x)-{x}, c∈℘X0-(x), R(xy/c,y)

Base:

x∈X0, vacuously true as℘(x)-{x}=∅

Induction step:

either(a) x is form (uz) for someu∈X1, z∈L

or (b) x is of form (bwz) for someb∈X2, w,z∈L
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Case (a):x=uz

c∈X0-℘(x) ⇒ c∈X0-℘(y)

¬R(uc,y)⇒ ¬R(uyy/c,y)

⇒ ¬R(xy/c,y)

⇒ y≠uy otherwise R(uyy/c,y)

⇒ y≠z

y∈℘(z) as y∈℘(uz)=℘(x)

R(xy/c,y) ⇒ R(uzy/c,y)

⇒ R(zy/c,y)

⇒ C(y)

< C(z) by the induction hypothesis

= C(uz)

= C(x).

Case (b):x=bwz

If R(w,z)

x≠y ⇒ y∈℘(w) or y∈℘(z), say w.l.o.g. y∈℘(w)

C(x) = C(bwz)

> max{C(w),C(z)} from (i).

≥ max{C(y),C(z)} as y∈P(w) ⇒ C(y) ≤ C(w)

≥ C(y)

If ¬R(w,z)

y≠w and y≠z
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as, if not, say (w.l.o.g.)y=w then:

R(xy/c,y) ⇒ R(bwzy/c,y) by assumption Case (b)

⇒ R(byzy/c,y) by assumption y=w

⇒ R(bc(zy/c),y)

⇒ R(zy/c,y) as¬R(y,c) by choice ofc

⇒ R(z,y)

⇒ R(z,w) as y=w

which is contrary to assumption.

⇒ y∈℘(z)-{z} or y∈℘(w)-{w}

R(xy/c,y) ⇒ R(zy/c,y) or R(wy/c,y), as¬R(w,z)

say w.l.o.g. R(zy/c,y) [⇒ ¬R(wy/c,y) as¬R(w,z)]

If  y∈ (z), y≠z then

C(y) < C(z) by induction hypothesis

≤ C(x) as z∈℘(x)

If y∈℘(w)-{w}

then R(wy/c,y)

or else if¬R(wy/c,y):

R(xy/c,y)⇒ R((bwz)y/c,y)

⇒ R(b(wy/c)(zy/c),y)

⇒ R(zy/c,y) as¬R(wy/c,y)

⇒ R(z,y)

⇒ R(z,w) as y∈℘(w)

which is contrary to theCase (b) assumption

⇒ C(y)< C(w) by the induction hypothesis

≤ C(x) as w∈℘(x)

..................
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Proof: (ii) ⇒ (i)

R(x,y) ⇒ R(bxc,y) for suitably chosen c∈X0

⇒ R((bxy)y/c,y)

Now y∈℘(bxy)-{bxy} so C(y)<C(bxy) by (ii)

Likewise C(x)<C(bxy)

⇒ C(bxy) > max{C(y),C(x)}.

..................

Proof: (iii) => (ii)

y∈℘(x)-{x}, c∈X0-℘(x), R(xy/c,y)

By induction on the length of the decomposition ofx.

Base:

x∈Cp ⇒ C(y)<C(x) by (iii)

Induction Step:

x∉Cp ⇒ there is a z∈℘(x)-{x}-X0, z∈Cp; ¬R(xz/k,z) k∈X0-℘(x)

⇒ y≠z as R(xy/c,y)

⇒ C(x) = C(xz/k) + C(z) by Irrel Subs

(*) ⇒ C(xz/k)≤C(x) andC(z)≤C(x)

y∈℘(x), ¬R(xz/k,z) means either

(i) y∈℘(xz/k)

or (ii)  y∈℘(z)

Case (i):

if y=xz/k then xz/k∈℘(x) but ¬R(k,x) ask∈X0-℘(x)

soy≠xz/k.

R(xy/c,y) ⇒ R(xz/k
y/c,y) as¬R(xz/k,z) and y∈℘(xz/k)

⇒ C(y)< C(xz/k) by induction hypothesis

≤ C(x) from (*)
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Case (ii):

z∈Cp

⇒ C(y)< C(z) by (iii)

≤ C(x) from (*).

..................

Proof: (ii) ⇒ (iii)

y∈℘(x)-{x}, x∈Cp

x∉X0 as℘(x)-{x}≠∅

y∉X0

⇒ R(xy/c, y) by DefnCp

⇒ C(y) < C(x) by (ii).

..................


