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8 Appendix 1 - A Brief Overview of Some Existing

Formulations of Complexity

This is an overview of some of the articles which directly invoke the idea of

complexity in their analysis, either by defining it or by specifying its properties. There is

no comprehensive overview of this subject across disciplinary borders, but there are some

relevant collections: [8, 14, 92, 159, 192, 346, 351, 422, 439, 475] and many more articles

which include surveys within the bounds of individual subject areas:

[14, 36, 57, 60, 70, 75, 79, 87, 94, 104, 106, 115, 217, 286, 295, 304, 355, 395, 397, 407,

414, 457, 477, 478, 498].

8.1 Abstract Computational Complexity

Blum [67] proposed an abstract definition of computational complexity. If pi(n) are

the functions representing the computation of the programs Pi, then ci(n) are a set of

complexity measures iff ci(n) is defined exactly when pi(n) is defined and the predicate

ci(n)=m is decidable. This definition neatly includes the time and space measures as well

as many other sensible resource measures (such as the number of jumps executed) and is

strong enough to prove many of the important theories concerning them.

However this definition is too broad as it allows measures which don't obey the

subprogram property (if P is a program that first applies a subprogram Q to an input and

then a subprogram R to the result, then the complexity of P should be at least as great as

that of Q or R). Thus according to this approach you get programs with more complex

subprograms.

Fixes for the abstract definition of computational complexity are suggested by

Turney in [444, 445, 446], and Ausiello suggests a weakened version in [31]. [66] argues

that computational complexity should be extended over other fields like the real numbers.

8.2 Algorithmic Information Complexity

The Algorithmic Information Complexity (AIC) of a string of symbols is the length

of the shortest program to produce it as an output. The program is usually taken as running

on a Turing Machine. It was invented by Solomonoff [419], Kolmogorov [266] and

Chaitin [99, 100, 101] separately, although perhaps anticipated by Vitushkin (section 8.45

on page 161). It has been one of the the most influential complexity measures (along with
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that of computational complexity) and has inspired many variations and enhancements

including ‘sophistication’ (section 8.42 on page 159), and ‘logical depth’ (section 8.4 on

page 138). Although Solomonoff considered it as a candidate for selection amongst

equally supported scientific theories (i.e. a measure of simplicity – section 8.37 on page

156), Kolmogorov and Chaitin considered it as a measure of information (see section 8.15

on page 144 and section 8.24 on page 149).

It has many interesting formal properties [99], including:

1. The more ordered the string, the shorter the program, and hence less complex.

2. Incompressible strings (those whose programs are not shorter than themselves) are

indistinguishable from random strings.

3. Most long strings are incompressible.

4. In a range of formal systems you can't prove (within that system) that there are

strings above a certain fixed level of complexity (derived basically from the AIC of

its axioms).

5. In general it is uncomputable.

Property 2 illustrates the deep connection between AIC and disorder. This is

particularly evident in physics where a very close connection between Algorithmic

complexity and entropy has been shown [449], to the extent that it is often referred to as

an entropy.

Property 4 indicates that the AIC complexity is more of an information measure.

While one might believe that it is not possible to produce more information within a

formal system than is encoded by the axioms, it would be extremely counter-intuitive if

there was a limit to how complex one could prove strings in it to be.

AIC has been applied in many ways: to define randomness in a non-probabilistic

way [309, 499]; to capture descriptive complexity [293] (see also section 8.8 on page

141); Rissanen uses a statistical version to motivate a principled trade-off between the size

of model and its error in [377, 378, 379]; to biological complexity [203, 223, 345]; to

cognitive models [397]; economic models [452] and data compression [499].

Lempel-Ziv encoding can be seen as a computable approximation to it [279, 495].
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Given that it is better characterised as an information measure rather than

complexity, it has very close connections with entropy, as explored

in [169, 420, 496, 497]. It is generalised in [80].

Good summaries of the many formal results and applications can be found in

[40, 41, 70, 118, 286]. Other formal results include [80, 284, 456, 451, 494]. A summary

of philosophical applications can be found in [285], with others in [102, 301, 469].

For more discussion on this see section 4.3.4 on page 84 and section 3.4.1 on page

57.

8.3 Arithmetic Complexity

This is the minimum number of arithmetic operations needed to complete a task.

This is important in order to make computational algorithms more efficient, for example

Strassen [424] improved upon Gauss's method for solving linear equations from

operations to .

This is more of a practical definition and not intended as a general model of

complexity. The operations of arithmetic are very particular. It also does not take into

account the precision of the operations or of rounding errors. A summary of the theory of

the arithmetic hierarchy can be found in [178].

8.4 Bennett's ‘Logical Depth’

Bennett [54, 55, 56] defines ‘logical depth’ as the running-time to generate the

object in question by a near-incompressible program. Strictly the depth of a string x at

level s is: , where p ranges over

programs,T(p) is the time taken by programp, p* is the smallest such program andU is a

universal Turing computer.

He states that this is intended as a measure of the value of information. For example,

tide-tables can have a greater value than the equations which were used to calculate them

as a lot of useful computation has been done. Thus he says [57]:

“Logically deep objects… contain internal evidence of having been the

result of a long computation or slow-to-simulate dynamically process and

could not plausibly have originated otherwise.”.

O n3( )

c n2.71×

Ds x( ) min T p( ) p p∗– s U p( ) x=∧<{ }=
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The plausibility of its origin comes from the assumption that the most likely

program to produce an output would be the shortest one. This idea comes from

Solomonoff.

He justifies this as a physically plausible measure of complexity by its obedience to

the “slow growth law” of complexity. This informal law states that complexity can only

arise slowly through stochastic processes, as presumably has occurred in evolution. By its

construction one cannot produce a deep object from a shallow one by a deterministic

process and only improbably by a stochastic one.

Thus random strings and very simple ones both have a low logical depth. A random

string is incompressible and hence the minimal program that produces it, is a simple

copying program, which is quick. A simple pattern can be produced by a simple program,

and so will also be fairly quick.

Koppel [268] shows that Logical Depth is the same as Sophistication (section 8.42

on page 159) for infinite strings.

8.5 Cognitive Complexity

In cognitive psychology, several types of complexity are distinguished. The most

discussed of these is Cognitive Complexity. This was defined by Kelly as a part of his

theory of personality [250]. He developed his ‘role construct repertory’ test to test it. Since

then it has been used as a basis for discussion on the complexity of personal constructions

of the real world (and particularly of other people) in psychology. It asks the subjects to

rate a number of people known to them (e.g. closest friend of same sex) on a number of

attributes (like Outgoing vs. Shy). The dimension of the inferred mental model of these

people is then estimated as their cognitive complexity.

So, for example, people who assign to all their friends positive attributes and to their

enemies negative attributes would have a one-dimensional mental model of their

acquaintances, as everybody is aligned along this good/friend - bad/enemy scale. Such

people are said to be “cognitively simple”. A person who indicated that some of both their

friends and enemies were good and bad would have at least a two-dimensional model with

people placed across a good-bad, friend-enemy pair of axes. This person would have a

higher score and would be called “more cognitively complex”. Thus the level of cognitive

complexity indicates the number of potential relationships between the various attributes.
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Quite a number of variations of this has been suggested to capture this idea [404].

Unfortunately these seem to measure slightly different things as they do not correlate in

practice [204], although they do have some robustness over time [342]. There does not

seem to be any strong connection between cognitive complexity and IQ [95],

innovation [187], intellectual sophistication [416], loquacity [81] or educational

level [366]. It does seem to have some relation to the ability to use complex

language [48, 409]. The application of hierarchically structured algorithmic information is

discussed in [397]. A synthesis of several measures of cognitive complexity is suggested

in [413] in the internal representation used by subjects.

Other related measures include: [59, 382, 426].

8.6 Connectivity

The greater the extent of inter-connections between components of a system, the

more difficult it is to decompose the system without changing its behaviour. Thus the

connectance of a system (especially when analysed as a graph [367]) becomes a good

indication of the potential for complex behaviour, in particular the likelihood that the

system will achieve an equilibrium. The connectivity of a system has been variously

measured, including the number of relations (section 8.30 on page 153) and the

cyclomatic number (section 8.7 on page 140).

Applications include: the reliability of circuits [470]; the stability of random linear

systems of equations [25]; stability in computational communities [259]; stability in

ecosystems [86, 227, 353]; the diversity of ecosystems [308]; the structure of

memory [273]; logical and computational properties of bounded graphs [319];

competition in networks [373]; random digraphs [405]; chemical reaction

mechanisms [491]; and general emergent behaviour in biological systems [197].

8.7 Cyclomatic Number

The most basic graph measure (apart from the number of vertices) is the cyclomatic

number of the graph. This is basically the number of independent loops in a graph. It is

easily calculated by the formulaν(G) = m - n + p, where m is the number of arcs, n the

number of vertices and p the number of disjoint partitions the graph divides into.
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This intuitively captures the inter-connectedness of a graph or system; a

hierarchically structured machine is completely predictable (a tree has no loops), whilst

one with many feedback loops can exhibit more complex behaviour. An army is organised

on hierarchical lines, presumably to simplify the chain of command to make it more

predictable and hence more controllable. On the other hand, a creative committee meets to

allow the maximum number of communication channels to enable the unpredictable to

occur.

In general there is no direct relation between the size (number of nodes) and the

(cyclomatic) complexity. If a system is represented by a graph with the presence of some

relation indicated by an arc, then the number of nodes will limit the cyclomatic

complexity. This effect is only significant with very few nodes as the number of possible

arcs goes up exponentially with the number of nodes. For the theory of this area see [436]

McCabe [313] uses this as a measure of program complexity, in particular to

calculate the number of different logical paths through a program to gauge how many tests

it might need. Other applications include: complexity of simulation models [403]; and the

difficulty of software maintenance [49, 125, 232].

For discussion on this see section 5.4 on page 106.

8.8 Descriptive/Interpretative Complexity

Löfgren [293] writing from a biological and psychological context, distinguishes

between descriptive and interpretative complexities. In a system with a description (like

DNA) and its realisation (the proteins in the cell), he associates his two measures of

complexity with the two processes of interpretation and description. That is the

complexity of encoding the realisation into a descriptive code and decoding it back into a

realisation of that code.

Löfgren chooses Kolmogorov complexity (section 8.2 on page 136) for the process

of description and an ordering based on logical strength (section 8.20 on page 146) for the

interpretative complexity.

8.9 Dimension of Attractor

Chaotic processes are difficult to model. A small change in state now causes a large

change later which makes it impossible to predict the exact state beyond a certain time
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limit. This does not mean that all aspects of the process are impossible to model. It is

possible to estimate the processes' attractor in state space; this is often fractal with chaotic

processes. The dimension of the attractor is a measure of how complex the process is.

Depending on the method of convergence for the calculation of a dimension for the

attractor you get a slightly different measure. These, in fact, form a sequence of

dimensions. For an accessible introduction see Baker [39].

8.10 Ease of Decomposition

The ease with which a system can be decomposed into sub-systems has close

connections with the “analytic complexity” of section 5.2 on page 87. The general area is

covered by [18, 110, 144, 338, 421]. Some techniques for systematic decomposition are:

the use of a matrix algorithm to plan the use of multiplexers for circuits [278]; a graphical

approach in [242]; decomposing difference equations [30, 306]; a hierarchical

holographic algorithm [72]; the design of decision support facilities [225]; a systems

approach [157]; and a technique based on whether data relations commute [131].

The converse of and complement to decomposability is reconstructability

analysis [94].

8.11 Economic Complexity

“Complexity” in economics, frequently means merely that some of the usual

simplifying assumptions do not hold. An example of these assumptions is that an agent

acts as if it can infer the action to perfectly optimise its utility. This goes back to Simon’s

distinction between procedural and substantive rationality [415]. See the paper in

Appendix 7 - Complexity and Economics, for a full discussion of the concept of

complexity in economics. Some papers that cover this are [10, 14, 20, 172, 173, 200].

In game-theory, there has been some more direct formulation of actual complexity

measures, including: a critique of the “number of states” measure [43] (section 8.32 on

page 153); the information of strategies [290]; a survey of the area [229].

Another area deals with choice processes, including: the group-theoretic complexity

of decision rules [163]; a survey of choice processes and complexity [192], the

computability of choice functions [251]; hierarchies [484]; and the cardinality of

collections of decisions [52].
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8.12 Entropy

In physics, entropy measure the level of disorder in a thermodynamic system. The

more disordered it is, the more information is needed to describe it precisely. In particular

systems with very low entropy are simple to describe (they don't move around a lot). Thus

complexity and entropy can be associated, although this was not intended by its

originators [408]. Entropy based measures are essentially probabilistic. The

Boltzman-Gibbs-Shannon entropy is most frequently used in physics, but Algorithmic

Complexity can also be used if the complexity of the whole ensemble is low [497].

The principle of maximum entropy [282] has been used to help formalise

complexity [114, 156, 171].

Entropy based measures have often been used as measures of complexity including:

the regularity in noisy time series [354]; the topology of chemical reactions [492];

coalitions of economic agents [452]; physical computation [496]; the difficulty of system

diagnosis [183]; artificial life [371]; and the complexity of graphs [332].

8.13 Goodman's Complexity

Goodman [186] has devised an elaborate categorisation of extra-logical predicates,

based on expressiveness. For example, a general predicate is deemed more complex than a

symmetric one, as it includes the later as a specific example. Likewise a three place

predicate is more complex than a two place one. Goodman builds upon this starting point.

The idea is that when faced with two theories that have equal supporting experimental

evidence one should choose the simpler one using this measure.

The complexity of a complex statement is merely the sum of the complexities of its

component predicates, regardless of the structure of the statement. It is similar in spirit to

Kemeny’s measure (section 8.18 on page 146). A recent defence and reformulation of this

idea has been made by Richmond in [376].

8.14 Horn Complexity

The Horn complexity of a propositional function is the minimum length of a Horn

formula (in its working variables) that defines that function. This was defined by Aanderaa

and Börger [1] as a measure of the logical complexity of Boolean functions. It is
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polynomially related to the network complexity [2], described below (section 8.26 on

page 151).

8.15 Information

The amount of information a system encodes or the amount of information needed

to describe a system has a loose connection with its complexity. As noted above, there is a

close connection between the amount of information and disorder. Using the Algorithmic

Complexity (section 8.2 on page 136) measure of information, disordered patterns hold

the most information, patterns encoding the maximum amount of information are

indistinguishable from random patterns.

Information can be measured deterministically using algorithmic information

complexity (section 8.2 on page 136) or probabilistically using entropy (section 8.12 on

page 143). Either of these can be used to define mutual information (section 8.25 on page

151). See also section immediately below (section 8.16 on page 145).

Klir exhibits an axiomatic framework for complexity similar to those I list in section

5.2 on page 87, combined with the requirement that complexity should be proportional to

the information required to resolve any uncertainty [262, 263, 264, 265]. This may be

seen as a formulation of Waxman’s “problem complexity” [463].

A number of approaches which seek to combine elements of both algorithmic and

shannon information include: [170, 378, 452, 496].

Computational complexity has been extended to cover information flow by adding a

cost function to the information used by a computation [440, 441, 442].

Applications include: charting the increase in information in the evolution of finite

automata [26, 27]; the fluctuation of information in 1-D automata [47]; its connection with

logical depth in evolution [53]; its connections to computational complexity [138]; the

connection between various measures of information via random vectors [144]; the

regularity of short noisy chaotic series [160]; error-prone sections of programs by

potential information flow [214, 277]; systems problem solving [262]; the classification of

strategies in repeated games [290]; the estimation of the information of a pattern [340];

and a principle of the minimum increase in evolution [399]
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8.16 Information Gain in Hierarchically Approximation and Scaling

Attention in physics has focused on the complexity of chaotic physical processes

with a fractal nature, where one gets different behaviours at different levels of granularity.

In 1986 Grassberger introduced “Effective Measure Complexity” [193], which measured

the asymptotic increase in information with increased scale. He develops this in

[194, 195].

Badii, Politi and others [33, 34, 35, 36, 130] use trees of increasingly detailed

Markov models to approximate a growing pattern. Each branch off a node is a possible

extension of the pattern that may follow. He then defines the complexity of the pattern as

the (Shannon) information gain in each level over the size of the tree at the level, taking

the limit at infinitely many levels. Any Markov process has zero complexity. This is to

reflect the difficulty in predicting complex systems. The class of easily predicted systems

that Badii focuses on are those which exhibit different behaviours at different levels of

detail. He says

“A system is complex if it reveals different laws (interactions) at

different resolution (coarse grinning) levels.”.

[202] argues that these measures assume that the process is stationary, i.e. is

basically a Markov process and [457] classifies them according to whether they are based

on homogeneous or generated partitions and whether they are based on dynamic or

structural elements. Other papers in this area include: [3, 7, 28, 29, 350, 480, 490]. A good

review of this whole area is [36].

8.17 Irreducibility

Holists often use the word “complexity” for that which is irreducible [339] (at least

by current practice). This is, in a sense, an extreme case of the difficulty of decomposition

(section 8.10 on page 142). Such approaches include: [13] where the importance of size to

qualitative behaviour is pointed out; [468] which argues that the evolution of multiple and

overlapping functions will limit reduction in biology; [11] which discusses the application

to public policy in forestry; [247] which charts how chaos challenges the reductionist

approach; [257] which applies this to modelling organisations; as a result of

self-organisation [205]; the incompatibility of information and computation [243]; as a

result of the epistemic cut between syntax and semantics [347]; number of elements an
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instance of a pattern must consist of to exhibit all the characteristics of a class [210]; and

[323] which discusses Rosen’s approach [384, 389] and relates this to the “sciences of

complexity”. This approach to complexity seems particular to biology, for general surveys

of the connection of complexity with holism see [244, 348, 388, 481].

Some suggest that this may be due to using the wrong formal language for

modelling, including [74, 167, 246, 244, 330, 344, 410, 482, 488].

8.18 Kemeny's Complexity

In the field of “simplicity”, Kemeny [254] attributes an integral measure of

complexity to types of extra-logical predicates. He does it on the basis on the logarithm of

the number of non-isomorphic finite models a predicate type has. On the basis of this he

gives extra-logical predicates a complexity which could be used to decide between equally

supported theories. This is similar in style and direction to Goodman’s measure in section

8.13 on page 143.

8.19 Length of Proof

Simpler theorems, on the whole, need shorter proofs. On the other hand longer

proofs are tedious to follow. Thus it is natural to search for short proofs (e.g. as in [96]).

One can arbitrarily lengthen almost any proof. This alone makes length alone as a

measure of complexity unsatisfactory. Some short “elegant” proofs are very complicated

and some careful long explanatory proofs easy to follow. For this measure to make any

sense needless length needs to be eliminated (see minimum size measures in section 8.24

on page 149). Other papers touching on this include: [180, 209].

8.20 Logical Complexity/Arithmetic Hierarchy

Mathematical proof theorists classify mathematical objects and processes according

to the projective hierarchy (sometimes called the arithmetic hierarchy). If the definition of

an object is logically equivalent to a statement with alternating quantifiers:

where Q is a quantifier and R is a quantifier free logical proposition in the variables

x1,…,xn then the object is said to be a member of the class .

Likewise if the statement is of the form:

x1∀ x2∃ x3 x4…∃∀ QxnR x1 … xn, ,[ ]

Π 1

n
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then it is in the class .

If a statement is provably equivalent to both a  statement and a  statement it

is called a  statement. The top numeral refers to the type of function or object allowed

in the statement. The whole hierarchy looks like figure 28 (inclusions go upwards).

 Figure 28.The arithmetic complexity hierarchy

Basically, as one ascends the hierarchy the statements in the classes can have more

expressive power and they are more difficult to prove or model (in the mathematical

sense). Girard [178] surveys this area thoroughly. [107] shows that the arithmetic

complexity of the problem of deriving a word from a fixed starting point is arbitrarily

more complicated than the word problem itself.

8.21 Loop Complexity

The loop complexity of a primitive recursive function is the iteration depth of the

primitive recursive register operators in its definition. Thus x+1 would be level 0, x+y

level 1 (as it can be defined recursively from x+1), x×y level 2 etc. This can be used to

define a hierarchy of sets  of functions with loop complexity not greater than

n [322]. This is one of the large collection of measures used to predict the maintainability

of software, for a survey of these see [498].

x1∃ x2∀ x3 x4…∀∃ QxnR x1 … xn, ,[ ]

Σ 1

n

Σ 1

n
Π 1

n

∆ 1

n

LOOPn



Syntactic Measures of Complexity

- page 148 -

8.22 Low Probability

The connection of probability and complexity is intricate. The probability of a

highly ordered complex system arising by chance is low, hence sometimes complexity is

associated with low probability [136]. On the other hand if complexity is conflated with

informational measures such as entropy (section 8.12 on page 143) or algorithmic

information (section 8.2 on page 136) then complexity is associated with high probability.

This has led many to look for other measures such that complex systems will lie between

order and disorder including those in section 8.16 on page 145 and section 8.46 on page

161.

In the contrary direction the philosophy of “simplicity” (section 6.5 on page 129 and

section 8.37 on page 156) has lead to the identification of a higher a priori probability of

the truth of a theory with a lack of complexity. That this is mistaken see the arguments in

section 6.5 on page 129 and the paper in Appendix 6 - Complexity and Scientific

Modelling.

An application of low probability to the difficulty of system diagnosis is in [183].

8.23 Minimum Number of Sub Groups

The Krohn-Rhodes prime decomposition theory [17, 272] tells us that we can

decompose any semi-group in to a wreath product of alternating simple groups and

semi-groups of order 3. There are decompositions which are minimal in terms of the

number of such alternations, i.e. they have the least number of groups in their

decomposition. The number of such groups is called the complexity of the original group.

If you take the product of a group with another group then the result will be more

complex, which accords with our intuitions.

Gottinger [190] derives this measure from three “Axioms of Complexity”, which I

reproduce below, using the author’s system of notation (  is the complexity

function). He is writing in the context of considering the semi-group of the

transformations between states of a machine.

1.a)  implies

b)

2. For all machines

θ:Mf Z→

f g θ f( ) θ g( )≤

θ f1 … fn⊕ ⊕( ) max θ fi( ) i 1 … n, ,={ }=

f1 f2, Mf∈

θ f1 f2⊗( ) θ f1( ) θ f2( )+≤
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If there is a feedback operation » from  to , then

3. , .

Here: is the semi-group for a flip flop operations and  is a simple delay.

Axiom 1a) is the familiar subsystem property, saying that subgroups (strictly

homomorphic images of groups) are no more complex that their parent group. Axiom 2

asserts that, if there is no “feedback” between two semi-groups, the complexity of their

parallel composition is not more than the sum of their complexities. If there is a feedback

operation then the complexity of their parallel composition is not more than the sum of

their complexities plus the sum of the complexity of the feedback operation. Axiom 3

states that certain very small semi-groups have zero complexity. These are believable in

terms of our intuitions about complexity (even if not all all of them are obvious).

Axiom 1b) is not so acceptable. It states that the complexity of a serial composition

of sub-groups is only as complex as its most complex component, however complex or

numerous the other sub-groups might be. All the other sub-groups in the serial

composition make no difference to the overall complexity and new ones could be added ad

nauseam! It is this axiom which makes this characterisation of complexity one of a

maximal nature.

The name “simple group” is very misleading. Simple groups are merely groups that

cannot be decomposed into smaller groups. The commutative (abelian) groups are well

understood and have a high degree of symmetry. On the other hand some non-abelian

groups are far from simple! Some are so big and complex that they have be renamed as the

“monster” groups. All these groups will have the lowest possible complexity by this

measure.

Given a set of groups, all of the same size, then the more a group decomposes into

small groups the more complex it is deemed to be. A group that hardly decomposes at all,

where we are left with little easy structural analysis, is deemed simple.

This has been applied to economic and social systems in [10, 189, 191, 163].

8.24 Minimum Size

As discussed in section 3.4.3 on page 58, minimum size overcomes some of the

inadequacies of mere size as a complexity measure. It avoids the possibility of needless

f1 f2

θ f1 f2⊗( ) θ f1( ) θ f2( ) θ f1 f2»( )+ +≤

θ U3
f( ) 0= θ D1( ) 0=

U3
f D1
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length and is nicely independent of the particular expression chosen. It would correspond

to using a perfectly efficient language, the occurrence of any redundancy in a specific

expression was eliminated by perfect compression.

However the minimum size of a particular representation can still be a largely

accidental feature of the description process. Different ideas are sometimes more

succinctly expressed in different languages (national and formal). For example, to express

a conjunction in a negation-implication fragment of classical propositional logic is

necessarily longer than that for implication itself. This would not mean that implication

was simpler that conjunction.

Minimum size also ignores any question of inter-relatedness or relevance. Compare

the cases of 1001 inter-related facts about logic and 1001 unrelated general knowledge

facts (presuming this to be possible). It is probably possible to compress the 1001

inter-related facts more than the unrelated ones because the very fact of their relatedness

indicates a degree of redundancy. The minimum size approach to complexity would thus

attribute a lower complexity to the 1001 related facts but few would say these were less

complex. What is true is that the system of unrelated facts holds more information but is

far complex (as a system).

In a way that is similar to what occurred for length measures, some of these seem to

have had the label “complexity” applied post-hoc, so it is difficult to judge how seriously

they were meant as a complexity measure.

The most frequent special case of a minimum size measure is Algorithmic

Information which corresponds to a minimal sized Turing Machine (see section 8.2 on

page 136), but other minimum size approaches are also used with other formal languages,

in particular finite automata (see section 8.32 on page 153), this approach is criticised

in [43] for the analysis of equilibria in repeated games.

Crutchfield generalises the minimal size criterion over the whole formal language

hierarchy, so that complexity is the minimal size in the “lowest” formal language for

which this is finite [121]. He contrasts this complexity measure with a version of effective

measure complexity (section 8.16 on page 145) which he calls “statistical

complexity” [123]. The method for finding such an expression is given in [119] and

applied to the process of modelling chaotic process in [120, 121].
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Minimum size measures have also been applied to capture the static complexity of

cellular automata in [472]; and to a minimal complexity in evolution [296].

8.25 Mutual Information

 If you have defined an entropy like measure (e.g. Shannon Entropy or Algorithmic

Complexity), H(A) and from that a joint entropy H(A;B) which is the entropy of A and B

joined, then you can define. This can be interpreted as, i.e. the extent of the shortening

when considered together rather than separately.

 A high mutual information between remote parts of a system can indicate a closely

connected or self-similar system. The connectiveness in such a system can be the cause of

its complexity. Bennett [55] points out that this arises for rather different reason in

equilibrium and non-equilibrium systems. In equilibrium situations the mutual

information comes from the intervening medium (like in a gas), in non-equilibrium

systems it must come from some other connection. He points out that simple operations

like duplicating and mixing up random bits of DNA generate large amount of remote

non-equilibrium mutual information.

[287] shows that past-future mutual entropy is not related to entropy in a

straight-forward manner. [7] formulates “physical complexity” as the mutual information

(defined relative to a Landuer-Turing Machine) between a systems and its universe.

Mutual information has been applied to capture some of the dynamic complexity of

cellular automata in [289].

8.26 Network Complexity

Network or circuit complexity is the minimum number of logical gates needed to

implement a logical function [400]. This is very difficult to compute in most cases but

some upper and lower limits can be proved. This measure depends on the choice of logic

gates that you can use to build the circuits from.

This measure has an immediate importance for electronic engineers who seek to

minimise the expense of logic gates as in [278]. This is polynomially related to Horn

Complexity (section 8.14 on page 143). For surveys of results in this field see

[40, 142, 400].
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8.27 Number of Axioms

Meredith and Lukasiewics both put considerable effort into finding small axiom sets

for classical propositional logic. For example Lukasiewics [300] proved that

was the shortest possible single axiom for the pure implicational propositional

calculus. However it is far from obvious that this is helpful. The axiom has no

immediately comprehensible meaning and it makes for an incredibly tortuous proof

theory. For more on this see section 5.6.1 on page 113.

8.28 Number of Dimensions

In any model of a process, the number of dimensions it takes is of critical

importance. A necessarily high dimensional model has the potential for great complexity.

Conversely if there is a simple relationship between dimensions in a model you can often

reduce the models dimension by forming composite dimensions with out any loss of

descriptive power. Hence if a model is necessarily of high dimension then there is no very

simple relationship between any of its several dimensions, i.e. the model must be

reasonably complex.

This has been applied to concept learning [298]; the performance of connecting

networks [307] and in cognitive complexity (section 8.5 on page 139). Fractal dimension

is used to measure plant development in [113].

8.29 Number of Inequivalent Descriptions

If a system can be modelled in many different and irreconcilable ways, then we will

always have to settle for an incomplete model of that system. In such circumstances the

system may well exhibit behaviour that would only be predicted by another model. Thus

such systems are, in a fundamental way, irreducible. Thus the presence of multiple

inequivalent models are considered by some as the key characteristic of “complexity”.

These people are usually holists, namely [323, 389]. See also section 4.3.1 on page 83.

This approach can be extended in restricted circumstances to measuring complexity

by the number of inequivalent descriptions [88, 89].

p q→( ) r→[ ] r p→( ) s p→( )→[ ]→
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8.30 Number of Internal Relations

If one is focusing on the topology of a model, then one improvement on the simple

size of the network as an indication of its complexity is the number of relations indicated

between the nodes.

Rouse and Rouse [392] in their study of the time taken to complete tasks found a

strong correlation between the time taken to perform fault diagnosis tasks with complex

relations and the number of internal relations in that circuit (represented by a wiring

connection). Van Emden [450] examines the mathematics of a variety of entropic

measures based on the information indicated by the internal relations at different levels.

8.31 Number of Spanning Trees

An interesting graphical measure is the number of spanning trees of a graph (see

also section 8.7 on page 140). A spanning tree is a subgraph with no loops which includes

all the vertices. The number of spanning trees grows very fast with the cyclomatic number

and size of the graph. A tree has only one spanning tree [252]. [58] applies this to a

classification of games. [226, 237] use such trees as the basis for a measure of complexity

to capture the variety in the structure of trees.

8.32 Number of States in a Finite Automata

Much formal work [231] has been done on the number of states of finite automata.

In these works this number is frequently taken as the complexity (e.g. [164]). Again it is

easy to elaborate a model by adding redundant states, a difficulty which is circumvented

by selecting a minimal or “acceptable” model (see section 8.24 on page 149 above).

Gaines [165] is pessimistic about a useful general theory of complexity, saying:

“The ordering of models in terms of complexity is arbitrary and depends

upon our individual points of view.”,

and again:

“When we specify an order relation upon the models we may find that

the behaviours of many important systems require complex models under our

ordering, whereas, with a different ordering on the same class of models, they

all become simple.”.
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He, nonetheless, introduces the useful concept of admissibility (borrowed from

statistics [465]) and applies it to the search for simple finite-state automata for various

string patterns. He uses a working definition of complexity which counts the number of

states of an automaton and then goes on to identify, with the help of the program ATOM,

admissible models of various sizes. Here models are said to be admissible if any other

model that gives a better approximation of the behaviour is more complex (in the sense of

number of states).

In [164] he shows that even a small amount of randomness can cause an indefinite

increase in an induced automata model. This work is extended in [396] to stochastic

automata.

Von Neuman speculated that there was a critical threshold which allowed

self-reproduction [454]. In [303] it is shown that Turing machines with very few states

can exhibit complex behaviour.

Complexity as the number of states in a finite automata has been widely applied: to

characterise the emerging complexity resulting from the actions of cellular

automata [289, 472, 473, 474, 476]; in economic game theory [229]; to characterising

social structure [9] and in characterising the computation done in chaotic systems [122].

8.33 Number of Symbols

The number of symbols is not a reliable guide to complexity. Merely to count the

number of symbols in philosophical works would give one little indication of their

complexity. Also compare the following logical statements:

(6)

and

(7) .

Under almost any length measure the first is more complex than the second, yet

intuitively a trivial instance of identity is less complex than the troublesome mingle

axiom.

You do need a certain number of symbols for expressive power.   Jaskowski [240]

proved that you need at least one axiom with eleven symbols or two with nine in an

axiomatisation of Classical Logic.

a b→( ) a b→( )→

p p p→( )→
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Size does create resource problems and hence needless size is undesirable. This is

especially true for us humans who have a distinct limit on our short term memory. So,

things that overload our short term memory can be difficult to understand. This is

completely different situation from that where we can readily hold the information in our

head but find it difficult to comprehend. We can deal with first difficulty given enough

paper and time, the second is not necessarily any easier when written down.

This measure is used most frequently in linguistics (e.g. [45, 153, 256, 305].

8.34 Number of Variables

The number of variables in a statement can have an immediate impact both on

proofs that use it and the complexity of its models. Both of these effects depend on the

structure of the statement. For example the axiom  has a catastrophically

simplifying effect on both proofs and models compared to that of .

As with the number of symbols (section 8.33 on page 154 above) the number of

variables can have a limiting effect on complexity but the number of variables is not a

sufficient condition for complexity. Diamond and McKinsey proved [139] that for a broad

range of logics you need at least one axiom with three variables in it.

8.35 Organised/Disorganised Complexity

Weaver [464] classified scientific problems into the simple, and the complex.Then

he further classified the complex problems into those of disorganised complexity and

organised complexity. Simple problems are those with a few variables like the path of a

billiard ball and a complex problem is one with many variables like a gas. Disorganised

complexity is typified by many independent variables, so that it is amenable to statistical

techniques. Examples of this are the properties of a gas or a nation's accident statistics.

Organised complexity occurs when“There is a sizeable number of factors which are

interrelated into an organic whole”Examples given by him include the immune system of

animals and economic fluctuations.

a b→

a a→
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8.36 Shannon Information

Although Shannon [408] did not envisage his measure of information being used to

quantify complexity, some of his successors have either used it as such or based

complexity measures upon it.

The Shannon measure of information is a statistical measure based on the

probability of receiving a message. If  are the probabilities of

receiving the messages  then the information carried by the message

is defined as . The more improbable the message, the more information it

gives the recipient.

See the section on information (section 8.15 on page 144) and entropy (section 8.12

on page 143).

8.37 Simplicity

When faced with two theories which are equally supported by the available

experimental evidence, it is natural to choose the simpler of the two. Further than this,

when a theory has been elaborated in order to explain the evidence, it is often fruitful to

search for a simpler theory. The study of the grounds for choosing between equally

supported theories has acquired the label “Simplicity”

(see [4, 78, 186, 253, 254, 339, 485]).

From the point of view of theories about the world, all purely logical propositions

are equally and ultimately certain and hence “simple”. Thus measures of simplicity do not

help us to distinguish between logical theories, they were not meant to. Many theories of

Simplicity have chosen grounds other than simplicity as the criterion for choosing

between equally supported theories, e.g. Popper's refutability [358] or Defrays [241]

identification of Simplicity with high probability. Some theories with connections with

complexity are Goodman's (section 8.13 on page 143), Kemeny's (section 8.18 on page

146) and Sobers (section 8.41 on page 158).

For a fuller discussion of this see section 6.5 on page 129 and Appendix 6 -

Complexity and Scientific Modelling.

p m1( ) p m2( ) …, ,

m1 m2 …, , n1 n2 …, ,

log2 p ni( )( )
i

∑–
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8.38 Size

There is clearly a sense in which people use “complexity” to indicate the number of

parts but seems rarely used just to indicate this. It would be odd for a person opening a

phone book or a large box of matches to exclaim “Oh, how complex!”. Contrast these

examples with those of a mathematical text book or an intricate (old fashioned) watch,

where this would be more appropriate. Size seems not to be a sufficient condition for

complexity.

On the other hand a certain minimum size does seem to be a necessary condition for

complexity. It is very hard to imagine anything complex made of only two parts. However,

this minimum size can be quite small: small non-abelian mathematical groups can be very

complex indeed as are many other formal systems with a sparse axiomatisation. The rate

of potential complexity seems to increase very fast with size. This does not, of course,

mean that all large systems are complex.

Size based measures of complexity seem to come about in two circumstances: as a

result of a post-hoc labelling of a formal device (as in simple induction proofs where the

length of a proof, the number of connectives or the depth of nesting is in need of a

convenient label) and to indicate a potential for complexity (as in the number of variables

in a formula).

Anderson points out that size can make a qualitative difference to the behaviour of

systems [13] as [454] also suggests, but [303] indicates that in the presence of powerful

inferential machinery that the critical size can be very small.

Applications include: the social organisation and community size [83]; the

minimum number of gates in a circuit [278]; the cyclical behaviour of systems [458];

self-replicating sequences [44]; rule-based systems [341]; neural networks and cellular

automata [188]; and grammatical development [256].

See also the discussion in section 3.4.1 on page 57 and the other size and numerosity

based approaches in this appendix.

8.39 Size of Grammar

A pattern, if viewed as the result of production rules in a language, has a

grammar [231]. In general the simpler the pattern, the simpler the grammar. So the size of

the grammar gives us a handle on the complexity of the pattern. The size and complexity
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of the grammar can vary depending on what sort of language you are assuming the pattern

to be a representative of. For instance Gaines [164] shows that the assumption that a

process can be modelled by a deterministic finite automaton leads to very large models

(proportional to the length of the evidence) in the presence of even a small amount of

indeterminism. This measure would identify all patterns of a particular language as

equally complex unless the pattern happens also to be a member of another language as

well. Sahal [396] demonstrates similar results, but with stochastic automata.

Frequently the size of grammar is taken relative to a Turing machine (section 8.2 on

page 136) or finite automata (section 8.32 on page 153). Other approaches include simple

depth (section 8.44 on page 160) or star height in regular languages [153].

Applications include: biological macromolecules [146]; chaotic systems in physics

(section 8.16 on page 145); and communication complexity [235].

8.40 Size of matrix

The size of a minimal characteristic matrix for a logic is an indication of the logic's

complexity [209]. Classical logic has the smallest possible matrices (2x2), and more

complex logics like R, do not have finite characteristic matrices at all. This measure is an

indication of the the complexity of logic's semantics but does not have a direct relationship

with the complexity of its proof theory (see section 5.6.2 on page 117).

This sort of approach has been applied to: the stability of computational

communities [259]; flow dominance in layout problems [215]; and hierarchical

decomposition of systems [72].

8.41 Sober's Minimum Extra Information

In the field of the “simplicity” of scientific theories, Sober [418] rejected the idea of

an absolute measure in favour of that of an ordering based on how much extra information

would be needed to select an answer to a particular question: this is implicitly as

relativised informativeness. Thus simplicity was to be relative to a question (represented

by a set of possible answers). The theory that needs the least minimum extra information

to select an answer to the question is deemed the simpler one. When one is judging

theories with respect to a number of questions one must decide a weighting of the relative

importance of the questions, to decide the overall simplicity.
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Sober applies this to mathematical and logical fields by examining how the

fundamental axioms are chosen. This is done by seeing how much information they

contribute to the question of whether the axiom is true in our world or not. According to

Sober

“This mirrors our belief that a contraction in the axiom set is a gain in

simplicity. Moreover, a proof that the axioms are mutually independent is a

proof that the axiom set is maximally simple; no axiom is redundant. And a

proof that the axiom set is complete simplifies our view of the area being

axiomatised, for it assures us that relative to the axiom set, every truth is

redundant.”

Next Sober considers some logical properties of (extra-logical) relations by

considering the informativeness of them relative to the general question of whether two

objects are related. Thus he arrives at similar conclusions to Goodman (e.g. a symmetrical

relation is simpler that an anti-symmetrical one etc.).

8.42 Sophistication

Koppel [268] defines “sophistication” as a measure of the structure of a string. He

says:

“The minimal description of a string consists of two parts. One part is a

description of the string's structure, and the other part specifies the string from

among the class of strings sharing that structure (Cover 1985). The

sophistication of a string is the size of that part of the description which

describes the strings structure. Thus, for example, the description of the

structure of a random string is empty and thus, though its complexity is high,

its sophistication is low.”

Formally for finite strings the c-sophistication of S, a string, is

, where (P,D) is a

description of S, if P is a total, self-delimiting program that computes S from the data, D

and where H(S) is the algorithmic complexity of S, the minimum possible |P|+|D| such that

(P,D) is a description of S.

Thus by allowing the data to be longer than the minimum, the program might be

shorter. The idea is that any random, incompressible part might come from the data, and

min P D P D,( ) is a description of S andP D+ H S( ) c+≤∃{ }
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the sophistication measures the minimal length of the program that computes the

structured aspect of the string.

Grassberger’s effective measure complexity [194] can be seen as an entropic (and

hence computable) version of sophistication. The relation to similar measures (e.g. the

algorithmic information of section 8.2 on page 136 and logical depth section 8.4 on page

138) are covered in [269].

8.43 Stochastic Complexity

Rissanen [379] finds the idea of “shortest code length” (like algorithmic complexity)

attractive but difficult to apply when modelling physical processes. He estimates the

minimum code length of data encoded with a probabilistic model, using Shannon's coding

theory.

This can be seen as a statistical and computable version of algorithmic information

(section 8.2 on page 136) as well as an attempt to establish a principled trade-off between

a model’s complexity and error rate (see Appendix 6 - Complexity and Scientific

Modelling).

Re-christened as the minimum description length (MDL) principle [378], it has been

successfully applied to machine learning [377, 493].

8.44 Syntactic Depth

The deeper phrases are embedded in a statement (according to some syntax), the

more difficult they are to understand. Identifying the ease of comprehension is one of the

primary purposes of measures of syntactic complexity in formal language theory. In 1960

Yngve [483] proposeddepth of postponed symbols as a measure of syntactic complexity,

this was criticised by Miller and Chomsky [326] on formal grounds. They preferred the

degree of self-embedding because it was “… precisely the property that distinguishes

context-free languages from the regular languages.” Other measures proposed in [383]

include depth and nesting.

The depth of a syntactic expression is the maximum number of arcs from root to leaf

when represented in a tree form. This has nothing to do with either “logical depth”

(section 8.4 on page 138) or “thermodynamic depth” (section 8.46 on page 161).
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From the point of view of a modeller, depth is a useful way to stratify a space of

expressions in a recursive language, as typically the number of possible expressions goes

up exponentially with the depth. Although as [349] points out this could be done in any

number of ways. Thus depth is relevant to the problem of induction whether by humans

(see section 6.5 on page 129 and Appendix 6 - Complexity and Scientific Modelling) or in

machine learning [111, 148, 333].

Syntactic depth as an indication of complexity has also been applied to menu

design [239]; the difficulty of resolution of ambiguity [174] and circuit design [355, 356].

8.45 Tabular Complexity

Tabular complexity is an adaptation of Kolmogorov'sε-entropy [267] by

Vitushkin [453]. It is a measure of the complexity of finite-state automata (see also section

8.32 on page 153). To calculate it one takes the tables representing the change of state and

the output of the semi-group of the states of the automata and then decomposes these

tables into smaller sub-tables, also allowing for the decomposition of the “wiring” (the

connections) between these sub-tables etc. The minimum total volume obtainable is the

tabular complexity, i.e. it is the volume of the most compact tabular representation.

Thus tabular complexity is similar to It is only applicable to processes modellable by

finite automata (a proper subset of those computable by a Turing Machine). The tabular

complexity can be very difficult to calculate but estimates can be produced by exhibiting

specific tables.

8.46 Thermodynamic Depth

Seth Lloyd [291, 292] defines thermodynamic depth as , where  is

the long-term probability of the trajectory  (being a sequence of discrete

states) arising by chance. This is intended as the total amount of (Shannon) information

(section 8.36 on page 156) required to specify that trajectory.

This is closely related to the breadth of a system, which is defined as

(8) ,

where  ranges over the possible trajectories of the system,p is a

function of the time-specific probabilities of each trajectory andq is the long-term

(equilibrium) probability of the trajectory arising from chance andK is a constant.

logq α( )– q α( )

α α1α2…αn=

K p α( ) q α( )
p α( )
--------------log

α
∑–

α α1α2…αn=
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This is the unique form of a measure,f, with the following properties:

1. f is a function ofp andq,

2. f is continuous inp andq,

3. f is additive along its trajectories in a similar way to Shannon entropy, i.e. if

 and  are trajectories then

(9)

4. i.e. discount information

obtained from equilibrium.

When a trajectory has probability of 1, then the depth is the same as the breadth.

This is further developed in [169] into a measure which combines algorithmic and

entropic information.

8.47 Time and Space Computational Complexity

Computational complexity is now a much studied area with many formal results. It

is usually cast as the order of the rate of growth of the resources needed to compute

something compared to the size of its input.

Such time and space complexity measures are the most studied computational

measures. Articles which include the word complexity often refer to these. They reflect

the degree of effort required to compute a problem, independent of particular instances of

that problem. They are fairly rough measure because they only give the degree of increase

to within a constant factor, e.g. the order of the polynomial with which they increase. This

is because of possible variations in the abstract computer that does the calculation.

Several variations of this have been proposed, including: extension to other fields

like the real numbers [66]; continuous complexity models [318]; information based

complexity (which adds a cost function to the information used) [440, 441, 442]; and

using uniform rather than logarithmic size [211].

Applications include: social choice theory [251]; grammatical

inference [155];learning [184]; simplification in logic [315]; feasibility of reasoning by a

limited agent [281]; communication [235]; induction [111]; simulation [335]; control

theory [486, 487]; perceptrons [500]; improving performance on 3-SAT problems [230];

and propagation in boolean circuits [425].

Summaries of the field can be found in [40, 41, 70].

α α1α2…αm= β βm 1+ βm 2+ …βn=

f p αβ( ) q αβ( ),{ }( ) f p α( ) q α( ),{ }( ) p α( ) f p β α( ) q β α( ),{ } 
 

α
∑+=

p α( ) q α( )= f p α( ) q α( ),{ }( ) 0=⇒
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8.48 Variety

A complex system is likely to exhibit a greater variety in terms of its behaviour and

properties. Thus variety is an indication of complexity (though not always as sometimes a

very complex system is necessary in order to maintain equilibrium). Variety can be

measured by the simple counting of types, the spread of numerical values or the simple

presence of sudden changes. In this way it overlaps with information (section 8.15 on page

144) and entropic (section 8.12 on page 143) measures.

Applications include: punctuated behaviour [38]; stability of ecosystems [353];

competing behaviours and control [357]; tree structures [237]; number of inequivalent

models [89]; the interaction of connectivity and complexity [218]; and evolution [316].


