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Abstract

This thesis analyses the conception and measurement of complexity and then

applies it to some aspects of formal languages.

It starts with a review of the philosophy of modelling. It continues by

considering some simple examples to establish intuitions about the common use of

‘complexity’ and goes on to examine what complexity can usefully be attributed to as a

property. It argues that it most useful as an attribute of the specification of a model. Some

unsatisfactory accounts of complexity are discussed as motivation for the definition of

complexity that is then suggested. Some other accounts of complexity are shown to be

special cases of the one suggested here.

This approach is then applied to formal languages. A set of properties of

analytic complexity are set-out. The set of measures which satisfy these properties is

formally investigated. The cyclomatic number of a representation of expressions is put

forward to model analytic complexity. In order to analyse shifts in complexity a formal

device called syntactic structures is defined. This consists of layers of syntaxes, each with

its own production rules which generate the contents of that layer. Each syntactic structure

can use substitutions from lower such structures, so that collections of such structures can

form hierarchies.

These approaches to are then applied to axiomatic and proof theoretic aspects

of logic. Some potential methods of simplification are suggested. Finally some remarks

are made about the philosophical applications of this approach.

The appendices include a survey of measures of complexity in the literature; a

brief description of a software tool written to explore syntactic structures, two relevant

papers on the application of these ideas to scientific modelling and economics, and an

extensive bibliography.
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1 Introduction

1.1 Background

The use of “complexity” as a label for an object of study is fairly recent. Before the

middle of this century it appeared to be merely an antonym of “simplicity” (where

“simplicity” here meansthat property that guides the rational choice between competing

theories that are equally supported by evidence- see section 6.5 on page 129). This sort of

“simplicity” follows in a philosophical tradition that is traced back to William of Occam’s

famous razor1. Although there has been some implicit interest with complexity amongst

logicians since the 1930s2 associated with limitingsize, the first direct discussion of

“complexity” that I have found is in Weaver’s paper in 1948: “Science and

Complexity” [464].

In the last 10 years there has been a tremendous amount of interest in “complex

systems” of various kinds3 and consequently there has been some interest in “complexity”

per se. Unfortunately4, this has caused an overloading of the term so that frequently it

seems only to tag a work as inhabiting an intellectually desirable area5. Thus “complexity”

appears in the titles of books and articles which, on inspection, are only tenuously related

to it. In many of these works it is sufficient for them that they are considering situations

where previous analytical techniques fail6 or merely that some process of elaboration is

involved.

If an author talks about acomplexity measure then usually more justification is made

for the term's use. Many of these measures, however, have a post-hoc flavour; a device is

invented or required that has something vaguely to do with complexity and, for the want

of a better term, is given that label. Some other, more serious attempts, seem skewed by a

prior formal requirement.

1. “Entities are not to be multiplied beyond necessity” – previously invoked by Durand de Saint-Pourcain.

2. See section 5.6.1 on page 113.

3. For an overview of this see [168].

4. Unfortunately for its analytic use that is, the transfer of such terms to the public domain has other social

uses [455].

5. This is the essence of Horgan’s critique in [233].

6. Many publications that can be grouped under the “Sciences of Complexity” banner fall into this category.
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Some serious attempts at tackling the subject have been made, notably in the mid

'70s in general systems theory and recently in the study of chaotic processes. The former

were more generally applicable but seemed to peter out due to a lack of consensus and the

limited number of practical results gained. The later is still in its infancy but is naturally

concerned with the specific problems of modelling chaotic physical processes.

References to complexity are now spread over a wide range of fields, including:

biology, mathematics, physics, computation, logic, economics, software design,

philosophy, general systems, management science, psychology and linguistics, although

the two fields of chaotic process and computational complexity account for many of them.

1.2 The Style of Approach

Firstly, I will focus my discussion on what complexityis rather than what might

cause it. It would seem vain to attempt an investigation of such causesin general; if there

were but a few general causes then we might well have made more direct progress in

tackling the problem of complexity where it arises. Having said that, making progress

towards pinning the concept of complexity down would be a first step towards a more

coherent and cumulative study into its causes in particular contexts7.

Secondly, within this framework I will be approaching the subject from a pragmatic

perspective. What I will be looking for are verbal and formal models of complexity that

are generally applicable and useful. A useful model is, trivially, one which helps you

achieve your goals. In this case it will imply models of complexity which are clear,

manipulable (both formally and informally), applicable in a wide range of circumstances

and reflect the motivations listed below. I will not go much further into the meaning of

utility, as this would go beyond the scope of this thesis. This pragmatic perspective must

be borne in mind when interpreting the discussion on the attribution of complexity in

section 3.3 on page 47 and its definition in section 4 on page 72.

Such a pragmatic modelling approach seems to fall somewhat between prescription

and description. A useful model may be considered prescriptive if you subscribe to the

same goals and framework as that of the model. Further than that I do not wish to

prescribe usage of “complexity”, except to point out some of the less helpful

consequences of its unthoughtful usage. It may be considered as descriptive because it can

7. For an example of such a call for the formal study of complexity see Casti in [89].
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be used as a point of reference to relate different examples in an illuminating way. It thus

may be used as a descriptiveframework.

Thirdly, I will apply these models. Although I will consider several examples and

consider the philosophical applications, the main target of this study is the application of

such models to formal syntactic systems, since this is where I see the numeric

quantification of complexity providing the most insight.

1.3 Motivation

The motivation for this study is as follows:

1. To lay bare assumptions and relativisations involved in the usage of the term.

As will become clear, the term is frequently used in a vague way, making many

assumptions concerning the aims, language and foundation of the subject matter being

discussed. These assumptions are sometimes not justified. An example where the

vagueness of the term can frustrate progress is in the study of evolution where the issues

of whether complexity increases with evolution and how this may happen are debated

with cross purposes (see section 6.6 on page 130). I have only found one instance where it

was suggested that the rigorous definition of complexity might be

counter-productive [260].

2. To allow a meaningful comparison between different formulations of complexity

across different fields of study.

At the moment, apart from systems theory, models of complexity tend to be

formulated with quite specific purposes in mind8. The result of this is that there are only

vague and unformalised connections between such models developed in different fields.

This must impede progress and mean that there is needless repetition. A common

explanatory framework would make clear the similarities and differences that exist

between such formulations across subject boundaries.

8. This is particularly clear in physics, in the development of models of complexity applicable to chaotic

processes, e.g. [457]
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3. To lay the foundations for formalisations of complexity, in different circumstances.

A formalisation is often more useful for the development of ideas if its components

have a clear meaning. These philosophical investigations can provide some of this

framework.

4. To aid the formulation of deeper insights into possible causes of complexity.

Once one starts to develop models within a coherent framework, it is often easier to

build upon previous results and relate informal discussions on the subject given a concrete

referential framework that such a model would provide.

5. To allow the development of systematic approaches to simplification.

Simplification is the pot of gold at the end of the complexity rainbow. Systematic

approaches to simplification (both human and automatic), would be of immense use in

academic study, almost irrespective of how marginally it was. Such techniques would be

applicable to both the object and method of study, as well as highlighting the cases where

simplification is not possible.

This thesis aims to make some progress towards these goals.

1.4 Style of Presentation

Given the above motivation, and that my approach to the problem of defining,

formalising and using the concept of complexity will be pragmatic in nature, I am

concerned that this thesis should not be only a survey of existing models of complexity9.

So I will relegate a survey of such papers to Appendix 1, which will summarise the main

approaches and give the relevant references. Thus, frequently, when discussing these

approaches, I will not swamp the main text with citations but refer to the appropriate

section of this appendix, where a more systematic account of each idea can be given and

the full references given. In this way I hope to improve the readability of the main text,

while retaining its scope.

I have also relegated a lot of the proof details, formalisation, and two papers

summarising some of philosophical applications of this approach to complexity to the

appendices. Thus in this thesis the appendices contain much of the content of this thesis,

9. If existing measures were more established and demonstrably useful my approach would be different.
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but I felt that this arrangement made the central thrust of the thesis more focused and

accessible.

1.5 Outline of the Thesis

Section 2 reviews some of the thought on models and modelling in the philosophy of

science and the machine learning communities. It then analyses some of the components

of the modelling apparatus on a model-theoretic basis, and establishes some terminology

that will be used in this thesis. Then it uses this analysis to categorize three ways that

different models are related. Finally it briefly state the philosophical position from which

the thesis is written.

Then section 3 on page 44 starts with some examples in order to focus on the

properties of complexity. It argues that complexity is only usefully attributable to model

descriptions relative to a language of expression. It also considers and argues against a

number of other basic approaches.

In section 4 on page 72, I present my approach, discuss it and the terms I mention. I

also give some examples and relate this approach to some other approaches.

In section 5 on page 86, I apply this approach to formal languages. Here I focus

upon what one might mean by “analytic complexity” and what properties one might

expect of it. I then present a way of structuring formal languages to enable the analysis of

complexity in such languages, which I then apply to axiom complexity and proof

complexity. I finish this section by considering some approaches to systematic

simplification.

In the last section (section 6 on page 126), I consider some philosophical

applications of my approach and conclude in section 7 on page 134.

There are several appendices: section 8 on page 136 is an overview of the main

approaches to the formulation of complexity in different fields, section 9 on page 164

holds the details of some of the longer proofs; section 10 on page 182 gives the detailed

formalisation for layered syntactic structures; section 11 on page 188 describes a

computer-base tool I wrote to help explore the properties of syntactic structures; section

12 on page 193 lists tables with rankings of the complexity of logical formulas according

to different measures; section 13 on page 199 is a paper on the philosophical application of

complexity to scientific modelling, section 14 on page 210 is an unravelling of various
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conceptions of complexity in economics and section 15 on page 223 comprises the

references.
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2 Models and Modelling

The term ‘model’ is used in many different situations and in many different ways.

This causes some difficulties when trying to discuss the uses of models – what Wartofsky

calls the “Model Muddle”:

“The symptom of the (model) muddle is the proliferation of strange and

unrelated entities which come to be called models.” [462] p.1

He goes on to identify the root cause of this proliferation, the fact that “anything can

be a model of anything” [462] p.4 provided only that:

“ … every case of being taken as a model involves a restriction with

respect to relevant properties.” [462] p.6.

Wartofsky does not mean that anything can be used as a model for anything for any

purpose (for example, a robin used as a model of urban development), but that one can not

rule outA being used as a model forB just by the nature ofA andB alone. There may be

some properties ofA and B which when selected as relevant (for some purpose) will

legitimiseA being taken as a model ofB. This is implicit in his statement that

“The limits on modelling are therefore the limits of our conceptions of

what respects are relevant to what purposes.” [462] p.6

Of course, these conceptual limitations might be quite strong! We might be limited

in our conceptions by our experience of the world and our reasoning about it, for example.

However, our conceptions of the world and hence which things are relevant to which

might be very strange – it is conceivable that for any objects or systems,A andB, someone

might be have a (possibly mistaken) conception of the relevance of their properties so that

that person might useA as a model ofB (despite the fact that the rest of us might see this

as pointless).

Thus modelling can be seen as triadic relation,  –S takesA as a model

for B, by finding or choosing relevant properties of both,  and  such that

. This is illustrated in figure 1. To avoid repetition I will refer to the object

or system being modelled as simply theobject, unless this is unclear.

M S A B, ,( )

R A( ) R B( )

R A( ) R B( )⊆
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 Figure 1.Entity, W, using A as a model of B

Apostel relativises this relation further, by making explicit the purpose (or

‘modelling goal’) of the person in using a model. Thus he writes the basic relation as

, meaning that “The subject S takes, in view of the purpose P, the entity A as

a model for the prototype B.” [16] p. 4.

These are, however, very general definitions which do not tell us much about the

nature of models as actually used by people; how to distinguish between useful and less

useful models, or how they should use them. To do this one has to narrow the context

down and subsume some of the necessary or accepted limitations on our conceptions of

relevance in the places where models are used in a deliberate manner. The area where this

has been most studied is in the practice and theory of science.

Models in the philosophy of science are usually distinguished from theories.

However, the distinction is not always clear cut and some authors slip from one to the

other. Three examples of philosophers who use the terms differently are: Apostel [16] who

allows a theory to be a model, Hesse [216] who argues that a theory is meaningless if it

does notinclude a model and van Frassen who says “To present a theory is to specify a

family of structures, its models…” [161] p. 64). On the whole the use of the term ‘model’

implies something relatively concrete, possibly visualisable, approximate, specific and

tractable whereas a ‘theory’ implies a more general, abstract and reliable construction. In

the social sciences it is more common to use the term ‘model’ for things that would be

called theories in the physical sciences (according to Braithwaite, 1962, who deplores the

practice).

Model
Object/
System

Entity

W

B
A

M S P A B, , ,( )
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The distinction between models and theories is clearest in those who take a

‘model-theoretic’ approach. Here a strong analogy is made with the Tarskian logical

semantics – the theory is likened to a logical theory describable in terms of a set of axioms

along with an inference procedure and a scientific model is likened to a logical model, that

is a formal structure which satisfies the theory. According to DaCosta and French in [129]

this approach was first introduced by Beth [61, 62, 63] and Suppes [430, 432]. Others

wish to deliberately conflate these entities in the search for a more basic structure, from

which the ‘headline’ entities might be built (e.g. Giere [176] and Wartofsky [462]). My

approach will tend towards the later, since I am not concerned here with the truth of such

entities but with the complexity that arises as a result of the process of modelling.

However, I will maintain a clean distinction between the syntactic and semantic parts of

the modelling apparatus.

2.1 Some Types of Models

I will briefly outline some of the types of models that have been identified in the

philosophy of science literature, before going on to discuss some of the relations between

them in the next subsection (Section 2.2).

Firstly, models may be categorised according to the medium in which they are

expressed. In this way we have physical models including scale models (the first type of

model of Achinstein in [6] and the second sense of model of Suppe in [427]) and Irving

Fisher’s model of the money supply using coloured liquids (as documented by Morgan

in [328]); mathematical models10 where the language of mathematics is the primary

medium for defining the content of the model; computational models where the model is

encoded as a computer program with the computation somehow modeling the object

process; and linguistic models where normal (or pseudo-formal) spoken or written

language is used to specify the model11.

Secondly models are distinguished according to whether the term model applies to

the sentences and formal theories that describe the model or to the referent of those

10.Unfortunately ‘mathematical model’ has two connotations: that of being expressed in terms of

mathematics and that of being formal in contrast to analogical models.

11.There are also, of course, logical models but, in order to prevent confusion I will only use this phrase to

denote the sort of models found in metalogic.
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sentences. The former have been called ‘syntactic models’ or (more precisely) the

syntactic approach to models (e.g. Ayer [32] and Duhem [143]). The later ‘semantic

models’ or the semantic approach to models is where the models are the entities described

by (or that satisfy) the description – these can be further divided into those which envisage

these semantics to be akin to the semantics in metalogic where a formal structure is a

model when it satisfies the model specification (e.g. Sneed [417], Suppe [427]12 and

Suppes [433]), and those which include a wider, linguistic semantics (e.g. Giere [175]).

In a different way analogical and mathematical models are distinguished. An

analogical (or iconic) model involves a (possibly incomplete) analogy between some

properties of the model and the object or system being modelled or between the

relationships between the properties of the model and the relationships between the

properties of what is modelled (as Sellars prefers to define it in [406]). These include the

iconic models of Hesse [216] and Suppe [427] as well as model2 of Cushing in [126]).

Morgan [328] further distinguishes between ‘ready made’ and ‘designed’ analogical

models. An important aspect of the iconic models is claimed to be that they allow the

theory to become predictive, thus Hesse says:

“(an iconic model is) any system whether buildable, picturable,

imaginable or none of these which has the characteristic of making a theory

predictive.” [216] p.19

A mathematical model implies a more formal structure, which may be an

approximation or simplification of the underlying theory (including Cushing’s

model1 [126], the ‘theoretical model’ of Achinstein in [5] and Suppe’s first sense of model

in [429]). Achinstein’s theoretical model is a type of mathematical model but implies a

slightly greater existential commitment, it is somehow an exemplar or expression of a

theory. Some authors allow whole series of model types differing in the ascribed

existential commitment (e.g. Wartofsky [462]). Kuhn allows models a similar range of

epistemic commitment:

“Models, … are what provide, the group with preferred analogies or,

when deeply held, with an ontology.” [274] p.463

12.Suppe confusingly calls these ‘mathematical models’.
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Cartwright [84] distinguishes between ‘explanatory models’ which have a broad

scope and are used to explain the cause(s) of events (but, she claims, are not descriptively

true) and the phenomenological laws which are accurate representations of the phenomena

but which do not provide satisfactory explanations. In this conception there is a hierarchy

of models from the dirty-but-true up to the general-but-inapplicable:

“To explain a phenomenon is to find a model that fits it into the basic

framework of the theory and that allows us to derive analogues for the messy

and complicated phenomenological laws which are true of it.” [84] p.152

In many of these conceptions (especially those of the semantic approach) a model

resides within the framework of a theory. Redhead [372] distinguishes two ways in which

this can occur: by simplifying the theory to become more tractable (impoverished) or by

filling in missing detail toenrich the theory.

There are what are called ‘Tinker Toy’ or ‘Floating’ Models (Post, 1975 as reported

by Redhead in [372] and Cushing’s model3 [126]). These are models which are neither

verified against known data nor related to a deeper theoretical framework – they just

‘float’ somewhere in between. Despite these having been denigrated in terms of their

uncertain status by Post, they have been recently defended by Redhead as a valuable tool

to aid the testing of theories [372].

Finally there are: Suppes’ ‘data model’ [431], Kemeny’s “intended factually true

description” [255] and the abstract models not intended to be true of an natural thing

(Achinstein’s third type of model in [6]). In addition to the above, models could also be

divided into the subject areas they originate from or are used in.

Even the above list is by no means comprehensive. Every time a philosopher

characterises or defines a model in a different way one could give it a new label and add it

to the confusion (Chao in [103] lists no fewer than 30 characterisations). What turns out

to be more important than definitions is the different functions and uses that such ‘models’

are put to and the ways in which they are deployed (both singly and in combination) by

practising scientists. As Apostel summarises it:

“(a model is)… any subject using a system A that is neither directly nor

indirectly interacting with a system B, to obtain information about the system

B, is using A as a model for B.”[16]



Syntactic Measures of Complexity

- page 28 -

2.2 Combinations of Models

The knowledge gained from applying analogical models is far from certain, unless

you can be sure they are being applied to a situation that is essentially identical to a

previous application. The logical empiricists at the beginning of the 20th century wished to

put science onto a surer footing: analogies were denigrated as mere heuristics and the

focus shifted towards the use of formal systems. As Braithwaite puts it:

“Analogy can provide no more suggestions of how the theory might be

extended; and the history of science tells us that while some analogical

suggestions have led to valuable extensions of the theory, others have led to

dead ends” [73] p.230

The ideal form of scientific knowledge was a formal system of axioms whose logical

consequences were to be related to the observed phenomena as directly as possible

(figure 2). Thus one had a fairly simple picture with the formal theory being manipulated

by syntactic manipulations in order to make predictions about phenomena. As a more

descriptive approach to the workings of science has been adopted by many philosophers,

there has been a progressive elaboration of this picture.

 Figure 2.An illustration of the syntactic view of models

Tarskian Logical Semantics provided such an step. Scientific models can be

identified with logical models and scientific theories with logical theories. The model,

according to this account, is a structure which satisfies the statements that define the

theory. This model is then related to the phenomena under study. Two corollaries of this

are that different descriptions may identify the same model and that a theory may have

several models. This picture of models as semantic entities is illustrated in figure 3 and

summarised in the following quote from van Frassen:

“ … the language used to express the theory is neither basic nor unique;

the same class of structures could well be described in radically different

phenomena
formal
theory
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ways, each with its own limitations. The models occupy centre stage.”[161]

p.44

 Figure 3.A semantic picture of modelling (from Giere in [176])

Cartwright’s distinction between explanatory and phenomenological laws [84] can

be seen as adding a further layer to this picture. The phenomenological laws relate more

directly to the phenomena – they have the function of organising the phenomena but do

not provide suitable material to construct explanations. Explanatory laws, on the other

hand, provide explanations but are not descriptive of the phenomena – they are not

literally true. This account is interpreted in terms of layers of models by Hughes in [236]

and illustrated below in figure 4. In this way the explanatory laws acts as models of the

phenomenological laws. Cartwright says:

“To explain a phenomenon is to find a model that fits it into the basic

framework of the theory and that allows us to derive analogues for the messy

and complicated phenomenological laws which are true of it.” [84] p.152

Model

set of
statements

mappingdescribes
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 Figure 4.The picture with explanatory and phenomenological models

A further layer is added if one accepts the importance of the distinction between data

and phenomena as discussed by Bogen and Woodward in [68]. They point out that data is

used more for prediction and the phenomena for explanation. In a real sense we use the

data as a ‘data model’ of the phenomena using the measuring process, as Suppes

recognised:

“It may be noted that in using an N-tuple as a realisation of the data…

we have taken yet another step of abstraction and simplification away from the

bewilderingly complex complete experimental phenomena” [431] p.256

The extended picture is shown in figure 5.

The reality of this distinction make it possible that observations may be

theory-laden, since if our data was completely determined by the natural phenomena then

the theory-ladenness would not effect our measurement.

Kuhn wrote:

“Far more clearly that the immediate experience from which they in

part derive, operations and measurements are paradigm-determined. Science

does not deal in all possible laboratory manipulations. Instead, it selects those

relevant to the juxtaposition of a paradigm with the immediate experience that

that paradigm has partially determined.” [274]
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Cartwright emphasises rather the process of active adjustment that occurs during the

preparation of data:

“...when we present a mode of a phenomenon, we prepare a description

of the phenomenon in just the right way to make a law apply to it.” [84] p.157

 Figure 5.The picture with the data model added

I have built up a picture where a whole series of models come between the

phenomena under study and the theory that is supposed to cover them. The relationships

between these models are not always clear, especially that between the explanatory and

phenomenological models. Cartwright argues that a ‘covering-law’ account is insufficient,

as it frequently does not seem to be the case that one can derive aspects of the phenomena

by gradually adding auxiliary hypotheses and facts as steps down this ladder [84]. Thus

one comes to a picture of models as objects that somehowmediate between the

phenomena and the theory - models as mediators [329].

For example, in chemistry the gap between theory and experimental phenomena is

being increasingly bridged via the extensive use of computer-based simulations of many
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interacting atoms [201]. A model of chemical interaction or structure is posited using

approximation, simplifications, abstractions, etc. of the underlying (and previously well

established) physical and chemical models of pairwise atomic interaction. This model is

then encapsulated in a computational model involving many such interacting atoms. The

simulations are run to explore the envelope of possible outcomes which are then

approximated by mathematical functions. Thus the simulation substitutes for the

intractable symbolic inference that otherwise would be necessary. Finally this post-hoc

predictive model is compared against the data (or data model) derived from a

measurement process applied to the chemical phenomena under study. This is illustrated

in figure 6 (which is an adaption of Figure 17 on page 1021 of [201]). I quote

“ … the core of any model is the approximations, assumptions and

simplifications that are used in its formulation. Only an understanding of the

basics of a particular model may lead to sensible application or improvement

of its performance.… Due to the complexity of the systems of chemical

interest, theoretical methods only became of practical interest with the advent

and development of computers.” [201] p.1021

 Figure 6.The models used in chemical simulation (adapted from [201])

Giere [176] goes further than a mere hierarchy of models, and also posits the

existence of ‘horizontal’, ‘vertical’ and local ‘radial’ links between models. In this picture

a theory consists of a whole structured cluster of objects: laws, models and analogies. This
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is surely the way forward: some of the confusion involving models in the past does seem

to be due to the fact that many of the entities discussed as if they were a unitary structure

are actually complicated composites with a series of different levels and processes.

This was foreshadowed by Suppes when he said in 1960:

“ … a whole hierarchy of models stands between the model of the basic

theory and the complete experimental evidence. Moreover for each level of the

hierarchy there is a theory in its own right. Theories at one level is given

empirical meaning by making formal connections with theory at a lower

level.” [431] p.260.

2.3 Parts of the Modelling Apparatus

Given the above variety of definitions and deployment of models, I will attempt to

ensure the clarity of terminology throughout this thesis by presenting a model of the

modelling apparatus and then labelling the various parts. This will combine some of the

best aspects of the philosophical analysis outlined above with a clear and unambiguous

method of referring to the relevant parts and processes.

This picture of modelling broadly follows the model-theoretic approach, particularly

as described by DaCosta and French in [129]. At its core is a state-space (following the

approach of Beth and Weyl), which can be thought of as a systematic enumeration of all

the possible data combinations that could result from the phenomena under study. So for

the gas laws one might have a three dimensional space defined by coordinates for

pressure, volume and temperature.

Different aspects of the modelling situation are all mapped into this one space. Thus

the model description defines a subspace of these possible states, and it is this subspace

which represents the model semantics. The data will be a series of points in the space and

(in control situations there may also be a subspace representing the goals). The whole

space can be circumscribed by relevant prior knowledge of the relevant possibilities (in

the gas law case described above we know that we do not have to include temperatures

below absolute zero). I will call the combination of model specification, model content

and the relation between the two, the ‘model-apparatus’. This is illustrated in figure 7 (the

situation is shown in a simple way for presentational reasons, in more realistic cases the
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model content might not be continuous, connected, have a ‘hard’ edge (or membership

function) or even be dense.

 Figure 7.Model specification and semantics

The ‘modelling language’ is the set of possible specifications along with some

relations between the specifications (equality, implication, etc.) and the way that these

specifications are mapped onto the space of possible states. Following the model-theoretic

approach the model content is the set of states whichsatisfy the specification. This

modelling language could be a formal language, a subset of natural language, or even a

real valued vector space. A good modelling language will not only be expressive enough

to clearly specify the required possibility spaces, but also it will have explicitly defined

relations that systematically reflect the corresponding relations between the possibility

spaces. So, for example, the set-theoretic union of the possibility spaces might correspond

to a disjunction in the modelling space. It is the fact that a good and expressive modelling

language can accuratelyreflect relationships between the content of models that allows

there to be syntactic as well as semantic accounts of modelling, but it is the non-syntactic

approximation of models by their content (as described in [372]) which suggests that an

account which includes the semantic side might be the more general.

The set of data (which may not be points but small volumes or even fuzzy areas)

form what I will call the ‘data model’. This data model is itself a specification of the

phenomena in ways directly analogous to the relation between model specification and the

possibility space. In fact measure theory is the formalisation of such a relation, where the

‘modelling language’ is a language of numbers, and the content is the phenomena being

E
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measured, such that certain relations between the phenomena are homomorphicaly

reflected in a relation on the set of numbers (e.g. concatenation and order).

The key idea (loosely following the approaches of DaCosta and French [129] and

Redhead [372]) is that models are related and compared in the state space rather than via

the model specification. A simple example of such a comparison is a measure of the error

(for example the Root Mean Squared Error), which formalises the distance between the

data model and the model content. In general a number of ways of judging the similarity

and ‘distance’ between models is used. So, for example a phenomenological model

content mayapproximate to a subspace of the theoretical laws’ content space, which may

or may not be obvious from the specification of the phenomenological model and

theoretical law. In other words it may not correspond to a consequence relation on the

model specifications.

This picture suggests that there are at least three basic ways of relating

model-structures:firstly, where one model content is contained in another (which I will

call ‘subsumption’);secondly, where one model content is approximated by the model

content of another (which I will call ‘approximation’); andthirdly, where the specification

of one model isdescribed by the specification of a second (which I will call ‘chaining’).

The subsumption of models, may be achieved by merely fixing some of the

parameters of a more general model or law so that the restricted model only encapsulates

some of the possibilities. For example the content of a general model of a damped and

driven pendulum includes that of a free and frictionless pendulum. In general, the two

model descriptions may be in different modelling languages, but mappable into the same

state space. If the model specifications can be translated into the same modelling language

and the inference relation on this language is complete (in the sense that every logical

consequence can be proved using the inference relation), then this subsumption may be

demonstrable as an implication in the modelling language. In general, however, this need

not be the case. Relating models using subsumption is illustrated in figure 8.
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 Figure 8.Relating model-structures via the ‘subsumption’ of model contents

The approximation of model contents can be achieved in a variety of ways. One may

attempt it by careful manipulation of the model specification, although one has to be

careful about this since a small change in the specification can cause a large change in the

model content. Alternatively numerical simulation of the results of one model can be used

as data to fit the second model. An example of this can be seen in the process of chemical

simulation mentioned above, where the results of the simulation are fitted to a numeric

function – in this case it is the role of the computer simulation to enable the approximate

inference of a model where the analytics are too onerous. Relating models by the

approximation of their content is illustrated in figure 9. This is comparable to Redhead’s

figure on page 151 of [372] in terms of relating model content. Such approximation of

model content is implicit in the following quote from Cartwright:

“...we lay out a model and within the model we ‘derive’ various laws

which match more or less well with bits of phenomenal behaviour.” [84] p.161

 Figure 9.Relating model-structures via approximation of model contents
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The relation of models by chaining is where the specification of one model-structure

is used as the content for another. A example of this is how the data model specification

(typically a list of N-tuples) is approximated by the content of a phenomenological model.

This thesis is going to present a characterisation where model specifications are modelled

by numbers, so that these act as a useful guide as to their complexity – which means that

‘complexity’ would be a (numeric) model of models of data models of phenomena!

Relating models by chaining is illustrated in figure 10.

 Figure 10.Relating model-structures via ‘chaining’

In the set-ups described above (section 2.2 on page 28), one arrow could actually

represent a combination of several of these methods of model relation. The example from

chemical simulation illustrates the use of all three of these types of model relation, as well

as a combination of them: the data model and the predictive model are related by chaining;

the predictive model is related to the computational model by approximation; the

computational model is related to the focus model by subsumption (if it has been

programmed accurately) and the focus model is related to the underlying theory via a

combination of subsumption and approximation.

Note that I am not making a strong epistemic or realist claim here about what

models and theoriesare, but merely using a simple model-theoretic structure as a

building-block to model some of our constructs in an useful way. This is sufficient for my

purpose here – I will leave the question of whether this reflects the actual use of models by

scientists to others.

Different properties are usefully related to either the syntactic or semantic sides of

the modelling apparatus. Thus the rate of error is a property of the model semantics whilst

formal inference is more usuallyattributed to the model specification (even if, as a
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consequence relation, it can bedefined using the content subspaces). The falsifiability of a

model is more usefully associated with the model semantics: to take an extreme example,

if we look at the null model (‘anything may happen’), this would correspond to the whole

possibility space – in such a case there is no possible datum which would disconfirm the

model. The falsifiability of a model (orspecificity) may be associated with a ‘volume’

measure on the spacenot in the model content (for more on this and some of the

consequences of this picture of modelling see [333]). These properties are summed up in

table 1.

My thesis will be that ‘complexity’ is a property that is more usefully attributed to

the syntactic side of the modelling apparatus, because of the existence of simplification

and the importance of the modelling language to practical judgements of complexity.

2.4 Models in Machine Learning

Another field where models have been actively considered in their own right is that

of machine learning and artificial intelligence. Here a model can be any internal construct

of an (artificial) agent that helps it decide what action to take, though usually the term also

has predictive and representational connotations. These models will often be induced from

the data, so there may not be an encompassing theory (other than what is implicit in its

own structure or representational system). Thus the term has far more of an ad-hoc and

pragmatic flavour here.

Thus in contrast to the top-down elaboration of the philosophical account of

modelling described above, is the bottom-up process that frequently occurs in machine

learning. Here the question is not ‘Why isn’t the general formal theory adequate on its

own?’ but ‘Why isn’t the simple data model enough?”. A number of answers can be given:

• We know from experience that data sequences are rarely repeated exactly;

model syntax model semantics

context-independent
specification,

formal inference,
(complexity!)

error w.r.t. data,
approximation,

inclusion,
specificity

Table 1: Some properties ascribed to the model syntax and semantics
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• We also know that, frequently, factors irrelevant to our purposes will have

affected our data (e.g. ‘noise’);

• The data model does not allow us to predict in circumstances we have not come

across before;

• We sometimes have prior knowledge that allows us to make a good guess at a

more complete set of possibilities without trying them all (e.g. interpolation in

continuous processes);

• The data model is not a compact form of representation;

• It is difficult to ascribe meaning to a set of raw data;

• Direct formal manipulation of the data is difficult13.

All these lead in the same direction, namely towards some encapsulation as a

specification in a more abstract (and maybe more general) model description via its

(possibly approximate) encoding in a modelling language. The idea is to find a model

description in a modelling language whose content closely approximates the data using

what prior knowledge one has of the source of the data. I will claim that thedifficulty in

finding such a model specification is a useful characterisation of its complexity.

Given the nature of data gained by measurement from natural phenomena and the

nature of descriptions in formal modelling languages, it would be very surprising if a

compact or convenient description were found which exactly specified the data model –

but, more fundamentally, it would not be very helpful in terms of generalising to areas of

the possibility space were no data had been collected. Thus it is essential that the

modelling language (and search process) is such that it doesnot result in a specification

that directly describes the data. Almost always a model specification is settled on which

either covers (i.e. includes) all the data points14 or else approximates them to within an

acceptable degree of error.

This is particularly sharply illustrated in the ‘over-fitting’ of neural networks, that is

when the output of the network mimics the training data too closely and as a result (it is

sometimes claimed) it does not perform well on new data from the same source. The

13.Though this particular difficulty has been significantly lessened with the advent of cheap computational

power.

14.For example, in econometrics, a random distribution term is built into the model, so that the model will

cover the data.
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response is often to alter the structure of the network so that the space of functions that the

network can produce is restricted, so the network is forced to abstract from the training

data [401]. Of course, it is critical to the above strategy that the restriction utilises some

prior and relevant domain knowledge concerning the nature of the data source, so that the

network is restricted in an advantageous way, but this is often only specified implicitly

(e.g. in continuity assumptions).

The last example highlights the importance of the modelling language to the

modelling process. This is sometimes called the ‘bias’ in the machine language literature.

Although the search for appropriate models is usually characterised as a process acting

within a fixed modelling language, a more general picture is when both the modelling

language and the choice of models are variable. Usually a change in the underlying

modelling language is a more radical step, as such it has been associated with a change in

paradigm as portrayed by Kuhn [274]. Toulmin associates it with the major advances in

science:

“The heart of all major discoveries in the physical sciences is the

discovery of novel methods of representation, and so of fresh techniques by

which inferences can be drawn – and draw in ways which fit the phenomena

under investigation. The models we use in physical theories,… are of value to

physicists primarily as ways of interpreting these inferring techniques, and so

of putting flesh on the mathematical skeleton.” [438] p.34

Later I will argue that a change in the modelling language is one of the most

powerful ways in which simplification is achieved (section 5.7.4 on page 123). In machine

learning the importance of the choice of bias and the possibility of dynamically altering it

to improve the efficiency of the search process has been explicitly discussed (e.g. Russel

and Subramanian in [393]).

Frequently a model is used in the active sense15 that is it is used to predict some

consequences given some initial conditions. So the model specification is converted into a

process (this is clearest in the case of a computational model, when the model is encoded

as a program and then run). This is particularly obvious in model-based control

mechanisms where the error in the prediction of the model is used to adapt the model.

15.But not always, for instance a fashion icon may be taken as a model of fashion in a whole subsection of

society.



Syntactic Measures of Complexity

- page 41 -

To reflect the fact that, in use, models are dynamic objects, some authors prefer to

talk about the ‘modelling relation’ rather than models (notably Rosen [385]). Here a

formal inferential process is related to a natural process by encoding and decoding

relations. The action of a natural process is modelled by encoding the initial conditions

into the formal model, from which an answer is inferred by some symbolic process, which

is finally interpreted back as a prediction about the result of the process. This can be seen

as a dynamic version of Hughes’s DDI (Denotation, Demonstration, Interpretation)

account of a model [236]. The modelling relation is illustrated in figure 11. In terms of

category theory the formal process is said to model the natural process if, given the

encoding and decoding mappings, the diagram commutes.

 Figure 11.The ‘modelling relation’ from [385]

The connection between the former, static account of modelling and this dynamic

account is the animation of declarative knowledge via the use of an inferential mechanism.

Thus an equation is used to predict outcomes, by the substitution of variables and its

solution, a program is animated by the program interpreter or processor. There are

essentially process models without an explicit declarative counter-part (like a trained

neural-network), but declarative model specifications tend to be more common. The

prevalence of the declarative representation of knowledge is due to its flexibility: for

example the same ideal gas equation can be used to either predict the pressure from the

temperature and volume or the volume from the temperature and pressure.

2.5 The Philosophical Background to the Rest of this Thesis

My overall stance, from which I approach this thesis, is close to that of

Giere16 [176], except that I am not aiming to model science. My stance might be called a
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pragmatic modelling stance in that what I am aiming for is auseful model of complexity.

So, for example, when I am arguing what the property of complexity can be usefully

attributed to (in section 3.3 on page 47), what is most important to me is to identify the

most useful object for that attribution. I will argue that it is most useful to attach

complexity primarily to the model specification and then allow for its post-hoc projection

onto the model content and the target phenomena when the mappings to these are

sufficiently constrained. These constraints could come from the nature of phenomena but

could equally come from elsewhere, for example in the established methodology of a

field. As Cartwright puts it:

“It is precisely the existence of relatively few bridge principles that

makes possible the construction, evaluation and elimination of models… it

strongly increases the likelihood that there will be literally incompatible

models that all fit the facts so far as the bridge principles can

discriminate.” [84] p.144

My view on the constructivist-realist divide is that our models are at least somewhat

constrained by the natural world, but not completely so. In some domains we may be more

constrained by the world than in others: our model of a salt crystal as a cube may well

reflect the world; our linguistic models of natural language may inevitably be socially

constructed to some degree. As Giere puts it:

“The real issue, as I see it, is the extent to which, and by what means,

nature constrains scientific theorizing.”[176] p. 55-56

Although the arguments herein follow more easily from a constructivist standpoint,

they apply also to modelling as envisioned from a realist perspective.

To sum up: the aim of this thesis is to produce a general and usefulmodel of the

notion of complexity. The various existing formulations of complexity along with the

other examples that I introduce play the part of the data. The main work is thus to find the

model that matches these as far as possible but is also as ‘useful’ as possible. This will

involve the formulation of the best ‘modelling language’ for its expression (i.e. one that

matches prior reasoning about the domain’s nature), so that when we have finished our

search process we end up with a specification of the concept that is not too complex but

16.Griere calls his position “naturalistic realism”.
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adequately approximates our ‘data’. In this regard, merely saying that every situation has

its own complexity would be like sticking to the data model in the above, and this would

be an inadequate account if we are ever to apply our account to new situations. As Einstein

is supposed to have said when asked how complex a theory should be:

“Everything should be made as simple as possible, but not simpler.”
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3 Problems and Properties

3.1 Examples of Common Usage

I will introduce this section with some concrete examples, and recount some

common sense perspectives on them. These will be referred to later and used as a

motivation for the forthcoming discussion.

3.1.1 A case of nails

It would be very unusual for someone, on opening up a large chest of nails, to

exclaim “Oh, how complex!”. This indicates that the mere fact that there are a great many

nails is, at least in some circumstances, insufficient for the assembly be considered

complex (this would not prevent someone modelling the forces inside the pile17

considering it complex).

3.1.2 Writing a thesis

A thesis is easier to write with a complex tool (a word processing package with

advanced features), than with a simple one (a ballpoint pen). This illustrates that the

complexity and difficulty of a process can not be naively associated. Here it is the

complexity of theproblem that is associated with the level of difficulty, and the tool

chosen forms part of the framework for tackling this.

3.1.3 Mathematics

If anything is intuitively complex then abstract mathematics is. This complexity

seems inherent in the subject matter despite the fact that questions of mathematics can be

purely formal. Even when the mathematician has complete information about the rules

and components of a problem, producing a solution or proof can still be very difficult.

3.1.4 A gas

The macroscopic physical properties of a gas are fairly simple. Even though we

know this is the result of a multitude of interactions between its component parts. If we

had to explain these properties via an explicit and deterministic model (i.e. this particle

collided with this one which…), this would be a formidable task. If we take as our base a

17.That this is a difficult modelling problem see the chapter in [91] on sandpiles
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level of description that ignores a lot of the detail and ascribes this to an unanalysed

randomness, then the task is considerably easier.

3.1.5 An ant hill

In this example the interactions between the parts (i.e. the ants) are non-trivial, so an

adequate model would probably have to include details on this. Now the task of explaining

the macroscopic behaviour, given a model of the interacting parts, is challenging

irrespective of whether the macroscopic behaviour is simple and predictable or not. This is

the case, even if the ant colony looks very simple to someone else who views it as a rather

stupid and reactive single animal that just happens to consist of physically separate parts.

3.1.6 A car engine

Consider three views of a car engine18.

The first view is of the engine as a single inexplicable unit, a sort of glorified random

number generator - it either works or it doesn’t. No explanation is required or deemed

relevant, its running is a matter of irreducible luck. If it does not start you ring a mechanic

who magically starts it for you. This is the engine as a simple, if malevolent, entity.

The second is a view involving a partial knowledge of the engine. The parts are

roughly identified as well as some of the interactions. However these interactions, taken

together, are far too complex to understand. If something goes wrong, you can look inside

the bonnet and try to identify the cause. Simple experiments in terms of fixing it are

possible. Sometimes, with luck, this seems to fix it. Unfortunately, this action often has

unforeseen consequences and causes greater long-term damage. When fixing it is beyond

this level of understanding, the mechanic is called, who must be (from this viewpoint) a

craftsman of deep skill and have a sophisticated understanding of the machine. This is an

engine at its most complex.

The third view is (hopefully) that of mechanics. They have an understanding of the

decomposition of the engine into functionally near-independent parts. They can use this

model to systematically analyse the problem by eliminating possible causes, until the

search narrows down to the actual cause. They can then fix this cause, having a good idea

18.This subject was suggested by my supervisor as a pertinent example, John Chidgey.
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of the possible side-effects of this action. This is the engine as manageable complex, due

to the appropriateness and utility of the mechanic’s model of it.

3.1.7 A cell as part of an organism

When considering a cell and the organism of which it is part, from the same frame of

reference, it seems obvious that the cell is simpler than the organism. This is true

irrespective of the complexity of the cell, for other cells can not take away from the

complexity already there in the cell.

Such a comparison is not so obvious if both are compared from within different

frameworks. A cell under a microscope might seem much more complex than the potato it

was taken from, viewed with normal vision.

3.1.8 Computer programming

As with thewriting a thesis example in section 3.1.2 on page 44, the choice of

programming language can greatly effect the complexity of a programming task. A

language like BASIC may be relatively easy to learn, but difficult to use for a large

programming task. Compare this to a language like Smalltalk which has a sophisticated

object-orientated organisation allowing a high degree of modularisation and flexibility and

a large set of pre-programmed classes that you can adapt and re-use. This takes

considerably more time to learn, but can then make the task of programming much easier.

3.2 Complexity as a Comparison

In the common sense world complexity is not so much measured as compared. “a

computer is more complex than a calculator”, or “although the rules governing

unemployment benefit are more complex than those concerned with income support, those

covering disability benefit are the worst” are two examples of this.

Such comparisons are easiest to see when you are comparing a sub-system with the

whole, from within thesame frame of reference, as in the cell example above (section

3.1.7 on page 46). In other cases it is not at all clear, as when comparing the complexity of

a computer and a poem. Here we have no natural common basis from which to make a

comparison. We could artificially construct such a basis but there would be little

likelihood that this would agreed upon by others. Without an appropriate framework
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within which to represent both, any such judgement of relative complexity would be

arbitrary.

3.2.1 The emergence of life

One paradigm of emergent complexity is the appearence of life. Most people would

say that the complexity of the biosphere has increased with the emergence and

development of life. That is, if one compares the solar system as it is now and how we

think it was 5 billion years ago, then the obvious conclusion is that it has becomemore

complex in important respects. The fact that the subsystems which exhibit the change are

not great in terms of mass or volume does not significantly alter this judgement.

3.3 What the Property of Complexity Could Usefully Refer to

I this section I will argue that regardless of whether our models reflect reality in

other respects, complexity is most usefully attributed to thedescriptions of our models and

is only projectable back onto natural phenomena when constraints on our choice of

models make this coherent.

One could attempt to distinguish what complexity was anintrinsic property of, and

thus argue that complexity was an extrinsic property of natural systems but an intrinsic

property of model descriptions. Such a route is fraught with difficulties and would not

further the purpose of this thesis, which is pragmatic. I am concerned here with

developing a characterisation of complexity thatusefully captures our intuitions of the

concept.

3.3.1 Natural systems

I will argue that complexity is not a propertyusefully attributed to natural systems. I

list the arguments below.

1. Estimates for the lower bounds of the complexity of natural systems can always be

increased by the inclusion of more aspects of the system

By increasing the level of detail considered, a lower bound for the complexity of

almost any natural system can be arbitrarily increased until it is well beyond our means of

representation, understanding and modelling ability. There is no apparent upper bound to

how complex things can appear. It seems that most things have the potential to be
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arbitrarily complex, just dependent on the number of aspects and the level of detail one is

willing (or able) to consider.

This can be seen as a consequence of our intuition that a sub-system is less complex

than the whole. By expanding the context of consideration (or equivalently using a more

general framework) one includes more complex sub-systems. This forces us to conclude

that the complexity of the whole system is greater than these sub-systems (unless one is

allowed to ignore the effects of these sub-systems using appropriate modelling

assumptions).

For example, a brick is a fairly simple object if you consider only its macroscopic

properties but is much more complex at the level of its component particles. This

particulate complexity is averaged out at the macroscopic level at which we usually relate

to them, so we can usually abstract from the details, but if you are insisting on an entirely

objective basis (what ever that would mean) then you have to allow for the inclusion of

this particulate complexity. The complexity further increases beyond our comprehension

when we consider such a macroscopic object, such as a brick, at the sub-atomic level of

detail.

2. Estimations of the practical complexity of natural systems can change critically

when the framework in which they are considered is varied

Changes of goal, language of representation, aspect, and scale can all greatly effect

the practical complexity of natural systems. The point above is a result of the potential to

include more detail by changes of scale and generalising so as to include more aspects of

the system under study.

In the ant colony example (section 3.1.5 on page 45) whether your goal was merely

predictive of behaviour at a purely macroscopic level or was seeking to explain this

macroscopic behaviour explicitly in terms of the behaviour of individual ants, affects the

practical complexity of the modelling task.

One example of how the language of representation can critically affect the

complexity is in the representation (or exclusion) of elements as noise. Often ascribing

some parts of some natural phenomena to noise can allow the drastic simplification of the

representation of a natural system. For example in the gas example above (section 3.1.5 on

page 45) being able to assume that the detailed movements of the particles in a gas are
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random allows a model of the macroscopic properties to be related in a simple way to the

microscopic ones.

Thus intuitive assessments of the complexity of systems, often differ far more with

changes across frameworks than across changes of subject matter.

3. Attributing complexity to natural systems does not help explain the existence or

process of simplification

The ascription of complexity directly to natural systems also makes an account of

simplification difficult. One would be forced to judge all equivalent models of a natural

system as equally complex. Thus an account of planetary orbits using an infinite series of

epi-cycles would be as simple as one using ellipses. Similarly there would be no

simplification of mathematical systems if complexity was a property of thecontent of

these systems, since all we would be doing is changing their description.

One method of simplification (discussed in section 5.7.5 on page 124) is to trade-off

complexity for the specificity or accuracy of the model. A less specific model is one which

has either narrower conditions of application or else its predictions are over a broader

range – for example, the use of fuzzy-logic and fuzzy-set theory has been suggested as a

means for dealing with complexity in some situations by Zadeh [488]. A less accurate

model is one with a greater level of error with respect to the data model – for example, one

might decide that some variation in the data could be attributed to noise so that accepting a

greater level of error might result in a much simpler model. The ‘stochastic complexity’ of

Rissanen [378] is an attempt to find a principled trade-off between error and model

complexity.

In fact simplification and elaboration (for the want of a better antonym) are

frequently what we are concerned with when we talk about complexity – complexity has

somehow arisen and we need to deal with it. Some strategies for simplification are

discussed in section 5.7 on page 120.

4. Our intuitions about the complexity of natural systems can be nicely accounted for

by associating them with the complexity of the systems ‘best’ model

If we have a natural system which is producing what seems to be random data as its

output (where we know that this is not attributable to a separate and discountable source of

noise) it can still be sensible to say that this data is simple on the grounds that it is random.
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Here the complexity of the system has been taken from its most appropriate model, which

in this case isnot the most descriptively accurate but is a less specific model. A

probabilistic model is more appropriate in circumstances where we know the detail of the

individual sequence is not relevant. We lose the possibility of completely accurate

predictions for a considerably simpler model.

In cases where our models of these systems are considerably constrained (by nature

or by practice) we are sometimes in the fortunate position of only having one candidate

model in which case it is safe (in that context) to project this model’s complexity upon the

natural system. As Cartwright puts it:

“It is precisely the existence of relatively few bridge principles that makes possible

the construction, evaluation and elimination of models… it strongly increases the

likelihood that there will be literally incompatible models that all fit the facts so far as the

bridge principles can discriminate.” [84] p.144

One of these principles is surely that we exclude models that are prohibitively

complex. Reinberger recently said:

“Reduction of complexity is a prerequisite for experimental research.” [374]

All of the above difficulties come down to the same nub: if natural systems do

have complexities, then they are unmanageablely large. Thus at the moment, and quite

possibly absolutely, it is not useful to try to do this. If we choose only one aspect and one

scale, we are no longer dealing with the complete object, but an abstraction of it.

This can be traced to why weever consider properties to be of things rather than our

models of them in the first place – because they can be said to have the “same” properties

independent of the observer or the models19 (e.g. mercury or thermocouple models of

temperature) - there is no evidence that this is true of complexity judgements.

There are several possible arguments against this. I consider these below.

1. Some complexity comparisons concerning natural systems are objective.

An example is “An amoeba is objectively simpler than a human”. There are two

ways of interpreting this argument, firstly as a variant of the cell example (section 3.1.7 on

page 46), i.e. that an amoeba is simpler than a humanhowever you look at it, and secondly

19.This is a simplistic account – accounting for why we call a property the same from different frameworks

is not straightforward.
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as an implicit call on upon a privileged (and hence common) framework, i.e. there isone

sensible framework to use and within this the amoeba is simpler.

The first argument assumes that the comparison is valid,regardless of the

framework. This is an immensely strong assumption, one that seems to draw its strength

from an identification of the amoeba with a human cell20 and invoking the sub-system

property that I noticed in the cell example. Otherwise it would seem possible to choose a

framework where the amoeba differed substantially from the cell (its method of

encapsulation and subsequent digestion of food?), where the judgement of relative

complexity was not so clear. If one then argues that this is an inferior or more specific

judgemental framework, this would bring us to the second interpretation.

The problem with arguing for a uniquely (or even relatively) privileged framework

is that of its justification, given that it does not allocate impractically large complexities to

almost everything (or that a framework revealingmore complexity is not always better).

Also that in practice there are always pragmatic choices of factors like scale, so that a

privileged framework is no use for actual complexity judgements. Finally the very identity

of many things seems inextricably linked to which aspects you are considering (e.g.

‘society’).

2. Claiming that complexity is not a property of natural systems is just a category

mistake.

It could be argued that even if it is admitted that complexity comparisons can only

be meaningfully via our models, the complexity refers to the natural systems themselves,

and that it is only due to our limitations (in particular our understanding) that we see

different complexities from different viewpoints.

This is a possible standpoint, but it is hard to see how this could be then applied in

practice withoutin effect attaching the property of complexity to the models rather than

the original systems, as otherwise in practice the complexity of such systems would

change arbitrarily depending on the model chosen. Such a view would be comparable to

that attributing primality to sets of real objects rather than numbers. One could

characterise number by equivalence classes of things, i.e. five is the class of all possible

20.Or alternatively an identification of the functional organelles of an amoeba with the corresponding

functional parts of a human, though this does not alter the argument.



Syntactic Measures of Complexity

- page 52 -

sets of five objects. This still would mean attributing a property such as primality to

something other than the things themselves. It is difficult to see this as anything other than

a contrivance.

3. Attributing complexity only to model descriptions would make objective complexity

judgements impossible.

If a framework is agreed upon then the complexity of something can be objectively

determined by different observers with respect to this framework. So once this framework

is established complexity judgements can be consistently made irrespective if who is

doing it as long as they keep within the rules that the framework entails. This is not so

different from many other ‘objective’ judgements and facts – such frequently rely upon

such contextual bases (what Suppe calls the ‘disciplinary framework’ [428]).

For example in the physical and mathematical study of chaotic systems a framework

which implicitly disregards some level of detail as noise is so familiar that it has become a

background assumption (see the section on Noise on page 206). Researchers in this field

seem to uniformly agree that a perfectly disordered system is simple (like the gas example,

section 3.1.4 on page 44, where this uniform randomness makes it a candidate for a level

of simplicity akin to a crystal21). Of course, it is advantageous to make these background

assumptions explicit, so that if necessary they can be checked.

4. There are real causes of complexity

This may be true but not a compelling argument for the use in considering

complexity as pertaining to natural systems. It derives from a confusion between accounts

of how we are to characterise complexity and what cancause it. To take an analogy heat

can becaused by a variety of forms of energy whichare themselves not represented as

heat.

In the end pragmatic considerations prevail; it isuseful to attribute a property

to a natural system when this is largely independent of our models of it but more useful to

consider it a property of the models if it is not (e.g. beauty is partially attributed to the

21.For a classic account of this see Grassberger [194].
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beholder, because is known to be at least partially culturally dependent - 60's tower blocks

- Miss World competition). As Suppes said:

“We can only hope to have a concept of complexity for explicit models of

the world and not for reality itself or even small parts of it.”[433].

3.3.2 The interaction of an observer with a system

In response to these problems many authors (e.g. Casti [87]) have stressed that

complexity only makes sense when considered as relative to a given observer22. Thus they

put an observer into the picture which controls or otherwise affects the target system, and

then observes (or is effected by) that system. This establishes a split between the “system

complexity” and the “observer complexity” (see figure 12). The system complexity is the

complexity of the system w.r.t. the observer and the observer complexity is the complexity

of the observer w.r.t. the system.

 Figure 12.Observer–system pair

You can look at this analysis in two ways: extrinsically and intrinsically. In the first,

there is no essential difference between the two systems - from an external point of view

one just sees two systems interacting. In the second, we are describing the situation from

the observers point of view.

If you take the extrinsic interpretation, then there is nothing special about the

observer system. The ‘loop’ in the diagram (figure 12) is misleading as there may be

multiple parallel and re-entrant interactions between the two systems and between

22.This distinction is basic to systems theory, going back to Ashby [23, 24].
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different sub-systems of the observer and object system (as in figure 13 on page 54). In

this case we are merely dealing with one system composed of the pair of object system

and observer. The observer and object may or may not be easily separable or have

effectively separate identities. All we are dealing with is a particular decomposition of a

single system. So the observer and system complexity become merely the complexity of a

sub-system with respect to the rest.

If you take the intrinsic view then there are still some problems with this approach,

namely:

1. It is still difficult to ascribe useful meaning to the complexity of the observer w.r.t.

the system unless the system is an observer too, otherwise the observer is itself

unobserved and so the complexity undefined in the same way as with natural systems

(section 3.3.1 on page 47).

2. The complexity of the system w.r.t. the observer will still vary according to which

aspect of the observed system is being considered by that observer.

The observer could be taken as to refer to a particular identified individual. This

individual could use several different internal representations to model the system and

interact differently according to each at different times. If these act in some way such that

they can be considered together as a composite model then you are back in the situation

illustrated in figure 12 on page 53. Such a scenario is illustrated in figure 13.

 Figure 13.An observer-system pair with multiple models
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Either the separate models can be said to be interacting with the system (through the

observer) or the internal models can be said to form some sort of a composite model. If, in

the former case, the separate models would not qualify as separate observers, then

problems of complexity being changeable according to the particular viewpoint chosen

reappear. In other cases the situation can be further abstracted as to be between the

model/representation and the system.

So which ever way you interpret the observer-object system analysis, you

come back to the same problem of practical reference to an embedding framework

drastically effecting the effective complexity of the observed model.

3.3.3 Patterns

Next I will argue that complexity is not a useful property to ascribe to patterns23. In

other words, to make a meaningful judgement as to the complexity of a pattern you need a

syntax.

Consider two patterns generated by a random process; how can you judge them as

differently complex? One may seem to be more meaningful and the other not but this is

maybe just happenstance, it may be that they are both equally probable and generated by

the same process. It is only through the interpretation of some process that they may be

said to differ (for example by compression to a minimal length Turing machine that would

output it, see section 8.2 on page 136). The trouble is that the same pattern can be

decomposed or interpreted in many different ways. Each decomposition might give a

different picture of its complexity. In Appendix 2 (section 9.1 on page 164) I show that

given some reasonable assumptions that there is no non-trivial complexity measure on

one-dimensional patterns. This counter-example relies on the possible multiplicity of

decompositions - it contrasts with the demonstration of complexity measures upon a

structured language given similar assumptions.

The usual manner for dealing with the complexity of patterns is not to compare the

patterns themselves, but to compare the respective sets of rules for generating these

patterns (even if these rules are merely guessed at). This explicitly provides them with a

syntax, and hence they become more than a pattern.

23.By a pattern, I mean data that is ordered (typically in time or space) but is not restricted by a

combinatorial syntax.
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3.3.4 The modelling relation

Rosen [385], Casti [89] and others, have formalised the process of modelling in

terms of a “modelling relation”. This was explained in section 2.4 on page 38. The

intention is that a chain of causation in the natural system is modelled by first encoding the

initial conditions into the formal system, then following the chain of formal causation and

finally mapping this back into the natural system. This is illustrated in

figure 11 on page 41.

If the modelling relation commutes the formal system is said to be amodel of the

natural system. Rosen then characterises “complexity” as an attribute of a natural system,

if there are many such “inequivalent” models (see section 6.7 on page 131). Casti

quantifies this as the number of inequivalent models (section 8.29 on page 152).

In order for there to be many such models, there must be many possible encodings

of the natural system. In order to allow for the existence of several such encodings, the

whole must lie within a larger framework. In order for “inequivalence” to be well defined,

this larger framework mustitself be sufficiently defined. Finally, this framework must be

limited in scope, otherwise all natural systems would trivially have many models and thus

be “complex” in this sense, in which case it would not be a useful propertyof such

“natural systems”, as it would be coincident with the property ofbeing a natural system. It

is unclear in this case thatany natural systems would be counted as simple by this

criterion.

Thus, in order to be meaningful, this approach to attributing “complexity” to natural

systems, must be defined relative to a larger framework. To the extent that this framework

is well-defined, then this approach will be also. Some of the advantages and difficulties of

this approach will be discussed in section section 4 on page 72.

3.3.5 A model with respect to a specified framework

In view of the above analyses I contend that complexity, if it is to be a useful

attribution, needs to refer to a model relative to the modelling framework. That this is a

possible or useful approach will be demonstrated in section 4 on page 72, where I will give

a working definition of complexity and apply it to some examples.
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3.4 Some Unsatisfactory Accounts of Complexity

Here I will briefly discuss some ideas that are frequently conflated with complexity,

but which are, at best, very weak models of it. In each case conflating the concept with

complexity will mean the loss of a useful analytic distinction. In doing so I hope to

motivate some of the details of the next sections concerning the desirable properties of a

complexity measure and its definition.

3.4.1 Size

There is clearly a sense in which people use “complexity” to indicate the number of

parts, but it seems rarely usedjust to indicate this, as was shown in the case of nails

example (section 3.1.1 on page 44). Contrast this example with that of an intricate

(mechanical) watch, where the appellation of complex might be more appropriate.

The difficulties raised by size are real, but can be weak when compared to other such

difficulties; it is likely that simple problems such as size can be dealt with in simple (albeit

possibly expensive) ways24.

Intuitively there are large but simple systems, such as a book of random numbers, or

the list of facts behind ‘Trivial Pursuit’ questions (where there is no intended relevance

between the questions other than the categories of sport, entertainment etc.). Doubling the

size of either would not significantly increase their complexity.

Size seems not to be a sufficient condition for complexity. On the other hand a

certain minimum size does seem to be a necessary condition, it is very hard to imagine

anything complex made up of only one part. This minimum size can be quite small, there

is a Turing machine defined with only five states that comes to a halt after exactly

23,554,768 steps and the task of finding the maximum number of steps a seven-state

Turing machine could definitely halt in has been described as “hopeless” by

Machlin [303].

If a system is broadly symmetrical in terms of the relations between its parts (for

example in a peer organised computer network), then size might be a good indicator of

complexity, but otherwise the structure of the system might have a far more critical effect.

24.This is not to deny that if there a size limitation is a critical factor this may not qualitatively change the

situation to a complex one (as Anderson [13] points out).
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Broadly size seems to limit the potential for complexity, rather than determine it. See

section 8.38 on page 157 for examples of size used as complexity.

3.4.2 Size of rules

A variation on a purely sized-based measure would be to base a measure on the size

(in some sense) of thedescription of a system (in some language). This produces far more

acceptable results, for example the book of random numbers would be judged in its

complexity by the size of rules that generated it, rather than the size of the results.

However this still has many of the same problems as simple size measures have.

One can imagine a case where a system was generated by hundreds of independent rules

(e.g. 1001 unrelated tips about how to succeed). Thus the interaction between the rules

must be still important as to the overall complexity. Of course, it is hard to imagine

examples in natural language where there is absolutely no relevance relation between

separate descriptions, due to the involved and intricate nature of language. This does not

stop it being the case that the amount and structure of this interaction or relevance between

the parts of the description will effect the complexity of the result.

One can imagine further elaborating this sort of approach by then taking the

description of the description of the pattern and thus further improving this way of

measuring the complexity of the original object. This improves the suitability of this sort

of measure for complexity in that it encodes more about the structure inherent in the

object, but in this case one is abstracting further and further from the basic model of size

as a measure. The complexity of the original object is now far more encoded in the

language of description than the eventual associated size. On the whole it seems that the

more a judgement of complexity encodesstructure rather than meresize, the more it fits

our intuitive picture of complexity. This puts size measures in their place, they encode

only the most basic property of structure - the number of parts the structure is to be built

from. Thus if simple size could be seen as a measure of complexity it would be amongst

the weakest possible of such measures. See also section 8.39 on page 157 on size of

grammar for examples of this approach.

3.4.3 Minimal size

This brings us to a further elaboration of size as a complexity measure: that of the

minimal descriptive size in some language or by some compression process (see also
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section 8.24 on page 149). The most commonly used form of this is “Kolmogorov” or

“Algorithmic Information” complexity (AIC) - the size of the smallest Turing machine

that would generate the object pattern (see section 8.2 on page 136).

AIC represents the high end of minimal descriptive size measures - those using the

most powerful compressive machinery (alternatively those using the most expressive

language). The compressive machinery is so powerful that it gives a highly unpredictable

measure. For example the second 1,000,000 digits of Pi are indistinguishable to most

people from a list of 1,000,000 random numbers, but the first would have a small AIC and

the second would (almost certainly) have a large AIC25. Here the relation of the size of the

minimal program and the object are only marginally related - a fact that is starkly

illustrated by the fact that the AIC size is uncomputable, in general, from the original

object. I argue later (section 4.3.4 on page 84) that AIC is a more appropriate measure of

information.

At the other end of the scale, if the compressive machinery is very weak (the

associated language is inexpressive), then this is not much better than a measure based on

simple size, since the size of the object and the size of the minimal description will be

highly related.

Measures based on minimal descriptive size could be an acceptable complexity

measure if the relevances between the parts of the original that the compressing machinery

exploited (i.e. the redundancies) were the appropriate ones for the system and purpose in

mind. In any case this is now primarily no longer an issue of size but structure.

3.4.4 Processing time

It is hard to imagine a difficult task that can be done without some time spent on it,

either in execution or preparation. Thus the complexity of a task can come to be associated

with the amount of processing time it requires (see section 8.47 on page 162 for

examples).

That this is a probable consequence of complexity and not a sufficient condition for

it can be seen in the existence of intuitively simple but time-consuming tasks. Trying out

all the possible colorations of a checker board of a certain size, is a simple task, but given

m colours and a board of sizen there are  possibilities, so trying out the colouration of

25.It is overwhelming likely that the AIC of a random string is not less than the length of that string [284]

m
n

2
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a 20 by 20 board with 10 colours would be far above the maximum possible computation

performable by the whole universe since the beginning of time [75].

Secondly, like size, if processing time is a measure of complexity (see section 4.3.3

on page 84) then it is a fairly weak measure, relatively unreflective of the structure of the

task. Processing time may sometimes be an insuperable difficulty in practice but it is a

simple difficulty, solvable by simple means (more time)26. Personal experience tends to

suggest that the process of writing a program often presents a more fundamental level of

difficulty than the time it takes to run.

Like size the application of processing time as a measure of complexity can be

applied at a more abstract level, for example, to the time taken to write a program to

preform a certain task. This brings this sort of measure closer to the intuitive meaning of

complexity, but at the cost of the direct appropriateness of the “processing time” measure.

In the above example, in order for the programming time to be well-defined, the

programming environment and methods would need to be specified, then the complexity

of the task is more encoded in that environment than in the programming time taken.

3.4.5 Ignorance

Complexity is a major cause of ignorance - if a problem is complex, we often do not

know how to solve it. Ignorance is sometimes a cause of complexity - due to our ignorance

we can choose an inappropriate framework for considering a problem and this makes

solving it more complex. It is thus tempting to associate the two. I will argue that

information (or the lack of it) and complexity are more usefully considered as different

aspects of a problem.

Firstly, there are some tasks where we seem to know everything, but they are still

complex. This depends upon your scope of “everything”. In many puzzles and games one

has complete knowledge of the rules and situation, but finding the solution is still

complex. If one broadens the scope to include knowledge of the solution (or optimal

playing strategy), finding the solution may be no longer difficult, but implementing it may

be. Some games and puzzles have noeasy solution (e.g. chess).

Secondly, there are situations where increasing the knowledge about the solution

does not make it simpler. Imagine a task of designing the best program to check the code

26.This does not prevent questionsabout processing time being complex.
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of another program to see if it will halt, given a particular input. We know that there are no

techniques that do this in general [443]. Knowing this does not make the task less

complex!

So although ignorance and complexity can interact27, they should be considered as

separate sources of difficulty - requiring different types of solution. Separating these two

factors will also allow the study of their interaction - which could be very useful. See

section 8.15 on page 144 for examples of this approach.

3.4.6 Variety

Simple systems themselves do not display great variety28. Thus complexity can be

associated with variety. An animal with a greater variety of shapes of invertabra is said to

be more complex (in this respect) than one with fewer (e.g. McShea [316]).

An immediate increase in variety, can however, be accompanied by a decrease in

complexity. A list of prime numbers up to a certain size is not less complex than a list of

all such natural numbers, despite the fact that there must be at least as much variety in the

list of natural numbers by construction. It is implicit in this comparison that it is not the

sequence itself that is really being considered, but the rules/source of it - thus the rules to

generate prime numbers are more complex than those for a sequence of all numbers. So

the application of variety shifts to these rules, but this does not completely avoid the

problem, as a base ofall possible rules might not produce very complex behaviour.

Another possibility is that you measure variety by minimal description length

described above (section 3.4.1 on page 57), but then the arguments of section 3.4.3 on

page 58 would apply. See section 8.48 on page 163 for examples of this approach.

27.See, for example the “problem complexity” of Waxman in [463].

28.Although categories (or systems) of simple systems do.
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3.4.7 Midpoint between order and disorder

Complexity is sometimes posited as a mid-point between order and disorder.

Grassberger [194] considered three patterns similar to those in figure 14 below.

 Figure 14.Complete order, chaos and complete disorder

The immediate reaction is to judge that the first and last patterns are simple and the

middle one relatively complex (leading to diagrams such as figure 15 on page 62, e.g.

in [297]), but this is due to the facts that our perceptions ‘filter out’ the complexity of the

right-hand pattern and that we interpret it asrepresenting a situation withno rules29 (i.e.

random). Thus, we are not judging these uniformly; it may well be that the right hand

pattern representssuch a complex situation that we don’t recognise it. To illustrate this,

consider the possibility that there may be a small version of the left-hand pattern included

in the middle and a small version of the middle pattern included in the right-hand pattern

(as in figure 16 on page 63).

 Figure 15.Presumed graph of disorder against complexity

29.Or a single rule involving randomness. Whether this would be a complex rule would depend on whether

you judge randomness as fundamentally complex or whether it is an allowed atomic rule form.

1. Order 2. Chaos 3. Disorder

Complex

DisorderOrder

Simple
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If this is the case, we are forced to judge the patterns in order of increasing

complexity from left to right. We see the importance of the language of representation. If

we were considering the complexity of some (assumed) rules to generate these patterns,

then the original intuitions might be preserved. As noted in section 3.3.3 on page 55 the

confusion comes because such patterns do not have an inherent language30 - we have to

impose one on them.

 Figure 16.Possible diagrammatic inclusions

A footnote of Grassberger’s is particularly revealing here. It says:

“Some people hesitate between the middle and right panels when being

asked to point out the most complex one. But once told that the right one is

created by means of a (pseudo-) random number generator, the right panel is

usually no longer considered as complex.” [194] (page 491).

“Not being completely ordered” and “not being completely disordered” may be

necessary conditions of complexity, but this gives us no way of comparing intermediate

cases which are differently structured. The degree of variety and constraint involved in a

system is only a rough measure of a systems structure, and thus is not an ideal measure of

complexity.

3.4.8 Improbability

In many physical systems (particularly systems in equilibrium), complex behaviour

at a macroscopic scale is very unlikely; a uniformly disordered state at the microscopic

level is normal.

30.Except maybe an assumed one, which may be different for different observers.
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There is a marked contrast here between the different levels of description. A

simple, uniform equilibrium state at the macroscopic level hides very complex and highly

disordered detail at the microscopic level. Conversely, more complex behaviour at the

macroscopic level is often based upon a more ordered state of affairs at the microscopic

level because a disordered state (high entropy) tends to be very stable.

In terms of information the most efficient coding that can be devised will use less

information to specify or record probable events than unlikely events. In this sense a

probable event gives you less information because you expected it anyway [408].

Thus a high probability macroscopic state coupled with a highly disordered (high

information) microscopic state is associated with low complexity and a low probability

macroscopic state with an ordered (low information) microscopic state with high

complexity. Thus entropy and other probability based measures are linked with

complexity.

There are also low entropy states associated with low complexity, like cold perfect

crystals, so the connection between entropy (of some of the other probability/information

based measures) and complexity is not straightforward, as shown by Li [287]. In some

highly dissipative systems with noise, however, complex behaviour is almost certain and a

lack of it would be very surprising. An example is convection in a fluid between two

parallel plates with a sufficiently great temperature gradient between them [361]. Thus the

association of complexity with improbability only holds for a restricted set of equilibrial

systems.

Part of the problem here is in the implicit determination of the appropriate scale for

the phenomena to be viewed at, i.e. what level of detail is considered meaningless “noise”

(see the section on Noise on page 206). The improbability of a complex state is entirely

dependent on this scale, for without such an approximation every state is equally probable

and meaningful.

Finally, complexity measures based on probability do not directly apply to purely

deterministic systems without some form of course graining applied to them as above.

See section 8.22 on page 148 for examples.
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3.4.9 Expressivity

If a type of statement can express a lot of things, i.e. it has expressive power, then it

is likely to contain some more complex statements than a type which has a more restricted

range. It is certain to include more such complex statements than a sub type could. You

can not describe some complex phenomena without sufficient expressive power, and the

theory of more expressive types is, in general31, more difficult than the theory of less

expressive types. So an indication of the complexity of a statement is the least type it

belongs to, i.e. the minimal expressivity needed to encode it. Examples of this are Logical

Complexity (section 8.20 on page 146), and Kemeny's measures (section 8.18 on page

146).

The effect of this analysis can depend on how fine-grained the type classification is.

If the difference between adjacently expressive types is large then this analysis will not

specify much about the expression, as many different possible expressions will be possible

within each classification, all differing in complexity, allowing the possibility that an

expression of a higher type could be intuitively simpler than that of a lower. This is

especially likely if the hierarchy of expressivity only encodes one aspect of the

expression’s potential complexity. For example comparing arithmetic expressions over the

integers and reals, the solution set of  can only be expressed in the reals, but is

much simpler in every other respect than many equations over the integers32, similarly the

task of computing the number of zeros of an equation is computable over the reals but not

over the integers [128].

If the analysis is fine-grained and fairly complete in its coverage of the potential

aspects of complexity in an expression, then this comes close to a language of

specification to which the complexity of the expression can be judged.

3.4.10 Dimension

The number of dimensions a modelrequires is some indication of its complexity.

Simple systems can often be depicted with one or two dimensions, whilst if a model needs

many dimensions, it might indicate that the relationship between these are necessarily

31.This is not always the case, for example compare the theory of real and integral arithmetic, many of the

problems (e.g. uncomputability) disappear when you move to reals.

32.As in the equation constructed in Chaitin [102], where the solution set is, in a real sense, unformalisable.

x
2

2=
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complex, in that they can’t be reduced to fewer. Cognitive complexity (section 8.5 on page

139) and the dimension of the attractor in chaotic systems (section 8.9 on page 141) use

this approach.

The number of dimensions is essentially a limitation on the expressiveness of the

possible formulations. This is thus really a sub-case of complexity as expressivity (section

3.4.9 on page 65).

Dimension is thus at best a coarse limitation on one aspect of a formulation’s

complexity. For example, to characterise the full range of cylinder shapes you need two

dimensions: height and radius, but there may be no relation between the two; to

characterise the cylinder shapes of fixed aspect ratio, such that their heights are prime

numbers (in some unit of measurement) takes only one dimension.

3.4.11 Ability to surprise

It is difficult to model complex systems, so it is likely that any model we have is

incomplete in some respect. If we have come to rely on this model (for instance when the

system has conformed to the model for some time or under a variety of circumstances) and

the system then deviates from that model, then we are surprised. The ability to surprise is

not possessed by very simple and thus well-understood systems, and consequently comes

to be seen as an essential property of complex systems.

This is not useful as a complete categorisation of complexity for several reasons.

Firstly, it is only relative to the sophistication of the model and our reliance on it. Secondly

such surprise could be the result of other things like simple ignorance or error in model

formulation. For example, we do not know whether the processes behind some apparently

unpredictable quantum effects are due to a complex internal chaotic process or a simple

fundamentally random one. Chaos theory tells us that completely deterministic

mechanisms can generate sequences of data that are statistically indistinguishable from

random sequences. This poses the question of whether such “random” processes are, in

fact, just very complex ones and hence merely reflections of our paucity in modelling (see

also section 6.2 on page 126 and the section entitled Order and Disorder on page 203).

3.4.12 Logical strength

One can think of statements as “holding within themselves” their logical

consequences, which are revealed when one applies the machinery of a logic's proof
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theory to them. This picture is formalised when one identifies a formal proposition with its

logical theory. Combining this picture of propositions with the principle that systems are

at least as complex as their subsystems leads to the conclusion that logically stronger

propositions are more complex33. Löfgren [293] uses logical strength as the basis for a

measure of ‘interpretative complexity’.

Viewing propositions like this compels one to accept that either the logic has been

effectively simplified by identifying all equivalent propositions with the same theory or

that each theory has a complex (and often infinite) set of labels. Propositions would

essentially be considered only from the point of view of their proof theory and not from

other frames of reference (e.g. their syntactic structure). This is especially obvious when

the contradiction  is considered, this is the strongest possible in classical

propositional logic and so by this characterisation must be themost complex!

3.4.13 Irreducibility

Irreducibility is a source of complexity. A classic example is the three body problem

in Newtonian mechanics, where the goal is to solve the equations of motion of three

bodies that travel under mutual gravitational attraction. This is analytically unsolvable and

hence is qualitatively different from any reduction to several separate 2-body problems34.

To characterise complexity as irreducibility is too extreme, for two reasons. Firstly,

this would mean that many formal systems would be counted as simple (see the example

in section 3.1.3 on page 44). Secondly this would rule out many meaningful comparisons

of complexity, for example if comparing three systems (primordial mud, a simple

organism, and us), one would be forced to categorize two of these as equal in complexity

(this is also the case with the second example in the “Complexity as a comparison” section

above (section 3.2 on page 46).

If irreducibility is to be allowed degrees and can be meaningfully defined so that

formal systems do not necessarily come out as simple then these problems are mitigated.

For examples see section 8.17 on page 145.

33.Or, at least, not simpler.

34.The five-body problem is even worse: five bodies travelling at finite speed initially can interact so that

they all disappear to infinity in a finite amount of time.

p p¬∧
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3.5 Complexity is Relative to the Frame of Reference

Repeatedly, in the analyses immediately above, we saw that the effective complexity

depended on the framework chosen form which to view/model the system of study. This

framework is very close to what Suppe called the ‘disciplinary matrix’:

“The disciplinary matrix contains all those shared elements which make

for relative fullness of professional work, models, ontological commitments,

symbolic generalisations, a language, with meanings specific to that

community, some interpretive symbolic generalisations, and so on.” [428]

p.495

In this subsection I will highlight some of the aspects of this framework in order to

prepare the ground for the definition of complexity in the next chapter.

3.5.1 The level of application

In the section on complexity as the midpoint between order and disorder (section

3.4.7 on page 62), we saw how the level of description greatly affected the interpretation

of its complexity. When we looked at the patterns themselves we came to a different

conclusion than when we were considering possible rule sets to generate those patterns.

This is also inherent in many of the examples (e.g. the gas example in section 3.1.4 on

page 44) or analyses above.

In fact, complexity often appears when we are seeking to cross levels. In the ant

colony example (section 3.1.5 on page 45), I noted the great contrast between a

macroscopic and a component view of the system; the complexity occurred when I sought

to explain the former in terms of the latter. When we keep to a very similar or even unitary

framework, systems are often simpler; when we sought to explain the behaviour of the ant

colony in terms of both stimulus and response to the whole colony our task seemed a lot

easier.

The criticality of scale in the modelling of phenomena leads Badii and Politi [36] to

focus their characterisation of complexity solely on such hierarchical and scaling effects.

As they say:

“The study of the scaling behaviour of physical observables from

finite-resolution measurements appears, therefore, as an essential instrument

for the characterisation of complexity”[36] p.249
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3.5.2 Goals - type of difficulty

In the gas example (section 3.1.4 on page 44), the complexity of the gas depended

on whether we were trying to explain its behaviour statistically or deterministically (i.e.

with or without “randomness”).

When considering processing time as a measure of complexity, (section 3.4.4 on

page 59), in the checker-board colouring example the difficulty in terms of time was more

fundamental than that of program space: the AIC (section 8.2 on page 136) of all the

coloured checker-boards is small, but the computational complexity (section 4.3.3 on page

84) is large. In other examples, like that of producing a random sequence, the AIC will be

large but the computational complexity small, illustrating how the complexity is relative

to the task in hand, which is of course relative to your goals.

Another contrast is between the difficulty in trying to find (or induce) a suitable

model description compatible with set of data and that of trying to analyse a given model

description in terms of the properties of its content. Models that are simple to analyse can

sometimes be very hard to find.

3.5.3 Atomic parts

We saw how the base units of our descriptive framework affected the complexity of

our models. This was illustrated by the gas example (section 3.1.4 on page 44) - whether

we included “randomness” or “noise” as a basic (and thus unanalysed in this framework)

element of our framework effected the complexity of the description.

Similarly in the ant colony example (section 3.1.5 on page 45), whether we took the

individual ants as the atomic units of our description or just looked at the colony as a

whole mattered greatly.

Which parts are considered “atomic” (or merely more basic or primitive) is just one

aspect of the language of modelling or description, but it is important as it ‘anchors’ what

one’s starting points are to be. For example, the complexity of determining the tape that

results from the action of Turing machine may be very different from determining the

Turing machine that will terminate with a given tape.

3.5.4 The language of description

That the language of representation and modelling is critical to the effective

complexity, is clearest in the programming language example (section 3.1.8 on page 46).
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Here the language is completely explicit and makes a clear impact upon the task in hand.

This example has many parallels with the mathematics example (section 3.1.3 on page

44). In mathematics there are two distinct difficulties: learning to use abstract and

expressive mathematical languages and using these to solve a problem. Frequently if a

problem appears insoluble the solution lies in shifting to a more powerful and expressive

language to attack the problem from35. Toulmin goes further, he says:

“The heart of all major discoveries in the physical sciences is the

discovery of novel methods of representation, and so of fresh techniques by

which inferences can be drawn – and draw in ways which fit the phenomena

under investigation. The models we use in physical theories,… are of value to

physicists primarily as ways of interpreting these inferring techniques, and so

of putting flesh on the mathematical skeleton.” [438] p.34

In the car engine example (section 3.1.6 on page 45) we saw how the different ways

of modelling it effected not only our perception of its workings but also our method for

interacting with it. These models depended crucially on the framework of mechanical

understanding we had. If we had looked at a slightly different engine (e.g. a steam engine)

we would form slightly different models of it, but these would very probably be on a par in

terms of sophistication with those we formed of the car engine. The critical determinant of

the complexity of our models arose not so much from the happenstance of the particular

example as from our language of understanding and representation of engine mechanics.

I will, like others (e.g. Kauffman [249]), restrict my application of the concept of

complexity to representations within specific language systems. Thus talking about

complexity will necessitate indicating the language of representation that this is relative

to. Here I intend the term “language” to have a wide interpretation which includes, but is

not limited to, formal and natural languages. I am essentially using language as the most

powerful idea available to capture the interaction and dependence of expressions of

models to a framework.

35.See also Simon in [412].
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The closeness of the relation between models and the language they are expressed in

is implied in the following quote from Kuhn:

“So if anyone asks:’ What more is there to look at in science besides the

models, the actual phenomena, and the relationships between them?’ we can

answer ‘The structure of the language used in a context where a scientific

theory has been accepted.’” [161] p.44
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4 A Definition of Complexity

Complexity is that property of a model which makes it difficult to

formulate its overall behaviour in a given language, even when given

reasonably complete information about its atomic components and their

inter-relations.36

This is a general definition, which is intended to have different interpretations in

different contexts. It relates the difficulty in formalisation of the whole to that of the

formalisation of its parts (typically a ‘top-down’ model compared to a ‘bottom-up’ one) in

the language. It is only applicable in cases where there is at least a possibility of gaining

significant information about the components, thus clearly separating ignorance from

complexity. Different conceptions of complexity depending on the base language chosen,

the type of difficulty focused on and the type of formulation desired within that language.

The important aspects of this approach are that:

• it applies to models rather than natural systems;

• complexity is distinguished from ignorance;

• it is relative to the modelling language it is expressed in;

• it relative to the identification of components and overall behaviour;

• complexity is a global characteristic of a model;

• you will get different kinds of complexities from different types of difficulty;

• complexity represents the gap between component knowledge and knowledge of

global (or emergent) behaviour;

• since difficulty is sometimes comparative, complexity will be also.

Using the picture of modelling I presented in section 2.3 on page 33 complexity is

the difficulty of finding a description of the overall behaviour of a model. This description

is also a model description, so we are dealing with (at least) two models here: the model of

the ‘components’ and their interactions and the model of the resultant overall behaviour. I

will call the former theobject model and the later theoverall model. The complexity is

36.Some aspects of this have been pointed out independently by other authors, e.g. Grassberger [194] talks

about complexity as “difficulty”, Kaufman [249] relativises it to the language of representation,

Raccoon [365] talks about comparing a top-down vs. bottom up approach, etc. but I have not see these

aspects combined in this way.
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thus the difficulty in finding an overall model description for the resultant behaviour of the

object model.

Perhaps the simplest case is where the object model is a data model and the goal is to

find a description in some modelling language whose content subsumes the data model

content and is as specific as possible. The difficulty of ‘finding’ this description depends

upon how this is sought and the criteria for what would constitute an acceptable solution.

This is the basic situation that occurs in many machine learning set-ups (as discussed in

section 2.4 on page 38), where the problem is to design or discover process to find such

descriptions. The situation is illustrated in figure 17 on page 73.

 Figure 17.Finding a description to cover a data model

Then measuring this difficulty implies a mapping onto a numeric structure. The

‘search’ process occurs by acting on the model descriptions so that the measure of

difficulty is a measure upon the modelling language. Thus we have a ‘chaining’ of models

(as described in section 2.2 on page 28), Thus the complexity here is a numeric model of

the difficulty of finding a model description that meets some criteria for matching (e.g. by

what I called subsumption or approximation in section 2.2 on page 22) the data model of

the phenomena under consideration.
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 Figure 18.Measuring the difficulty of finding a model description

Of course, most modelling situations are more complicated that this. In general the

object model will not be a simple data model but one that supports some inferences in the

form of predictions from initial conditions. The method of finding a description for the

resulting predictions might not be an inductive one but an analytic one based on known

properties of the description. The criteria for the sought-for formulation of overall

behaviour might include the acceptability of trade-offs between the error, specificity and

cost of finding this description.

There are many different types of complexity involved in actual examples of

scientific modelling. Conflation of these into a single “complexity” of scientifically

modelling a certain system will generally result in confusion.

There might be:

• the complexity of the data: the difficulty of encoding of a data model compactly

given a coding language;

• the complexity of the informal (mental) model: the difficulty in making an

informal prediction from the model given hypothetical conditions;

• the complexity of using the formal model to predict aspects of the system under

study given some conditions;

• the complexity of using the formal model to explain aspects of the system under

study given some conditions.

Each of these will be relative to the framework it is being considered in (although

this and the type of difficulty may be implicit). Further if attention is switched to the
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process of measurement involved in the production of the data or the process of improving

the model then you get more corresponding complexities. Some sets of complexities will

be easier to relate than others: there may be a close link between the complexity of the

data and the complexity of the formal model to explain that data (relative to an encoding

of that data into the appropriate formal language) but a more distant link between the

complexity of the data relative to a formal language and the informal model used by the

scientist in order to guide her search.

To take a more concrete biological example, the biological complexity of a model of

an organism (the difficulty of explaining its functioning in terms of its genetic make-up)

and a sort of environmental evolutionary complexity (the complexity of a model of its

behaviour with respect to an environment in terms of the evolutionary pressures that

created it) may be almost completely unrelated. Unfortunately, such different complexities

are often conflated into one. This has considerably muddied the debate about whether

there has been an increase in the complexity of organisms over the course of evolution

(see [71, 221, 147] and section 6.6 on page 130).

In general, the complexity of natural systems or natural phenomena are closely

associated with the complexity of their most appropriate models, but typically, in order to

objectify the derived measure of complexity these models are relativised to some

privileged framework (where this privilege is either argued for or established by the

traditions and methodologies of the field). Which are the most suitable choice of models

can be greatly influenced by the modelling language and the tolerance of error and

vagueness. For more detail on this see Appendix 6 - Complexity and Scientific Modelling

on page 199.

There are a number of aspects of this definition that need clarification. I will discuss

these points below.

4.1 Aspects of the Definition

4.1.1 Identity of a system

Identifying whole systems is problematic in general. Many natural systems are

causally interconnected, making any division seem somewhat arbitrary from anything

approaching a general viewpoint. This problem is not solved by the seeming ease with

which we actuallydo assign useful identities to systems as this seems to result at least
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partially from a blend of psychological, pragmatic and accidental features. There may well

be true philosophical aspects of this distinction and I will briefly discuss how ideas of

complexity may be a part of this account (section 6.8 on page 132), but since we are

restricting ourselves to particular representations of any system in a language this is not a

problem for us; wedecide the level of interaction of the system with the rest of the

representation when we specify our representation andassign an identity to some portion

thus making it our focus. This does not eliminate the problem, of course, as it then

becomes criticalhow we model any real system if we want to discuss the complexity of an

aspect of it, but such concerns are common to many aspects of using representations of

real systems.

So for us asystem may just be a collection of statements intended to describe it

sufficiently. We necessarily decide questions ofsystem identity as a by-product of

representing the system to start with.

4.1.2 Atomic components

An atomic component is one that can not be reduced in terms of other components in

the representation chosen. The above definition thus only refers to systems where a base

layer of atomic components can be identified, because it is a definition that compares

descriptions. The choice of modelling framework will include deciding what constitutes

the components and the overall behaviour (see section 4.1.4 on page 78).

Not all representations will have atomic components. For example, one might

consider a web of social cause and effect. Here every cause might itself have several

sub-causes and every effect be composed of sub-effects. When tracing this web

downwards one may not reach any ultimate cause. The representation of this might well

be recursive, if not circular. However, if this is to be formulated in terms of a modelling

language, there will have to be a limit on the number of symbols used. This limited model

can be considered as an approximation of the representation.

Taking such a series of ever more detailed models might result in a series whose

complexity grows unboundedly. In this case one might be justified in describing the

complexity of the target system as infinite. On the other hand one might come to a definite

limit, where increasing detail increased the complexity progressively less, indicating a

limit, but this limit might not be unique. If one took a different series of system

approximations one might well get a different perspective and limit. In this case one could
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not ascribe a single complexity to the system with respect to this framework, unless one

reduced the scope of the study to a few aspects to ensure uniqueness (or at least close

convergence). These different series of approximations could be viewed as different

perspectives each giving a different complexity or else you could view it as simply

undefined since it would not have identifiable atomic parts in this sense.

In other words, if the approximations do not converge to the intended representation

then one would have a (greater than usual) problem with ascribing meaning to them in

terms of the target system anyway. This problem with ascribing meaning would include

the sense of the complexity of these approximations. To resolve this problem one would

need to change or augment your representations in order to make their intention reliably

determinable, one aspect of which is how they approximate to your intended model. Then,

if this method of approximation also allows one to approximate a meaningful idea of

complexity then this complexity can be taken as the limit of the complexities in the

approximations. Otherwise it is doubtful whether such an identification could be made

sufficiently stable to be at all useful37.

Another possibility is that, although there are no “atomic” parts at one level, there is

a meta-level description where there are such. For example a directed digraph may have

no unique starting node, but there might be a description of it in terms of nodes and arcs

where the symbols representing these might be basic.

4.1.3 Difficulty

There are many possible kinds of difficulties in formulating the overall behaviour of

a system. Each will have a correspondingly appropriate measure of complexity (see

section 4.3 on page 83 for examples of this).

If the size of the representation was the primary concern, i.e. the memory

requirements for the storage of it, then this criteria of size represents your measure of

complexity (see section 3.4.1 on page 57. For example, this might be particularly relevant

for humans when they have are dealing with a fairly meaningless representation (like

numbers) when they had no memory aids such as pencil and paper. The longer it is the

37.Several approaches in physics aim to explicitly capture this scaling behaviour, see Appendix 6 -

Complexity and Scientific Modelling on page 199 and section 8.16 on page 145 on measures to capture

hierarchical scaling behaviour.
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more difficult it is to deal with. This difficulty is easily overcome with simple aids. It is

also very sensitive to the language of representation. It is notable that humans tend to

chose internal representations that circumnavigate this limitation in short-term memory or

“chunking” as it is sometimes called38.

If one has plenty of memory,one knows the algorithmand is in a situation where

one has to deal with example problems of indefinite size, then the time the overall

behaviour takes to compute compared to the problem size will present the major difficulty.

This produces the time measure of computational complexity (see section 8.47 on page

162) and their corresponding classes (P, NP, NP complete etc.). This represents more of a

difficulty than mere space problems, but it assumes that the problem offinding an

algorithm has already been solved.

From a philosophical viewpoint the difficulty inreducing a big problem to ones

involving more fundamental units is a more major problem. This is the basic analytic

problem. There are different ways of tackling this, many of which involve changing the

language of representation (see section 5 on page 86). It is this aspect that may be most

important when studying the complexity of formal systems.

4.1.4 Formulating overall behaviour

What constitutes theglobal behaviour of a system must be, to some extent, decided

by the observer. For example, the overall properties of propositions may be considered

from the point of view of a proof theory of a logical language with respect to a language of

its theories. In less restricted systems, like a system of differential equations, there may be

a range of global behaviours to choose between.

This can not be an arbitrary choice, however. There are limitations to what could be

considered a global description. I list some below.

• The properties of the parts must determine the overall behaviour to a large extent.

This expresses something of the essential relation of parts and wholes. If they do

not determine it, then the “complexity” of formulating the behaviour relative to

these parts would be fairly meaningless.

• More general solutions should be preferred to mapping more specific properties

of the system. A general analytic solution to a system of differential equations is

38.From Miller [325]
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to be preferred over its value in a specific range.

• The language of representation can limit the choice of overall behaviour available

for formulation.

These constraints still leave considerable choice as to what could be considered as

“overall behaviour” and what the atomic components might be. In many cases it might be

arbitrary which is which, for example looking at a language’s syntax and semantics - you

might consider the complexity the difficulty of determining the syntax from the semantics

or vice versa,

Often the question of what it means to formulate the overall behaviour is closely

linked to the concept of “difficulty” considered relevant, see section 4.1.3 on page 77

above. For example, if “difficulty” means the computational time taken to compute the

result of a program, then the formulation of the overall behaviour is the results or trace of

that computation.

4.1.5 Complexity vs. ignorance

The most basic distinction that this definition makes is between difficulty due to

ignorance and difficulty due to complexity. You can only reliably attribute complexity to a

system when there is a possibility of knowing a reasonable amount about its components,

otherwise the apparent difficulty of formulation might be merely due to some simple but

unknown mechanism. Specifyingcomplete knowledge of the components and their

interactions is frequently impractical and often unnecessary; you sometimes can have

sufficient information to rule out any simple unknown factors but still be faced with

complex global behaviour.

For example an element of randomness is frequently taken to be atomically simple

in languages of representation because there is no possibility of obtaining information

about its general process (e.g. error terms).

One corollary is in situations where a large amount of ignorance is inevitable (e.g.

the universe at the instant of the big-bang). The above definition will just not apply to such

situations as near complete information about their components will not be available.

Whether this means that complexity isinapplicable to such cases or that we will justnever

know the extent of their complexity does not make any practical difference to the use of

the concept. This is the core of the arguments in the previous section see section 3.3 on

page 47 for more on the scope of the idea of complexity.
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4.1.6 As a gap between the global and local

Often complexity represents a gap between the ease of representation of the

component parts and the difficulty with respect to the overall behaviour of the system39.

This is a key characteristic ofemergentbehaviour.

Thus a model of the brain may be seen as complex because of the difficulty of

explaining its over-all behaviour from the interaction of its parts (usually considered to be

its neurones). The extent of the irreducibility of this difficulty is due to the fact that we are

largely ignorant of the parts’ processes and interactions.

This is not to say that all complexity must result in a contrast of levels of

description. It is just when the contrast between different descriptions is so marked that it

is practically impossible to translate between descriptions (great complexity) that this

produces emergence. An example is the gap between the mental and physical

worlds [116]40.

4.1.7 The comparative nature of complexity

Since, given a similar framework, difficulty is comparative so is complexity. Much

of the utility of a concept like complexity comes from estimating the degree of difficulty

of a problem and in attempts at simplification. In order to be able to use these aspects the

model of complexity chosen needs to be comparative; you need to be able to say that one

representation is more complex than another. For example, you might wish to compare the

complexity of different axiomatisations of a logic.

The extreme case of merely classifying systems as either complex or simple is a

(sometimes less useful) special case of this (see section 6.7 on page 131). It is merely a

much coarser ordering. There are those who reserve use the label of “complexity” for

holistic systems41. This is fine but tends to deprive the word of many of its connotations.

This is often a reaction to limited internal system-theoretic models of complexity which

take one aspect of complexity with respect to only one framework for which some sort of

privilege is claimed42.

39.See Raccoon in [365] for a clear account of this.

40.Pribram in [360] even attributes some complexity to the ‘gap’ between the hemispheres of the brain!

41.Or non-mechanistic systems, see Rosen [389]
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4.1.8 The existence of complexity

It may be argued (by an extreme optimist) thatall difficulty in formulation of overall

behaviour is due to ignorance (as Waxman did in [463]). In which case complex systems

would not “really” occur, i.e. all complexity is only apparent. Counter-examples of a

formal nature tend to discount this possibility (see the example in section 3.4.5 on page 60

above).

Another more common example is the game of chess. Here the component rules and

their interaction are completely specified, but the questions of overall specification, like

determining a perfect strategy are still very difficult.

4.1.9 Relativisation to a language

Many examples from the previous chapter (section 3 on page 44) illustrate how the

complexity of a representation can change when the language it is expressed in changes.

This is a vital property of complexity as one of the principal tactics (as far as humans are

concerned) used to simplify representations is to change the language they are embedded

in (section 5.7.4 on page 123).

I mean the scope of “language” to be fairly wide - it will include informal as well as

formal languages, natural as well as symbolic. Of course, the more informal the language,

the more informal the derived measure of complexity it will imply relative to some subset

and difficulty. It is doubtful you could formally show a complexity comparison between

two poems, unless the scope of the language they were compared in and related to was

sufficiently specified.

4.2 Examples

In addition to the examples of common usage above in section 3.1 on page 44, I

present a few examples to illustrate the workings of the above definition. As I will deal

with formal languages below (section 5 on page 86) these will be concerned with other

areas.

42.It is ironic that it is the holists who have reduced the meaning of complexity and simplicity to that of

natural and formal systems.
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4.2.1 The flight behaviour of a herd

Consider a hypothetical herd of animals, in which the flight behaviour of each

individual is fairly well understood in terms of its reaction to danger, its wish to follow

others of its kind, etc., where we are trying to understand the flight behaviour of the whole

herd in terms of its overall direction and path. If it turned out that all the animals always

followed one specified leader, or all went in a direction represented by the average of the

separate directions they would have gone individually then we would be justified in

calling the flight behaviour of the herd simple. If the behaviour turned on the precise

configuration of the herd at the time of attack, so that the animals followed different

individuals at different instances as the configuration developed, we would be justified in

calling the behaviour more complex.

To illustrate how the language can make a difference consider a case where the

language did not take into account the direction of travel (of individual or herd) but only

the distance and average speed. In this case, the behaviour might be simple, despite the

fact that the behaviour is complex if you had to take the direction into account.

The type of “difficulty” can also be crucial. Given a language which includes

direction and speed, a predator might be concerned with the difficulty of predicting in

which direction the herd will initially set off, while an ecologist might only be concerned

with the eventual direction and distance a herd travelled until it settled down. The first

might be difficult to predict, the second easy; in the first case the behaviour of the herd

would be complex while in the second it would be simple.

4.2.2 Cellular automata

Cellular automata have become icons of complexity in physics (due to Wolfram’s

promotion of them as such [471]). They are described in very simple local terms that are

easy to compute (simple enough that one could imagine them modelling real physical

properties) but have complex global properties43.

Here the specification of the parts is easy (an initial binary pattern and a simple rule

for determining each bits next state, e.g. for each bit: 1 if the sum of bits of it and its two

neighbours is odd, 0 otherwise). The complexity of the result after a certain number of

iterations given the initial rule and bit pattern is dependent on the language of such

43.For an account of this see Wolfram [473].
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formulation. It may be easy to formulate some statistical results for a large class of such

rules but very difficult to predict if certain sub-patters will occur.

4.3 Relationship to Some Other Formulations

Broadly, existing measures of complexity can be seen as either:

1. A special case of the approach given above in Section 4 above;

2. A relativisation of the approach either to some physical attribute (e.g. scale) or

some ‘privileged’ framework to ‘objectivise’ it.

3. A weak characterisation of complexity better suited to some other descriptive label,

such as ‘information’.

I consider a few existing formulations of complexity below, for some others see

Appendix 1 - A Brief Overview of Some Existing Formulations of Complexity. The

strength (or otherwise) of their claims as important or general measures of complexity

thus rests with the critically of the type of difficulty they measure, the range of systems

they apply to and the appropriateness of the underlying descriptive language.

4.3.1 Number of inequivalent descriptions

Extending the approaches to complexity taken by Rosen and Pattee (see section 6.7

on page 131), Casti [88] defines complexity as the number of nonequivalent descriptions

that an observer can generate for a system it interacts with (see also section 8.29 on page

152). The observer must choose a family of descriptions of the system and an equivalence

relation on them - the complexity is then the number of equivalence classes the family

breaks down into given the equivalence relation.

This can be seen as a special case of my definition where the language of modelling

is implicitly determined by the family of descriptions, their equivalence relation, and the

relevantdifficulty (being that of the coherence of the descriptions). If one had only one

possible description that was completely coherent, one could claim that (with respect to

the language) one had the representation of the system. If there were more then there were

evidently incoherent aspects in the description that admit to alternative but not

simultaneous description. See section 8.29 on page 152 for examples.
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The trouble with this is that it is very difficult to ascribe any coherent meaning to the

resulting measure, especially if one goes beyond a categorisation of one/many/infinite. In

many languages (especially infinite ones) once one has two inequivalent descriptions of

something then one can immediately construct a third inequivalent description by mixing

parts of the first two, then construct a fourth and so on indefinitely. In other, suitably

expressive languages one can always construct inequivalent descriptions givenany

particular subject and non-trivial equivalence relation, in which case there would be no

simple systems. This makes using this particular measure of complexity difficult to use to

make fine complexity judgements.

4.3.2 Effective measure complexity

EMC [194] can be seen as the difficulty of predicting the future values of a

stationary series, as measured by the size of regular expression of the required model. See

section 8.16 on page 145 for other related examples of this kind of approach.

4.3.3 Computational complexity

Computational complexity (section 8.47 on page 162) can be seen as the asymptotic

difficulty (in terms of computational resources - typically time or storage space) in

computing the output relative to the size of the input, given the specification of the

problem. Here the difficulty is that of time. The overall description is the results of the

computation, the bottom-up description is that of the problem, where the system is the

computer program. Again this is a special case of my definition when one already has the

ideal program for calculating the results. It is thus a residual complexity concerned with

the practicalities of computation once one has solved the analytic aspects.

4.3.4 Algorithmic information complexity

Again, this can be seen as a special case. The algorithmic complexity is the minimal

difficulty of storing a program to reproduce any particular pattern/number/index44. The

overall description is the program and the bottom-up description is the original pattern and

the language of description is (typically) a Turing machine. This is thus an indication of

44.Alternatively this could be taken as an estimation of the time taken to find an expression in a bottom-up

enumerative search.
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the amount of essential information (i.e. incompressible with respect to a Turing machine)

inherent in the pattern. For more on this seesection 8.2 on page 136.

As argued above (section 3.4.1 on page 57) information is at best a weak measure of

complexity unless applied at an abstract level.

4.3.5 Shannon entropy

Shannon Entropy, can be seen as the difficulty of guessing a message passing down

a channel given the range of possible messages. The ideas is that the more difficult it is to

guess, the more information a message gives you. This was not intended as a measure of

complexity, but has been used as such by subsequent authors. See section 8.36 on page

156 for related approaches.

4.3.6 Crutchfield’s “topological complexity”

The number of states in the smallest model in the minimal language where this is

finite, is called the “topological complexity” in [122]. This is the difficulty of finding (in a

bottom-up search procedure) a correct model, once the appropriate language has been

chosen. Here the notion of complexity is relativised to the hierarchy of formal languages.

This is not necessarily uniquely defined as the formal languages are only in a partial order.

Also when it comes to stochastic languages, a minimal model roughly corresponding to

“anything can happen” could generate any data. See section 8.32 on page 153 for related

approaches.
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5 Applications of Complexity to Formal Languages

5.1 Types of Complexity Involving Formal Languages

As noted in the previous section, complexity is relative to the kind of difficulty that

concerns one most. Frequently this is the limiting factor in a task.

For example, if one has already programmed a computer for a certain search task,

the remaining difficulty is represented by the time and memory this search will take to

complete. If, further, one is in the happy circumstance where the speed and capacity of

computers is growing exponentially (as it has been in the last few decades), then a critical

factor will be whether the time and memory requirements also grow exponentially with

the size of problem, or merely in a polynomial fashion. If the later is true, one will only

have to wait, for the problem to become tractable (assuming the current trend in

computing power continues), while this is not the case, the program is likely to remain

intractable using this algorithm. This sort of question is dealt with by the measures of

Computational Complexity (see section 8.47 on page 162).

Similar examples of possible limiting factors include the size of matrix required for

discriminating the independence of expressions (section 8.40 on page 158), the ease with

which expressions can be compressed (section 8.2 on page 136), the length of proofs

(section 8.19 on page 146), the predictive difficulty of modelling using regular languages

and a language’s position in the Chomsky hierarchy [122].

One I wish to concentrate on is that corresponding to the difficulty in analysing

expressions in a formal language, which I will call the “analytic complexity” of an

expression. In order to analyse an expression, one tries to trace its roots, i.e. to decompose

it according to some system. The language within which one attempts this will be critical.

For example some logical theorems may be quite simple to decompose as an expression

but difficult to decompose in terms of proof, for other theorems the opposite might be the

case.

Such an analytic process can be seen as a possible strategy fordeducing the overall

properties of a model or expression. In this light, analysis by decomposition is

complementary toinducing the properties by seeking a model for there properties. In other

words the ease with which a model can be decomposed reflects that model’s accessibility

to analysis and in this way obviates the need for a lengthy inductive search process. So in
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situations where analysis is feasible it becomes the critical factor in the search for an

overall formulation of its behaviour.

5.2 Expected Properties of “Analytic Complexity”

Firstly I will look at what properties one might expect of such an “analytic

complexity” in the context of formal languages.

5.2.1 Independent of the particular symbols used

A measure of complexity on statements in a formal language should be independent

of the particular symbols used; it is the pattern of the expression that encodes its meaning.

It should be immaterial whether you write “a∧b” or “statement1 and statement2” if the

corresponding formal languages are isomorphic.

5.2.2 The complexity of sub-expressions should be less than the whole

That a sub-system or sub-expression should be no more complex than the system or

expression it is part of, is perhaps the most commonly accepted property of complexity. It

is rare that a proposed measure of complexity does not obey this rule (but Abstract

Computational Complexity is a rare counter-example, section 8.1 on page 136).

If one considered that, in some circumstance, an expression was less complex than

one of its parts then, presumably, there would be some mechanism for preventing this

“buried” complexity from being fully realised in the whole. In this case, only an

abstraction of the full expression is being considered, in which case the complete

representation of this abstraction would be different from the complete expression.

Sometimes this is because of a confusion between the syntactic content of an expression

and some other aspect.

So, for example, in a first-order logic with equality one might consider all

substitution instances of identity equally simple because from a proof theoretic view they

perform a similar role, despite the fact that some of these instances seem to (syntactically)

contain arbitrarily complex sub-expressions. Either for their purposes they are considering

all such instances as thesame as identity, in which case a different language (where this

identity is enshrined) is essentially being used, or they are considering the expression from

within the language of its proof theory. In either case the language used is not the syntax of

the expressions (over which the sub-expressions are being taken) but the syntax of some
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proof theory, so it is not surprising that it does not have these complex parts when

expressed in these ways.

5.2.3 Expressions with no repetitions are simple

Since I am, for the moment, considering complexity over a potentially wide range of

languages I need to define what I mean by atomic statements. By atomic statements I

mean expressions that have no constituent syntactic parts (in that language). Of course it is

possible that in some systems there are no atomic statements (see section 4.1.2 on page

76).

Atomic expressions are assyntactically simple as you can get. It is reasonable to

allocate them a minimal complexity. Similarly, in a proof theory, a one line proof just

listing an axiom would be a minimally complex proof.

One might object that syntactically atomic symbols may have complex meanings,

but if we were to attempt tomeasure the semantic complexity of models, we would need

to formalise this in a language so as to distinguish the relevant semantic properties. The

“semantic complexity” would be relative to this new language.

Expressions with unrepeated atomic symbols, do notuse the reference denoted by

such a symbol, because for there to be any meaning one needs somehow to establish an

identity indicated by a symbol and then make some statement about it. If the only

reference by a symbol is made once then that reference specifies its sole property (for the

expression), there can not be anything more. It is like answering the question “Who wrote

the Iliad?” with the name “Homer”, but if thesole property of the name “Homer” is that it

is the author of the Iliad then it does not get you very far. If we knew anything else about

Homer (for instance that he was a single historical being45), then the appellation could be

meaningfully used, and some complexity appear.

Of course, if one is talking about a language which relatesgroups of

sub-expressions, then the symbol may be meaningfully repeated elsewhere (in another

sub-expression) to establish its purpose. Logical constants in various proof theories have

this role. Again, it is necessary carefully to distinguish between the complexity of

expressions within a syntax and the complexity of proofs within the syntax of a proof

theory.

45.I am told that this is unlikely.
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For example, an expression with no repetitions, like “When at a constant pressure,

heat causes gases to expand.”, may have a complexity within a language of scientific

verification, as the definitions of the words are all established elsewhere. If, on the other

hand, this sentence was used where none of the words had a definition or defining context,

it could, on its own, perform no complex role.

5.2.4 Small size should limit the possible complexity

In very small systems, there might be a limited number of different relationships

between its components. In this case, one would expect that there would be a limit to its

complexity. However, the complexity of a system can grow extremely quickly with its

size, for example there is a Turing machine with only five internal states that halts after

exactly 23,554,768 steps [303].

5.2.5 There should be no upper limit to complexity if the language is suitably

generative

In most situations one feels that there is a limit to how far one can simplify

statements, but it is always possible to complicate them. The whole point of a generative

language is that one can construct an expression as complex as necessary. So it would be

very surprising if there was an general upper complexity limit for expressions in such a

language.

If there were such a limit, what could it mean? One possibility is that although the

expressions may appear more complicated they were not “in fact” so, but in this case we

are no longer dealing with the expression itself but that expression from within a different

language context represented by the meaning of “in fact”. For example, there is an upper

limit to how Algorithmically Complex (section 8.2 on page 136) you can prove strings to

be fromwithin a wide range of formal systems but this does not mean there was a limit to

the Algorithmic Complexity of strings. On the contrary, most strings have an Algorithmic

Complexity close to their length; it is a limitation on the power of proofs within the

systems that is at the root of this limit.

Another possibility could arise if the expression's syntax were limited in some way

so as impose an upper limit on its possible complexity. If such a language was generative

it would have to generate an infinite number of expressions of limited complexity. Thus

most of these expressions would have to not get more complex as they increased in size.
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This would make for an odd language indeed, stuffed with unwieldy but simple

expressions. They do exist. An example is a language with an infinite supply of atomic

symbols and a connective “→”, where only atomic symbols and only expressions of the

form x→y are allowed where x and y share no atomic symbols. In most general expressive

languages I would not expect this to be the case.

5.2.6 The complexity of irrelevant substitutions

One way of dealing with complex systems is to try and break them down into a

number of simpler systems. If they are not broken down intoindependent sub-systems,

there is a risk of losing some aspects of the original system in the process. If all the

subsystems are mutually irrelevant to each other, then nothing will have been lost in the

analysis. In this case the complexity of the whole system would be wholly in these

sub-systems, for there is no other interaction between them at the system level.

In particular, if a sub-expression is substituted for an atomic symbol into another

expression and this sub-expression is irrelevant to rest of the main expression, then the

resulting expression could be completely and successfully analysed into those two parts.

Thus we would think of  as a substitution instance of identity

 with  substituted for x; in some systems the two levels would not

syntactically interact. In the example the complexity of  derives

completely from the complexity of  and the complexity of .

Here we would have to be careful to separate out the complexity of the expression's

syntax from the complexity of its proof theory. If, in the logic's proof theory,

and  were inter-derivable and interchangeable then there would be some interaction

between the levels in the sense that it would mean that an implication could imply another

implication (itself).

There might well be a close connection between the complexity of an expression's

syntax and its derivation (or theory) in a particular logic, but this is not necessarily the

case. For example, in some inconsistent systems of Logic, the atomic proposition,a, might

be derivable after a lot of work and so it might not have a simple derivation.

Another example is a system of differential equations. Some such systems are

linearly separable, in which case the solutions can found separately for distinct variables.

The variables do not interact, except that they both occur in this set of equations. You can

a b¬∨( ) a b¬∨( )→

x x→ a b¬∨( )

a b¬∨( ) a b¬∨( )→

x x→ a b¬∨( )

a b¬∨( )

b a→
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meaningfully talk about each separately without going into the details of their solutions

and add the complexity back again by substituting the solutions later, without invalidating

any of the previous discussion.

5.2.7 The complexity of relevant relating of expressions

When two relevant expressions are related then this relation is more complex than

either of the parts. The sub-expressions A and  are relevant to each other.

The joined expression  is clearly at least as complex as either of

the sub-expressions it contains (by the sub-system property) and the top-level implication

could add to this complexity.

In a densely connected system, where every part is relevant to every other, it is

difficult to reduce the system to simpler subsets of the original, without losing important

information. A popular way of expressing this is by saying that the whole is greater than

the sum of its parts.

Imagine a very incestuous party, where everybody has known everybody else for a

very long time. Here it is not possible to gain a complete picture of the system of

relationships by studying sub-groups. Every time study is restricted to a subgroup of the

total information is lost about some of the relationships which effect those in the

subgroup. Conversely recombining these subgroups into the whole again is accompanied

by a regaining of this lost complexity.

The simplest party is one where nobody interacts with anybody else. Such parties

are no fun at all; nothing can come out of them. Everybody understands exactly what is

going on.

A normal party is amenable tosome analysis into expressions for sub-groups,

classes, etc. but there are usually enough cross connections to rule out anycomplete

understanding of the situation. We are thus sometimes surprised by their outcome (maybe

this is why we have them).

5.2.8 Decomposability of expressions

Many of the above criteria are concerned with the decomposability of formula. Thus

we will see that such decomposability is strongly related to analytic simplicity, as the

easier it is to decompose without loss, the easier it is to analyse.

B B→( ) A→

B B→( ) A→( ) A→
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A statement in a formal language will be called decomposable if some coherent part

of it (larger than a single sign) can be substituted for a symbol so that that part is irrelevant

to the resulting statement. Thus the decomposability of a statement will be dependant on

the syntax of the language and the definition of irrelevance (or relevance). The idea is that

if such a substitution is possible then the two parts of the statement can be considered

separately, as their only connection is though the symbol that now stands for the

substituted part.

Relevance too will be defined relative to the syntax we are considering. I will take

two statements to be irrelevant to each other if they do not contain any of the same

sub-formula (in that syntax or in sub-syntaxes). This is a conservative definition of

irrelevance; no doubt many statements (or examples of reasoning) that do share some of

the same sub-structures could also be considered irrelevant to each other.

Thus a formula that can be repeatedly decomposed as described above will be

considered simple compared to one that can not. This reflects our intuitive feeling of the

complexity of such formula.

For example, the formula is considered as

identity  with the sub-formula  substituted forx. On the other hand

the formula  can not be simplified in the same

manner.

I have argued that an number of constraints should apply to the complexity of

formulas: a formula with no repetition of its sub-formulas is ultimately simple (I will refer

to such formulas as “simple”) - it can be completely decomposed into single symbols; if a

formula can be irrelevantly decomposed into parts then its complexity is just the sum of

these parts; and that a formula must necessarily be at least as complex as any of its

sub-formulas.

There will be formulas that can not be decomposed at all in this manner (in the same

syntax). I will call such formulas “complex”. Thus I still have the question of how I

compare such complexes with respect to their complexity. One way would be to call all

such complexes equally complex (producing something akin to a discrete metric space),

but this would not reflect our intuitions very well; identity would be as complex as

suffixing!

a b→( ) c→( ) a b→( ) c→( )→

x x→ a b→( ) c→

a b→( ) c→( ) b c→( ) a→( )→



Syntactic Measures of Complexity

- page 93 -

5.3 Measures of Analytic Complexity

The above properties (listed in Section 5.2 immediately above), provide constraints

on possible numeric measures of complexity. The characterisation of measures which

meet these constraints and some simple results are now considered. I am not concerned

with finding a set of axioms that show the existence and uniqueness of a measure but

rather the converse – given the above properties I wish to find what measures exist which

satisfy them. This reflects my stance that complexity orderings are not innate but are rather

models of aspects of our descriptions to reflect the difficulty we have in finding or

analysing them.

A practical result of this is that often the assignment of numbers to reflect the

complexity comes before a complexity ordering. Occasionally these assignments are

intended to give an indication of the exact level of difficulty (as in storage space),

sometimes they are intended to merely give an indication of the order of magnitude of the

difficulty, but often they are only intended to induce a complexity ordering of expressions.

Thus the measures fall somewhere between the ‘ratio’ and ‘ordinal’ measures as

categorised by Stevens in [423].

A decision to model the difficulty of finding or analysing a model description by

complexitymeasure (i.e. a homomorphism into the reals) relies on the implicit assumption

that the domain is sufficiently constrained so that it is meaningful to assume that a

complexity ordering relation will be connected (that is for every pair of itemsx, y either

x≤y or y≤x). Usually this is entailed by the numerical definition of complexity on the

whole domain of possible expressions.

5.3.1 Notation

Let X ≡df X0UX1UX2, be a set of symbols, whereX0, X1 andX2 are disjoint sets. It is

intended thatX0 be a set of constants and variables,X1 be a set of unary symbols andX2 be

a set of binary connectives46.

46.Although I only consider up to binary symbols here, the results could easily be extended.
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Let L be a context-free language with the obvious production rules:

c∈X0 ⇒ c∈L

u∈X1,x∈L ⇒ (ux)∈L

b∈X2, x,y∈L ⇒ (bxy)∈L.

The maximum depth of a formula,depth(x), is defined recursively in the

normal way:

x∈X0 ⇒ depth(x)=0

depth(ux) = 1+depth(x)

depth(bxy) = 1+max{depth(x), depth(y)}

Similarly with the size of a formula,|x|:

x∈X0 ⇒ |x|=1

|ux| = |x| + 1

|bxy| = |x| + |y| + 1

Let ℘(x) be the set of well formed subformula ofx. Note thatx∈℘(x).

Thusx is a subformula ofy iff x∈℘(y). This is a reflexive and transitive relation.

DefineR(x,y) to be a minimal syntactic relevance relation onL thus:

R(x,y) ≡df ℘(x)∩℘(y) ≠ ∅, (Defn R)

i.e. x and y share a common subformula. This is equivalent to sharing a

common variable or constant. This is a symmetric and reflexive relation.

I will assume in all below that there is a sufficient supply of symbols inX0, so that

one can always find a symbol that is irrelevant to any particular formula. Formally:

x∈L ⇒ ∃c∈X0,¬R(x,c). (Suff Symbols)

If there is not add a suitable sequence of irrelevant symbols toL47.

Let xy/z (or sometimesx(y/z)) be the notation for the formulax where every instance

of y in x is replaced byz. If y∈X0∩℘(x) and¬R(x,z), xy/z will be called anirrelevant

47.There are two ways of doing this: by adding a infinite sequence of symbols into X0 or a sufficient but

finite supply of symbols toL without the production rules applying to them.
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substitution, as the formulaz is irrelevant to the formula it is being substituted into. If the

formula being substituted,z, is not a member ofX0 and the formula being substituted for is

a proper subformula of the formula it is being substituted into – I will call this anon-trivial

irrelevant substitution. This will form an important part of the theory.

A complex is a formula that can not be decomposed using a non-trivial irrelevant

substitution.

i.e.x is a complex if

¬∃y∈℘(x)-{x}-X0;¬R(xy/c,y), where c∈X0-℘(x). (Defn Cp)

where the sufficiency of symbols assumption above (Suff Symbols) ensures

that such ac can be found. The idea is that ifx∉Cp then there is a proper subformula,y,

(that is not a member ofX0), so thatx can be thought of as the join (by substitution) of two,

mutually irrelevant parts:xy/c and y.

Let the set of all complexes inL be calledCp. Note that trivially all members ofX0

are complexes since℘(x)-{x} is empty.

Following Krantz et al. in [271] I take ameasure onL to be a homomorphism from a

structure onL (e.g.<L, ⊕, ≤>) into a suitable structure on the reals (e.g.<ℜ+, +, ≤>),

where ⊕ is some concatenation operator defined onL, and≤ is an ordering relation onL.

For the structures given immediately above this is a functionC:L→ℜ+, defined onL into

the non-negative real numbers such that, for allx,y∈L:

C(x⊕y) = C(x) + C(y)

x≤y ⇔ C(x)≤C(y).

I will use ‘≤’ for both the ordering onL and the normal ordering on the reals.

Which I am referring to should be clear from the content. Similarly I will writex<y where

x≤y but noty≤x andx~y if x≤y andy≤x.

In all below assume x,y,z∈L andc,k∈X0.

5.3.2 Weak complexity measures

There is no natural and general concatenation operator onL since, in general, how

and where expressions are joined matters (due to the tree structure of members ofL).

Substitution is a general and natural operation, but this is essentially a ternary operation.
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However, there is a special case of substitution that can act in a similar way to a

concatenation operator, this is the case of irrelevant substitution. This corresponds to the

intuitions discussed in section 5.2.6 on page 90 above. This concatenation would be

defined:

x⊕y = xc/y, where c∈X0∩℘(x), ¬R(x,y)

but clearlyx⊕y is not uniquely defined as an operation inL since there can be

more than onec∈X0∩℘(x). However the intention is that the complexity of the result of

any irrelevant substitution for a member ofX0 will be the sum of the complexities of the

original formula and the formula substituted into it. In this way irrelevant substitution

performs a similar role to concatenation with respect to acomplexity measure. For clarity

and to ensure that the measures are well defined I will retain the use of explicit substitution

(e.g.xc/y) within L (instead of⊕, which I will reserve for use as an implicit relation as in

x⊕y=z, by which I will mean thatz is the result of an irrelevant substitution ofy into x).

The idea of a measure will remain that of a homomorphism between + inℜ+ and any

irrelevant substitution inL.

Translating the above formalisation of a measure using the substitution operation we

get: aweak complexity measure is a homomorphism from<L, ⊕, ≤> into

<ℜ+, +, ≤>, that is a functionC:L→ℜ+, defined onL to the non-negative real numbers

such that,∀x,y∈L:

c∈X0∩℘(x), ¬R(x,y) ⇒ C(xc/y) = C(x) + C(y) (Irrel Subs)

x≤y ⇔ C(x)≤C(y). (Subform)

To start with I will impose no constraints upon the ordering relation onL

(other than those implied byIrrel Subs).

Some simple results

Irrel Subs implies that the measure of all nullary symbols (X0) to be zero, that is:

c∈X0 ⇒ C(c)=0 (Nullary Zero)
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Proof:

Choose k∈X0, k≠c

C(k) = C(cc/k) as cc/k=k

= C(c) + C(k) by Irrel Subs

..................

This means that a complexity measure cannot be a positive measure, i.e. it is

not true to say that:

x⊕y > x.

An alternative form of irrelevant substitution is sometimes useful:

y∈℘(x), ¬R(xy/c,y), c∈X0-℘(x) ⇒ C(xy/c) = C(x) - C(y) (Alt Irrel Subs)

Proof:

C(x) = C(xy/c
c/y) as x = xy/c

c/y

= C(xy/c) + C(y) by Irrel Subs.

..................

If x andy are essentially the same formula but with differentX0 symbols (I will write

x≈y) then they have the same complexity (as argued for in section 5.2.1 on page 87

above).

Formally this is equivalent to repeated applications of:

c∈℘(x)∩X0, k∈X0-℘(x), ¬R(x,k) ⇒ C(xc/k) = C(x) (Symbol Change)

Proof:

C(xc/k) = C(x) + C(k) by Irrel Subs

= C(x) by Symbol Zero.

..................
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Decomposition (Decomp)

The first result, suggested byIrrel Subs, is that any formula can be decomposed into

complexes. i.e. for anyx∈L there area0,…,an∈Cp andc1,…,cn∈X0 such that

x = a0
c1/a1…cn/an

and for i<n, ¬R(a0
c1/a1…ci/ai,ai+1) (so the above could be written as the

relation:x= a0⊕…⊕an

and so

C(x) = C(a0) + … + C(an).

Note that this decomposition is not necessarily unique.

Proof:

By simple induction on length of x using a non-trivial irrelevant substitution when

x∉Cp. See section 9.3 on page 169 for this.

..................

The length of a decomposition is defined as the number of irrelevant decompositions

that are required (i.e.n in the above).

A weak complexity measure is determined by its values on the complexes,Cp. That

is, a function,g, onCp in L, g:Cp→ℜ+, such that:

x∈X0 ⇒ g(x)=0,

x≈y ⇒ g(x)=g(y)

x≤y ⇒ g(x)≤g(y).

will generate a unique complexity measure,C:L→ℜ+, onL via:

C(x) ≡df g(a0) + g(a1) + … + g(an),

for some decomposition: x = a0
c1/a1…cn/an, into complexes: a0,…,an∈Cp-X0,

n≥0, as above (unlessx∈X0, in which case it is its own decomposition) and hence extend

the ordering,≤, from Cp to the whole ofL, via:

x≤y ⇔ C(x)≤C(y).

Proof:
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Proof is by induction on the maximum size of formulas. In the induction step there

are two things to prove: thatC is well defined and that theIrrel Subs condition holds. The

first is shown using a lemma that one of¬R(x,y), y∈℘(z) or z∈℘(y) holds. The second

then comes out as a consequence of decomposition into complexes. Details can be found

in section 9.4 on page 170.

..................

Of, course the reverse is trivially true: a weak complexity measure onL results in a

generating function as above by simple restriction of its domain toCp. Thus there is a

one-to-one correspondence between weak complexity measures and such functions on the

complexes ofL.

I can now demonstrate the existence of (non-trivial) weak complexity measures by

generating such a measure from the functiong:Cp→ℜ+ defined:

x∈X0, u∈X1 ⇒ g(ux) ≡df 1,

Otherwise ⇒ g(x) ≡df 0.

This generates a complexity measure which “counts” the number of instances

of unary symbols in a formula that can be decomposed out by a non-trivial irrelevant

substitution. SoC(c)=0, C(uc)=1, C(u(uc))=2, C(u(u(uc)))=3, C(u(u(u(uc))))=4 etc.

but C(bc(u(u(u(uc)))))=0. Thus by simply increasing the size of the formula in this

uninteresting way we can increase its complexity – as discussed above (section 3.4.1 on

page 57) this is not very satisfactory,
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5.3.3 Weak complexity measures where simple repetition does not increase

complexity

I now add a condition so as to distinguish more sharply weak complexity measures

from those concerned with size, by ruling out measure such as the example above. The

extra conditions are:

c,k∈X0, c≠k, u∈X1, b∈X2

uc ≤ c (Unary Zero)

bck ≤ c (Binary Zero)

Thus

C(uc) ≤ C(c) = 0 and C(bck) ≤ C(c) = 0 soC(uc)=C(bck)= 0. (Zero)

This has the consequence that the complexity of an irrelevant join of expressions

using a binary connective is the sum of the complexities of its parts:.

¬R(x,y) ⇒ C(bxy) = C(x) + C(y) (Irrel Join)

Proof:

Choose c,k∈X0 such that¬R(x,c), ¬R(x,k), c≠k (Suff Symbols)

Then

C(bxy)= C(bx(cc/y))

= C((bxc)c/y) as c can not occur in x

= C(bxc) + C(y) by Irrel Subs

= C(b(kk/x)c) + C(y)

= C((bkc)k/x) + C(y) c ≠ k

= C(bkc) + C(x) + C(y) by Irrel Subs

= C(x) + C(y) by Zero.

..................
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Similarly

C(ux) = C(u(cc/x)) = C((uc)c/x) = C(uc) + C(x) = C(x)

By simple induction we can see that any formulas where there are no

repetitions of theX0 symbols that occur in it then it is has zero measure. Thus the above

conditions meet the requirement that expressions with no repetitions are simple that

resulted from the arguments in section 5.2.3 on page 88.

As above, a weak complexity measure under the extra ‘zeroing’ conditions is

determined by its values on the complexes,Cp.

A function,g, onCp in L, g:Cp→ℜ+, such that:

x,y∈X0, u∈X1, b∈X2 ⇒ c(x)=0, c(ux)=0, c(bxy)=0

x≈y ⇒ g(x)=g(y)

x≤y ⇒ g(x)≤g(y).

will generate a unique complexity measure,C:L→ℜ+, onL via:

C(x) ≡df g(a0) + g(a1) + … + g(an),

for some decomposition: x = a0
c1/a1…cn/an, into complexes: a0,…,an∈Cp-X0,

n≥0, as above (unlessx∈X0, in which case it is its own decomposition) and hence extend

the ordering,≤, from Cp to the whole ofL, via:

x≤y ⇔ C(x)≤C(y).

Proof:

Proof is identical to the generation theorem above, except for the extra condition on

the generating function,g, which transfers directly to the resulting complexity measure,C

– details of the previous proof can be found in section 9.4 on page 170.

..................

An example of this type of measure is generated from the functiong:Cp→ℜ+ thus:

x∈X0, b∈X2 ⇒ g(bxx) ≡df 1.

Otherwise g(x) ≡df 0.
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This produces a complexity measure which “counts” the number of instances of

complexes of the formbcc that can be decomposed out by a non-trivial irrelevant

substitution. HereC(c)=0, C(bcc)=1, C(bc(bcc))=0, butC(bk(bcc))=1 (whenc≠k).

5.3.4 Weak complexity measures that respect the subformula relation and

where simple repetition does not increase complexity

There is a natural constraint on orderings ofL, namely that of the subformula

relation (as discussed in section 5.2.2 on page 87). So next I consider measures from

<L, ⊕, ≤> into <ℜ+, +, ≤>, that is a functionC:L→ℜ+, defined onL to the non-negative

real numbers such that,∀x,y∈L:

c∈X0∩℘(x), ¬R(x,y) ⇒ C(xc/y) = C(x) + C(y) (Irrel Subs)

x≤y ⇔ C(x)≤C(y). (Subform)

wherex∈℘(y) ⇒ x≤y as well asbck, uc ≤ c.

All the above results still hold except the generation of measures from a function on

Cp, which needs to be adapted.

Such a weak complexity measure is determined by its values on the complexes, but

now we do not have as much freedom to allocate values onCp. So now a function,g, on

Cp in L, g:Cp→ℜ+, such that:

x,y∈X0, u∈X1, b∈X2 ⇒ c(x)=0, c(ux)=0, c(bxy)=0

x≈y ⇒ g(x)=g(y)

p0
c1/p1…cn/pn∈℘(q)-{q}

⇒ Σig(pi)≤g(q)

will generate a unique complexity measure,C:L→ℜ+, onL via:

C(x) ≡df g(a0) + g(a1) + … + g(an),

for some decomposition: x = a0
c1/a1…cn/an, into complexes: a0,…,an∈Cp-X0, n≥0,

as above (unlessx∈X0, in which case it is its own decomposition) and hence extend the

ordering≤ to the wholeL, via:

x≤y ⇔ C(x)≤C(y).
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Proof:

Again, the proof is identical to that in section 9.4 on page 170, except that we have

to check that the subformula constraint on≤ in L holds:

Now if y∈℘(q)-{q}, q∉Cp, then by the decomposition theorem above

y=p0
c1/p1

c2/p2…cn/pn for some p0,p1,…,pn∈Cp.

Now, C(q)

= h(q) by construction

≥ Σig(pi) by (3)

= C(y) by construction

..................

An example of this type of measure is generated from the functiong:Cp→ℜ+

thus:

x,y∈X0, u∈X1, b∈X2 ⇒ g(x) ≡df 0, g(ux) ≡df 0, g(bxy) ≡df 0.

Otherwise c(x) ≡df 1.

This produces a complexity measure which “counts” the number of non-trivial

complexes in the decomposition of a formula. HereC(c)=0, C(bck)=0 where c≠k,

C(u(ux))=0, C(bcc)=1, C(bc(bcc))=1, andC(b(bcc)(bcc))=2.

The trouble with the above method of generating a complexity measure is that it is

not easy to see what generating functions would satisfy the conditions. The following

alternative is a little clearer.

Any non-negative functionh:Cp→ℜ+, recursively generates a strong complexity

measure onL, thus:

p,q∈X0, u∈X1, b∈X2 ⇒ C(p)=0, C(up)=0 and C(bpq)=0,

x∈Cp ⇒ C(x)=C(a0) + … + C(an), where x has a decomposition: a0
c1/a1…cn/an,

Otherwise C(x)=h(x) + max{C(y)| y∈℘(x)}.

In other wordsg specifies the “extra” complexity assigned to a complex above the

greatest complexity of any of its subformula and the complexity of decomposable

formulas is built up in the normal way as the sum of the complexities of the complex in a

decomposition.
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Thus since any such complexity measure generates a non-negative function and a

non-negative function generates such a complexity measure in reverse, there is a one-one

correspondence between non-negative functions on the Complexes and these complexity

measures.

5.3.5 Strong complexity measures

Relevant Join

In the above measures what I call the ‘relevant join’ property does not necessarily

hold. This property is:

R(x,y) ⇒ bxy > C(x), bxy > C(y)

This deficiencies will be corrected with the setting up of “strong complexity”

measures below. Firstly I prove that the following three conditions are equivalent on a

weak complexity measure, in particular the version in (section 5.3.3 on page 100), for

b∈X2, x,y∈L:

(i) R(x,y) ⇒ C(bxy) > C(x), C(bxy) > C(y) (Rel Join)

(ii) y∈℘(x)-{x}, c∈X0-℘(x), R(xy/c,y) ⇒ y < x (Rel Subform)

(iii) y∈℘(x)-{x}-X0, x∈Cp ⇒ y < x (Subform of Complex)

Proof:

First I show that condition (i) implies the subformula property, then prove in turn

(i)⇒(ii); (ii) ⇒(i); (ii) ⇒(iii); and finally (iii)⇒(ii). This proof can be found in section 9.5

on page 175.

..................

Note that (as a result of the proofs in section 9.5 on page 175) any of the three

conditions above implies the subformula property, namely:

y∈P(x) ⇒ y ≤ x.

I can now define astrong complexity measure as a weak complexity measure

together with any of the three constraints above.

Again, in an almost identical way as above, we can generate strong complexity

measures from measures onCp, the set of complexes.
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A function,g, onCp in L, g:Cp→ℜ+, such that for allp,q∈Cp:

(1) p,q∈X0 ⇒ g(p)=0, g(up)=0 and g(bpq)=0

(2) p≈q ⇒ g(p)=g(q)

(3) p0
c1/p1…cn/pn∈℘(q)-{q}

⇒ Σig(pi) < g(q)

will generate a unique complexity measure,C:L→ℜ+, onL via:

C(x) ≡df g(a0) + g(a1) + … + g(an),

for some decomposition: x = a0
c1/a1…cn/an, into complexes: a0,…,an∈Cp-X0, n≥0,

as above (unlessx∈X0, in which case it is its own decomposition) and hence extend the

ordering≤ to the wholeL, via:

x≤y ⇔ C(x)≤C(y).

Proof:

Again, the proof is identical to that in section 9.4 on page 170, except that we have

to check that the subformula constraint on≤ in L holds:

Now if y∈℘(q)-{q}, q∈Cp, then by the decomposition theorem above

y=p0
c1/p1…cn/pn for some p0,…,pn∈Cp.

Now, C(q)

= g(q) by construction

> Σig(pi) by (3)

= C(y) by construction

..................

Obviously, any strong complexity measure has a unique restriction toCp that obeys

(1), (2), and (3) above. Thus there is a one-one correspondence between such functions on

Cp and strong complexity measures.
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This time anystrictly positive function on the non-trivial somplexesh:Cp-X0→ℜ+,

recursively generates a strong complexity measure onL, thus:

p,q∈X0, u∈X1, b∈X2 ⇒ C(p)=0, C(up)=0 and C(bpq)=0,

x∉Cp ⇒ C(x)=C(a0) + … + C(an), where x has a decomposition:a0
c1/a1…cn/an,

Otherwise C(x)=h(x) + max{C(y)| y∈℘(x)}.

Thus since any strong complexity measure generates a strictly positive function and

a strictly positive function generates a strong complexity measure in reverse, there is a

one-one correspondence between positive functions on the complexes and strong

complexity measures.

Perhaps the most straightforward of such functions,h, mentioned immediately

above is the constant functionh(x)=1. This measure captures the maximum length of a

chain of stepwise decompositions by (possibly relevant) non-trivial substitutions. This is

analogous to the Krohn-Rhodes measure of complexity based on the decomposition of

semi-groups (section 8.23 on page 148).

Other strong complexity measures include: the cylomatic complexity of the minimal

directed acyclic graph representation of formula (see section 5.4 on page 106 immediately

below), and the logarithm of the number of spanning trees of the same representation (see

section 8.31 on page 153).

Thus strong complexity measures have all of the properties argued for analytic

complexity above in sections 5.2.1 to 5.2.7. This still leaves a lot of choice, to allow the

capturing in such measures of different types of difficulty. I now look at one such in more

detail.

5.4 The Cyclomatic Number as a Measure of Analytic Complexity

I will define a possible way of comparing the complexities of complexes. Two ways

of breaking a complex up are by substituting for a (non-atomic) repeated sub-formula and

by breaking the top level connective into the separate parts. For example in seeking to

“break up” the formula  we could substitute for  to

make  and  or break the top implication to make  and

. This is not a decomposition in the above sense as both methods lose some of the

essential structure of the formula (the whole is more than the sum of the parts).

a a b→( )→( ) a b→( )→ a b→

a x→( ) x→ a b→ a a b→( )→

a b→
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Call the damage inflicted by such a breaking the number of sub-formula the two

parts now have in common. Now keep breaking the formula up until all the parts are

simple. Call the total damage of such a process the “analytic loss”. Now call the

complexity of the original formula the minimum such loss possible by such an “analysis”.

Note that here I am seeking to talk about the analytic complexity of the formula relative to

its syntax and above definition of irrelevance; I am not talking about the complexity of any

particular analytic process.

For example, we could first break  into

and  (with a damage of 1) and then  broken into  andx (with a

damage of 1). Thus the complexity of the formula would be no greater than 2. The only

other possibilities are to first break the formula into  and  (with a

damage of 3) or substitute for a (which does not progress the “analysis”. Thus the loop

complexity of the formula would be 2.

This, of course is quite a coarse account of the damage inflicted in such an analysis.

It says nothing of thesort of structural information lost in the process.

It turns out that this is bounded below by the cyclomatic number of a directed graph

when the formula is represented as a minimal graph. (see section 9.2 on page 169).

For example the formula  can be represented by the

following tree in figure 19.

 Figure 19.A formula represented as a tree

a a b→( )→( ) a b→( )→ a x→( ) x→

a b→ a x→( ) x→ a x→

a a b→( )→( ) a b→

a a b→( )→( ) a b→( )→

a a b→( )→( ) a b→( )→

a a b→( )→ a b→

a b→a

a

a b

b
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but this is not minimal. There is a repetition of leaves that can be eliminated by

combining the nodes of identical sub-formula to produce the collapsed graph shown in

figure 20.

 Figure 20.A formula represented as a collapsed tree

The cyclomatic number of this graph is then the number of connecting arcs minus

the number of nodes plus one. This gives us a complexity of two. Another way of

calculating this is just by counting the number of “independent” closed loops [436].

Thus this definition is consistent with all that I specified above. Simple formula can

be broken with no damage and hence have a complexity of zero. If a formula can be

decomposed into parts then its complexity is the sum of those parts and the complexity of

a formula is at least as great as any sub-formula. See section 5.6.1 on page 113 for a

comparison of complexity measures on such formulas.

One advantage of such a measure of complexity is that it is applicable to a wide

range of structures and certainly any statement in a wide range of formal syntaxes.

5.5 Layers of Syntax and Complexity

One method frequently used (by humans) to attack such complexes is to change the

language they are expressed in. A formula that may be complex in one language might be

simple in another. For example, the complexity of a formula in a language’s formula

syntax may have no obvious connection with the complexity of a derivation of such a

formula as a proof in the proof theory's syntax (see section 5.6 on page 113).

Thus in order to study what is still difficult within this more subtle situation we need

to be able to consider varying syntaxes where it is the formula that essentially remains

constant. To do this we need a formalism that will encapsulate both the formula syntaxes

a a b→( )→( ) a b→( )→

a a b→( )→

a b→

a b
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as well as the syntaxes of proofs. I could do this as a generalised language defined by the

production of strings of symbols but this does not clearly preserve for study the distinction

between the structure of a syntactic derivation and its result. I want a very clear distinction

between the structure of a derivation (like a proof) and its result (a formula) as these

belong to different syntaxes. Also a linear string is, in many respects, an artificial

representation of formal statements, requiring the use of such devices as brackets and

parsing. Thus for the purposes of this study I will define a generalised description of a

substantial class of syntaxes as tree structures.

I will define a general syntactic structure recursively. Presume there is a set of

primitive symbols called P and also a set, V, of variables that will be used in the definition

of its generative rules. A syntactic structure, S, is then a pair (X, R) where X is set of

sub-syntactic structures (possibly empty) and R is a set of rules of the form:

,

where the  are trees with the nodes labelled with primitive symbols or variables

from the syntax,C is the result of the rule, the  are variables and the  are members of

X - the “lower” syntaxes that this one draws on for formulas, symbols etc. In addition

there is the restriction that every symbol appearing in C must either have appeared in one

of the , be a symbol from P or be one of the .

The idea is that if the  occur in the syntax thenC will as well, with any

occurrences of  being replaced with an item from the sub-syntax generated by .

For convenience I will write the rule like this:

.

Such a syntactic structure will generate a syntax being the set of all trees recursively

constructible from the rules.

I will make this clearer with some examples. In these let the set of primitive

symbols, P, include x,→, ), ¬ and V include u, v, w.

5.5.1 Example 1 - a supply of variable names

Let  be the syntax where  consists of the rules:

N1.

N2. , (or when allowing suffix notation).

Ai … An, ,( ) C v1 X1,( ) … vm Xm,( ), ,{ }, , 
 

Ai

vi Xi

Ai vi

A1 … An, ,

vi Xi

A1 … An, , C v1 X1∈ … vm Xm∈, ,( ),»

S1 ∅ R1,( ) R1

∅ x»

v ′ v( )» v v′»
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This generates (in a way that will be specified) the set which could be written as

 but more pedantically written as .

This could be used as an infinite supply of pairwise distinct names. There is an important

distinction here between , which are the structures

of the possible derivations and  which could be considered as the result of

preforming the derivations. This is illustrated in figure 21.

 Figure 21.A single layer syntactic structure

In this first example they can be safely conflated as they have a one-to-one structural

correspondence, but in the next examples this will not hold.

5.5.2 Example 2 - WFFs of the implication fragment

Now let  be the syntax , where  consists of the rules

F1.

F2. , (or  using infix notation).

This generates the syntax of pure-implication propositional formulas, which could

be written as . The

first rule allows for the inclusion of trees generated by  and the second the recursive

construction of the pure implicational formulas in the normal manner.

Here we have a two-layer system of syntactic structures, illustrated in figure 22.

x x′ x″ …, , ,{ } N1 N2 N1( ) N2 N2 N1( )( ) …, , ,{ }

N1 N2 N1( ) N2 N2 N1( )( ) …, , ,{ }

x x′ x″ …, , ,{ }

S1

∅ x»
v v′»

x x′ x″ …, , ,
generates

S2 S1 R2,( ) R2

∅ v v S1∈( ),»

v w, → v w,( )» v w, v w→»

v v' v v v v' v' v v' v'→ v'' v v→( ) v v v'' …,→,→, , ,→,→,→, ,{ }

S1
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 Figure 22.A two layer syntactic structure

5.5.3 Example 3 - The implicational fragment of E

Now let  be the syntactic structure  where  consists of the rules

P1.

P2.

P3.

P4.

which will generate a syntax of proofs of pure implicational tautologies. Note that

the brackets in rulesP1, P2 and P3 are for human convenience only.

 really stands for the structure shown in figure 23.

 Figure 23.The actual structure of the assertion axiom

S1

∅ x»
v v′»

x x′ x″ …, , ,
generates

S2

v w, v w→»

∅ v v S1∈( ),»

v v' v v v v' v' v v' v'→ v''
v v→( ) v v v'' …,→,→

, , ,→,→,→, ,
generates

used in

S3 S2 R3,( ) R3

∅ v v→( ) w→( ) w→( ) v w, S2∈( ),»

∅ v w→( ) w u→( ) v u→( )→( )→( ) v w u, , S2∈( ),»

∅ v v w→( )→( ) v w→( )→ v w, S2∈( ),»

v v w→, w»

v v→( ) w→( ) w→

→

→

→

v v w w

→

→

→

v w

OR
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In this example we have three levels of syntactic structure for constructing distinct

propositional names, formulas and proofs. This is shown in figure 24.

 Figure 24.A three layer structure

5.5.4 Discussion of syntactic structures

A syntactic structure generates a syntax, which is the closure under the rules of the

empty set. Thus in order to be non-empty at least one rule must have an empty set of

antecedents (like the rulesN1, P1, F1 or F2 above). I call such rulesleaf nodes.

There are two kinds of common leaf nodes: those where the consequent is

constructed purely from the set of primitive symbols (like ruleN1 above) and those whose

antecedent is constructed with a substitution from a sub-syntax (likeP1, F1 or F2).

Thus the syntax is composed of a set of derivation structures constructed from the

rules and specific substitutions of items from the syntaxes of sub-syntactic structures. For

example the syntax generated by  would include the proof for

which could be represented as , i.e. the rule

S1

∅ x»
v v′»

x x′ x″ …, , ,
generates

S2

v w, v w→»

∅ v v S1∈( ),»

v v' v v v v' v' v v' v'→ v''
v v→( ) v v v'' …,→,→

, , ,→,→,→, ,
generates

used in

used in

S3

∅ v v→( ) w→( ) w→( ) v w, S2∈( ),»

∅ v w→( ) w u→( ) v u→( )→( )→( ) v w u, , S2∈( ),»

∅ v v w→( )→( ) v w→( )→ v w, S2∈( ),»

v v w→, w»

generates

etc.

S3 x x→( ) x→( ) x→

P1 v F1 v N1←( )← w F1 v N1←( )←,( )
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P1 with x substituted for bothv andw from the syntax generated from . Thisx is the

ruleF1 with the ruleN1 substituted from the syntax generated from .

A higher level derivation structure can be 'executed' to produce a result from a lower

syntax. Thus the above structure  can be

executed to the structure

 which I

would normally write as the string .

In section 10.1 on page 182 in Appendix 3 - Formalisation of Syntactic Structure, I

formalise the above notions of syntactic structures and the generation from them. I also

show (section 10.2 on page 184) that they have at least the expressive power of a general

phrase structured grammar.

In Appendix 4 - A tool for exploring syntactic structures, complexity and

simplification, I describe a software tool I developed for exploring such structures. It can

deal with a sequence of syntactic structures, where each SS is dependent on the one below.

In section 10.3 on page 187 of that appendix I outline a proof that the restriction to such a

linear chain does not reduce the overall expressive power of such systems.

5.6 Application to Axioms and Proof Systems

5.6.1 Axiom complexity

Elegance has long been a desirable characteristic in formal mathematics and logic.

During the first half of this century this has frequently been associated with parsimony. In

particular there was a drive to find formal logical systems with the fewest rules, axioms or

variables.

In Hilbert-Frege style axiomatisations [162, 222], the number of rules is reduced to

two, substitution (subs) and Modus Ponens (MP)48, so that the properties of the logic are

determined solely by the axioms which thus have a dual role as starting points for proofs

and inference tickets (i.e. as the major premiss of an application of an MP rule). This

focused attention on the number and length of the axioms.

Many different axiomatisations have been suggested. In 1910, Whitehead and

Russell produced an axiomatisation of the disjunction-negation fragment using 5

48.Or just MP if one considers axioms as axiom schemas.

S2

S1

P1 v F1 v N1←( )← w F1 v N1←( )←,( )

F2 F2 F2 F1 v N1←( ) F1 v N1←( ),( ) F1 v N1←( ),( ) F1 v N1←( ),( )( )

x x→( ) x→( ) x→
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axioms [467] (later one was shown to be a consequence of the others)49. All the other

connectives were introduced as definitions of these.

This was followed by many other suggestions, many of which favoured parsimony.

In 1929 Lukasiewicz produced an axiomatisation of the implication-negation fragment of

classical logic using just three axioms50:

(1) ;

(2) ;

(3) .

In 1949 he exhibited a single axiom system for the pure implicational fragment,

proving its minimality [300]:

(4) ,

followed by several systems by Meredith [320, 321] in the 50’s including a single

axiom version of the implication-negation fragment:

(5) .

There was also an investigation into the minimal number of connectives used. In

1918 Nicod exhibited a single axiom with a single connective equivalent to

involving 11 occurrences of that connective and 5 variables51.

Similarly there was also a drive to reduce the number of variables used. Lukasiewicz

“improved” upon Nicod’s axiom by finding one of the same length but only involving 4

variables52. Later Diamond and McKinsey showed that one needed at least one axiom

with three variables in it [139] and recently Ulrich proved more about the necessary length

of axioms using matrix techniques [448].

Perusing the above it is obvious that mere parsimony does not correspond to any

relevant sense of complexity, with respect to such axiomatisations. While Lukasiewicz’s

three axioms above are amenable to a natural interpretation (versions of transitivity,

necessity out and inferring from a contradiction), this is very difficult to do for the single

axiom systems. Thus going by the definition of complexity herein the only way in which

they could be said to be simpler is due to the difficulty of storage of the axiomatic

49.Frege had already exhibited this type of system [162], but his notation was cumbersome.

50.Listed using the standard infix style notation rather than Lukasiewicz’s.

51.I will not show this, suffice to say it is incomprehensible!

52.As reported by Prior in [362].

p q→( ) q r→( ) p r→( )→( )→

p¬ p→( ) p→

p p¬ q→( )→

p q→( ) r→( ) r p→( ) s p→( )→( )→

p q→( ) r¬ s¬→( )→( ) r→( ) t→( ) t p→( ) s p→( )→( )→

p q∧( )¬
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description given the logical theory it needs to produce, and the difficulty of storage must

be one of the least of one’s problems with such systems.

In appendix 4 (section 12 on page 193) I have tabulated all the propositional

formulas in the implication-negation fragment up to those with 6 symbols (not including

brackets), sorted by five methods: size, number of variables, depth, breadth and

cyclomatic number. All these rankings give credibly low rankings to simple formulas but

can differ widely on the rest.

Table 2 on page 193 shows these formulas sorted by size. Here formulas such as

 or  are ranked highly, despite their analytical

straightforwardness. In general, as with other size based measures of complexity, size can

be important if there are sharp limitations on storage (such as short term memory), but

otherwise do not usually pose the most difficult problems.

In Table 3 on page 194, we see the ranking by the number of (distinct) variables.

This will always rank formulas of the form  the furthest down the

list. In particular here,  is lower than . The number of

distinct variables has been closely linked to measures ofsimplicity. Kemeny [254] and

Goodman [186] elaborate this by also introducing extra criteria concerning symmetry. I

argue that complexity is sensibly distinguished from such measures which are perhaps

better though of as rough measures on information (see section 6.5 on page 129).

Table 4 on page 195 looks at the formulas in terms of their (maximum) depth.

Clearly depth (as to a lesser extent size) can impose difficulties in terms of computation

both in inference and induction. Nevertheless formulas like  appear well down

the list. Such a ranking may be important if the operator (in this case negation) itself

implies a more complex interaction (such as a modal operator might imply between

possible worlds).

The breadth of formulas is shown in Table 5 on page 196. This is a weak measure of

complexity as the formulas can be indefinitely large, deep and still be fairly

interconnected. Primarily this could be seen as a limit on the input to the formulas, or

alternatively representing a limit on a hypothetical top-down search on the structure of the

formulas. A formula like , which

intuitively represents merely a multiple use of substitution in identity will have maximal

a¬¬¬¬¬ a b c→( )→

a b c …z→( )→( )→

a¬ a→( ) a→ a b c→( )→

a¬¬¬¬¬

a a→( ) a a→( )→( ) a a→( ) a a→( )→( )→
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breadth, but it is analytically simple (this would not help you, of course, if you have to

process it top-down in ignorance of the content of its leaves).

Finally Table 6 on page 197 shows them ranked by the cyclomatic number of the

formula’s minimal directed acyclic graph (as explained in section 5.4 on page 106). Again

formulas can be of indefinite size and depth, for a given ranking, but only if a suitable

number of distinct variables are introduced (or if you are merely iterating negation).

Formulas of the form  are always maximally simple in this way,

representing the fact that the formulain itself does not encode any complexity of

relationship. Non repetitive but involved formulas referring to variables repeatedly but in

different ways come out as complex.

The different rankings of a selection of formulas are then directly compared in

Table 7 on page 198. The cyclomatic number of the graph of the references in a formula

gives a much better measure of an intuitive idea of theiranalytic complexity than the

others.

Of course, as I have repeatedly stressed above, the complexity of an expression

depends on its context (composed of language, goals and viewpoint). Thus it is important,

for example, to keep in mind whether one is talking about the complexity of interaction

encoded as facts about the natural world represented in formulas or talking about the

properties of the connectives themselves by using axioms and the like. The difference

comes out particularly in the appropriate relevance relation: if you are talking about the

natural world then the relevance between identically named variables in separate formulas

reflects the uniform reference intended by these formulas; if you are implicitly specifying

the properties of the connectives (as in formal logic) then the appropriate reference is also

intended between identical connectives between the axioms. Thus in these two different

situations a different relevant relation needs to be used and this would affect the model of

analytic complexity.

a b c …z→( )→( )→
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5.6.2 Proof complexity

Systems with minimal axioms are very difficult to use to prove anything. The few

but flexible rules mean that the form of the desired theorem gives one little indication as to

how to proceed. The proof, of identity, using (4) is shown in figure 2553.

 Figure 25.The proof of identity in Lukasiewicz’s single axiom system

In practice logicians tend to deal with the difficulty of producing proofs in these

circumstances by developing an elaborate system of derived rules. Thus they implicitly

change both their language of representation of the problem of producing such proofs in

terms of these derived rules as well as the original axioms and rules. The greater simplicity

of the problem is a result of an implicit change in the language of representation.

For any particular theorem, however complicated, one could trivially invent a proof

system where its proof was simple by adding it as an axiom. Likewise for any theorem,

53.The proof is displayed using polish notation and using a substitution rule instead of axiom schemas in

order to shorten it.

1 CCCpqrCCrpCsp Axiom

2 CCCCpqrCCrpCspCCCCrpCspCpqCrCpq Subs. inst. of 1

3 CCCCrpCspCpqCrCpq MP 1, 2

4 CCCCCrpCspCpqCrCpqCCCrCpqCCrpCspCtCCrpCsp Subs. inst. of 1

5 CCCrCpqCCrpCspCtCCrpCsp MP 3, 4

6 CCCpqCpqCCCpqpCsp Subs. inst. of 1

7 CCCCpqCpqCCCpqpCspCCCCpqrCCrpCspCCCpqpCspSubs. inst. of 5

8 CCCCpqrCCrpCspCCCpqpCsp MP 6, 7

9 CCCpqpCsp MP 1, 8

10 CCCCpqpCspCCCspCpqCrCpq Subs. inst. of 1

11 CCCspCpqCrCpq MP 9, 10

12 CCCpqpCpp Subs. inst. of 9

13 CCCCpqpCppCCCpqpCspCpp Subs. inst. of 11

14 CCCpqpCspCpp MP 12, 13

15 Cpp MP 9, 14
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however simple, one could add intermediate steps necessary to make its proof as difficult

as wanted. The complexity of proof production is thus a separate matter from the analytic

complexity of individual formulas.

Thus, in this section I concentrate on characterisations of the complexity of the

proof tree of a theorem. This is an abstraction of the uses of the axioms and inference

rules, where the axioms are the leaves and the inference rules the nodes. For example the

proof immediately above (figure 25 on page 117) could be represented as in figure 26

below.

 Figure 26.An example proof net

The complexity of the proof would alter dramatically if we included and related the

formula that were introduced via the substitution rules. Here we have a case where the

complexity of the derivational structures in the proof syntax would be more complex if we
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also included the derivations of the formulas used in the substitution steps. Of course, for

some purposes this would not be relevant to the task at hand, but it would be for others

where one was trying to trace the referents as they were manipulated by the proof rules.

In many proof systems attempts at proof construction are made incrementally, in

either a top-down fashion, starting at the target theorem or bottom-up fashion, starting

with the axioms (or, of course, a combination of these). In this case the search space of

potential proof trees grows exponentially with the depth. Thus there is a strong connection

between the depth of the proof tree and the computational complexity of a “brute force”

automatic search for a such a proof.

An analytic approach to constructing such a tree may, of course, proceed in a more

“intelligent” fashion, by analysing the possible proof choices. Thus the analytic

complexity of such a proof will, as in the consideration of analytic complexity of axioms

etc., depend upon the ability to decompose a proof into separate subtrees. The tractability

of such a tree will depend upon the relevance relation between the nodes of such a tree.

Different kinds of analysis will lead, as ever, to different measures of its analytic

complexity. For example if the relevance relation was expressed just in terms of which

axioms were used in the sub-proof tree then one would get a different measure than if one

also included what formulas were used to be substituted into those axioms (which would

be different again from the situation where every different instance of an axiom schema

was considered as different).

Different kinds of proof procedure exhibit different degrees of decomposability in

the proof production process. A Hilbert system with the minimal number of axioms will

thus produce proofs that are more analytically complex than, for example, those produced

using a Fitch based procedure, where the proof of intermediate steps can be recursively

constructed tosome extent independently to the rest of the proof. Of course, such a

decomposition of the proof process may, in some circumstances, be illusory in that the

sub-task may be as hard (or even harder) to prove than the original. This does not prevent

Fitch-style procedures aiding considerably in the decomposition of proof tasks for a wide

range of systems and for a wide range of target theorems. Thus the claim that Fitch proofs

are simpler is borne out, even if in some cases (e.g. in R due to the undecidability of

theoremhood there) it may not help with the most difficult cases.
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Even if you restrict yourself to Hilbert style systems the set of axioms chosen can

make a difference to the complexity of proof. For example, Robinson [380] exhibits a

“nice” set of axioms composed of groups of axioms for each connective, such that you

only have to use the axioms that correspond to the connectives in the target theorem. This

is in contrast to many systems, for example in many classical axiomatic systems one has to

use the properties of negation to prove the theorem , even though it

does not mention negation. In this way Robinson’s axioms allow the partial partitioning of

the proof space by the type of connective. This partitioning represent’s an analytic

simplification of the proof process.

5.7 Application to Simplification

In this section I briefly look at five possibilities for systematic simplification given

the above analyses of complexity: those of searching for equivalent expressions; searching

for equivalent derivations; by specialising the syntactic level in the underlying language;

by more generally searching over different languages; and by sacrificing accuracy or

specificity.

5.7.1 Searching over equivalent expressions within a language

The most obvious way to proceed in simplification is to attempt to search all

acceptable expressions in some language for the most simple one. So one might look

through all proofs starting with the simplest and working up (in terms of depth) until one

arrived at one which proved the desired theorem, which would then be the simplest. Of

course a slightly more intelligent procedure would involve a lot of intelligent pruning of

the search space before hand, but unless this pruning can be arranged so that it drastically

reduces the search space, such a procedure would have limited practical applicability.

In some cases this is not only impractical but impossible. The question is given

some formal language,L, some equivalence relation,~, defined onL, some measure

C: , and a specific expression, , is there a program that can always find a

expression , such that  with  minimal? In general the answer is,

unsurprisingly, “no”. For example, it is well known that the problem of finding the

minimum sized program for computing a pattern is uncomputable [286] (thus in this case

L is the space of programs,C is their length and  iffm and l compute the same

pattern).

a b→( ) a→( ) a→

L ℜ+→ l L∈

m L∈ m~l C m( )

m~l
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Even if such a question was computable for someL,C and~ there will typically be

no way of avoiding searching the space of available expressions L and checking them all

(unless P=NP, which is considered unlikely [231]).

5.7.2 Searching over equivalent derivations within a language

Part of the problem with the above approach is the possible ineffectiveness of the

equivalence relation,~. If we have step-wise procedures for computing equivalent

expressions the task becomes easier. For example, if one were seeking to simplify an

algebraic expression like  one would have a range of

possible transformations one could apply to the expression based on the properties of

simple arithmetic: factorisation, expansion, association, permutation of commutative

operators etc.

This would make the search procedure considerably more tractable and several

effective techniques would become available. One such is genetic programming [270].

This is a version of the standard genetic algorithm [228], but where the genes that are

evolved according to an evaluation of fitness are tree-structured expressions instead of

merely strings of a fixed length. In the case of arithmetic simplification the trees that

would be evolved would be possible applications of transformations to the original

expression with the fitness of such a gene being decided by the simplicity of the result.

The algorithm proceeds by starting with a random population of such compound

transformations represented as tree-like structures, then evaluating these expression’s

fitness (some inverse of complexity) and creating the next population by a combination of

propagation and a sexual operator called “crossover”54 on parents chosen probabilistically

in proportion to their fitness. Genetic programming techniques have be used in many

domains and there are now many refinements and variations on the technique (see for

example [15] and [261]).

5.7.3 Specialising the syntactic level

Consider the following 1-level syntactic structure for generating the propositional

implication-negation wffs:S=( , ) where rules  are defined

as follows.

54.In this a random subtree is chosen inside each parent and then these are swapped around.

2x
2

yz y
3

–( ) xy 3–( ) 1 xyz–( )+

∅ R1,R2,R3,R4{ } R1,… R4,
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R1:

R2:

R3:

R4:

The first two rules produce an indefinite supply of unique variable names

 and the second two are the normal syntactic production rules for negation and

infix implication.

Now if one’s definition of relevance is that two expressions are relevant if they share

a symbol in the syntax, then everything will be relevant to everything else because all

expressions generated byS will share the symbolv. Clearly, although there is a sense in

which all variablesare related in this system, it might beintended that different variables

(ones with a different number of primes) not be related. In this case a structure that is

closer to what was intended would be , where V was defined as

follows

V:

and , where  are defined as above. Now the

generation of variable names is done byS1 and the building of formulas is done byS2.

Now by the definition of relevance different variables will not be relevant to each other in

the sense above. Thus the formula  would have a cyclomatic complexity of 1 inS

but of zero inS2, i.e. changing the language fromS to S2 has resulted in a simplification.

Of course, this is equivalent to suitably changing the relevance relation inS, but here the

separation of the syntax allows for a more natural and clearer analysis of the intended

situation.

The above is a very artificial example, but such shifts of syntactic level do occur.

The sentence “Throughout June I sought her in vain.” will have a different complexity if

you are considering the mapping between words and referents than if you look at the

correspondence between spelling and phonemes (e.g. the intricacies of the “ou” spelling in

English).

In logic, the formula  is often treated as a special substitution

instance of identity, for the purposes of inference, rather than as signifying something in

its own right in detail.

∅ v»

x x'»

x x¬»

x y, x y→»

v v' v'' …, , ,

S2=(S1,{V,R3,R4})

∅ x x S1∈( )»

S1 ∅ R1,R2{ },( )= R1,… R4,

v v'→

a b→( ) a b→( )→
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Another example comes from chaos theory. It is well known that the ‘tent map’55

can generate sequences that are indistinguishable from purely random ones. If one models

this process by considering all different numbers as irrelevant to each other (i.e just

another number), then this seems very surprising - we have what seems to be a simple

deterministic process producing random behaviour. Closer inspection reveals that the

source of randomness comes from the initialisation of the system, as almost every56

(abstract) real number has a ‘random’ decimal expansion, and the tent map merely

“unpacks” this expansion and returns it digit by digit.

Two other examples from the literature57 are: seeking to simplify the execution of

programming languages by reduction over programming language hierarchies [179] and

simplifying the visual presentation of graphs by reduction and abstraction [258].

One final example is arguably this thesis itself; the pushing of much of the detail into

appendices is intended to simplify the presentation of the main argument.

5.7.4 Searching over equivalent languages

Perhaps the most radical but also the most natural mechanism for simplification is to

change the language of representation. Changing the syntactic level (as described above in

section 5.7.2 on page 121) is a particular example of this. Another example is when we

enrich our proof language to simplify proofs (as described in section 5.6.2 on page 117).

Part of the problem with formalising complexity is that we humans seem to be very

good at “flipping” between sub-languages in order to make things simpler. Since

complexity, as I have argued, is relative to the language of representation, the complexity

will change with each “flip”. Things can seem very different on the page, because we often

fix the formal language (at least for the purposes of display of formal properties) and

investigate the properties in that language.

In order to formalise such a procedure for simplification one needs some mechanism

for fixing the reference and structure of a formula whilst changing the language it is

embedded in. This can be done using the syntactic structures described above (section 5.5

on page 108). The idea is to fix the “lower” structures and vary the top one. For example if

55.The iterated map  if  and  if  see [39] for details.

56.‘almost every’ in the sense that it is true for every number except the rationals

57.Although these are not discussed therein from the same perspective.

x 2x→ 0 x 0.5≤ ≤ x 2 1 x–( )→ 0.5 x 1≤<
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one were searching for a proof system that gave as simple derivations as possible (for a

target set of theorems) one could define a syntactic structure to generate all the possible

expressions and another syntactic structure to select the target set. Then consider a range

of equivalent syntactic proof structures that will derive the same target set. The idea is

represented below in figure 27 on page 124. The solid lines represent the sub-syntax

relation and the dotted lines represent generation.

 Figure 27.A setup for varying languages

Of course, in general searching over equivalent languages will be at least as hard as

searching over equivalent expressions. One could quite well represent the syntactic

structures in a tree-like structure upon which a genetic programming algorithm would

work, but it would frequently be computationally onerous to check that such a structure

generated the same target set (and sometimes this would be totally uncomputable).

If, however, we knew of some acceptable transformations of the syntactic structure

which preserved the target set we could search over the possible transformation sequences

in a way similar to that outlined in section 5.7.2 on page 121. This, however is a matter

well beyond the scope of this thesis.

5.7.5 Simplification via trade-offs with specificity and accuracy

All the above methods of simplification maintain the same model content, which is

appropriate in formal systems. However perhaps the most common methods of

Fixed Syntactic Structure

Target set of formulas

possible
derivation
structures Structure
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target set
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simplification is where the content of the model is allowed to change so as to trade-off the

simplicity of a model with the model’s accuracy or specificity.

Consider first complexity-specificity trade-offs. In some cases, especially when the

data can be separated into what might be seen as random noise and an ‘underlying’ signal,

a slightly less specific model of the data can be a lot simpler. So, for example the diagram

on the right in figure 14 on page 62 representing complete randomness would take a

model of high complexity if it were to be modelled in every detail. If on the other hand a

model of it as just a random pattern retaining only the granularity, density, and the

probabilities of occurrences of black and white dots were used then this might be a lot

simpler. Associating the complexity of the pattern with the complexity of its most

appropriate model restores our intuitions about them. It is the insistence of an ultimately

specific model of these patterns (for example via its reproduction via a Turing Machine)

that leads to the unintuitive result that a random pattern holds the most information.

A model can be made less specific in several ways, the simplest being the relaxation

of its predictions from a precise value to an range (as is implicit in the notation

12.6cm±1mm); another way is to narrow the conditions of application of the model58.

Where the distribution of the randomness can be more precisely specified this might be

characterised in terms of a probabilities.

Another trade-off is the complexity-accuracy trade-off. This can have a similar

effect to the complexity-specificity trade-off: here an increase in error may be acceptable

if it results in a sharply simpler model, especially if it is thought that the more elaborate

model might not be robust. After all,some level of error is deemed acceptable in almost all

experimental science – we accept that it is usually not sensible to reject a theory due to the

presence of a residual level of error. A famous case of this is the Michelson-Morley

experiment, which despite the fact that it seemed to show a positive ether drift of about

5m/s (which was eventually explained in the 1960’s), did not justify the rejection of the

special theory of relativity.

An example of an explicit trade-off of accuracy for simplicity in the induction of

decision trees is investigated by Bohanec and Bratko in [69].

58.This makes the model less specific overall because outside these conditions of application the model does

not restrict what might happen, i.e. it says anything can happen then.
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6 Philosophical Applications

6.1 Complexity and Relevance

Since the presence of irrelevance allows the top-down decomposition of complex

models into sub-models without any loss of descriptive power, the pattern of relevance

relations (or rather their absence) amongst the parts of a model limit the complexity of

their interactions. Thus a first-cut at understanding the emergence of complex behaviour in

models can be approached via relevance (in its widest sense). Of course, to gain a

complete understanding one has to go beyondwhether something is relevant, or evento

what extent it is relevant, on tohow it is relevant.

As argued by Hitchcock [224] relevance is properly considered a ternary relation

relative to a framework or situation (much as I have relativised complexity). Thus in

syntactic models of relevance which level of syntax the relevance relation is relative to is

important. For example, there are several different kinds of relevance in logics: R and its

related logics are concerned with relevance in the proof theory [12], while the relevance of

Woods [479] is a relevance between formula, and the relevance of content (as described

by Epstein [154]) is a relevance relation between the objects in the logic’s semantics.

Changing the relevance relation will affect the language of representation of the

model and hence its complexity. For example the analytic complexity of the proof in some

formal logic might be different depending on whether one is considering the relevance

relation to hold between repeated uses of rules and axioms or between formulas that refer

to the same ground term. The relevance is inherent to the type of difficulty one is

concerned with.

Reversing this, complexity could be used to define relevance, as happens when

mutual information (section 8.25 on page 151) is defined in terms of algorithmic

information (section 8.2 on page 136).

6.2 Complexity and Emergence

The definition given above (section 4 on page 72) implies that a complex system

will be difficult to model in a top-down fashion. Thus for many very complex system we

will not be able to find complete top-down models. In particular any models that are

derived from the bottom-up description of the system will be unlikely to capture all the
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top-level behaviour. So models that are used to try and capture some of a complex

system’s behaviour will be necessarily imperfect. That is to say that there is the potential

for behaviour that one would not be able to predict given the models available. This

behaviour is thusemergent in a meaningful way - it is not reducible to the bottom-up

description of the system given the models available, as postulated by Cottrell in [116].

Conversely if we have a system that exhibits such emergent behaviour, that would

mean that our model(s) of it did not completely capture such behaviour59. This may be

because there is some fundamental reason why we are unable to produce such models, or

merely that we happen not to have found such a model. In the first case our definition

identifies the system as complex relative to the framework from which the fundamental

reason comes; the more fundamental the reason the wider the framework. In the second

case the system is complex relative to our current modelling techniques.

Only rarely are we in a position where we know that we have a fundamentally

complex system rather than one which is complex relative to our current knowledge,

because it is difficult to show conclusively that one has the best possible model. One

generally can only show such things in artificially restricted abstract classes of models. In

effect modelling is complex; it is almost impossible to ascribe optimality to a model given

what one knows about a class of models relative to the goal of completely modelling most

systems.

Such emergence is not restricted to the behaviour of natural systems. Chaitin [102]

has exhibited a polynomial with a parameter which has inherently random behaviour, in

that it is essentially random whether it will have a finite or infinite number of solutions for

any given parameter value (where randomness is defined as algorithmic

incompressibility). That is to say one can not predict via a theory whether there will be a

finite or infinite number of solutions short of doing the calculation.

This modelling gap can be extended to one of many layers of description, each of

which is the top-down level to the one below, as does Heylighen [219, 220]. This sort of

structure prompts hierarchical approaches to complexity (e.g. Gougen [182]).

59.Darley [133] defines emergence as a difference in complexity at different levels.
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6.3 Complexity and Language

From the definition I give and the fact that one typically wants to retain one’s goals

when tackling a problem, it is evident that one of the most powerful ways of tackling

complexity is to change the modelling language (or framework). In other words, the

choice of language is often critically important to determining the complexity relative to a

type of difficulty.

This is something that we, as humans, are so good at that we are frequently unaware

of it. For example, logicians working on a Hilbert style axiomatic system will frequently

extend their mental model of the proof theory to include many derived rules of inference

in order to tackle more complex proofs - it is not that the proofs have become simpler in

the original “bare” axiomatic system, but simpler in this extended language.

Intuitively there is a qualitative difference between the simplification achievable by

searching for equivalent expressions within a language and searching for equivalent

languages to simplify the corresponding expressions (or even equivalent languages to

simplify the search procedure for the simplest corresponding expressions in that

language). For example, while a Hilbert style proof system may be parsimonious as to its

inference rules, proving theorems using a Fitch style proof system is much easier because

it is adapted to match key features of proofs (see section 5.6.2 on page 117).

There are interesting dynamics between complexity and the choice of language. One

naturally seeks a language which will simplify the modelling of any particular subject

matter, but when one finds such a language (and hence deem it a good representation, as

below in section 6.4 on page 128) one is sometimes surprised by unexpected new

behaviour in closely connected models - a serendipity of emergence that can tell you

something genuinely novel.

6.4 Complexity and Representation

Peter Lupton [301] has claimed that the problem ofmisrepresentation can be

explicated by considerations of the complexity of representations. Clearly, whether or not

one thinks that this is the critical feature for the selection of representations, simplicity is

one of the criteria forusefulrepresentation. This depends somewhat on the purpose of

such a representation; clearly a simpler representation is preferable for beings of limited

mental capacity, but further, even if one is seeking a representation which is as empirically
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accurate as possible and one is limited to a particular extensible language then some

heuristic to limit the mere elaboration of representations in favour of a more wider search

is useful (see section 6.5 on page 129 below).

6.5 Complexity and “Simplicity”

“Simplicity” has a long philosophical history (e.g. [4, 78, 186, 253, 254, 339])

stretching back to Occam’s famous razor. It is defined by tradition rather than formally. It

could be defined as “that property which leads one to select one theory rather than another

with equal empirical support”, since at various stages almost every property of theories

not directly related to its evidential support has been associated with the term, including:

number of parameters [141], extensional plurality [186, 254], falsifiability [358],

likelihood [390, 364], stability [447], logical expressive power [343] and content [185].

The idea started as parsimony being truth indicative. This is has now come full circle -

Sober [418] defined “simplicity” in terms of relative informativeness; here the extent to

which the answer is informative of the truth gave a measure of its simplicity.

Quine [364] could not see any a priori reason why a simpler theory should be more

likely to be correct and Bunge [79] thought that there were too many types of simplicity

for such a principle to be coherent. It would seem to presume that our language of

modelling was inherently attuned to the universe (or even vice versa) such that there was a

tendency for the more convenient simpler expressions also happened to be more likely to

be correct.

This connection between “simplicity” and a lack of complexity seems to come from

a dynamic account of theory development where an old theory being continually

elaborated in an effort to maintain its consistency with discovered facts is replaced by a

more coherent and powerful theory. The “simplicity” seems to be in contrast with the

elaboration of the old theory.

These positions can be reconciled by considering the process of searching for

acceptable theories, and what happens when they are unsuccessful. If the search process

tends to start with simpler theories before trying more complicated ones, and will try

elaborating theories before trying more radically different alternatives, then the fact that a

theory has been elaborated will indicate that it has been unsuccessful - in such
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circumstances another newer (less elaborated) equally supported theory might be a more

productive choice.

Thus although a lack of complexity is noa priori indication of its truth, in

circumstances where the process producing the theories is known to be an open-ended

evolutionary process starting simply then limiting depth-first searches by some measure is

a useful heuristic. Pearl [349] notes that this does not have to be a measure of complexity,

but that any measure that limits the space of competing theories (for example sheer size)

will do. According to my approach to complexity any such a measure could be a

complexity measure, depending on how the search process worked. See also the

discussion in Appendix 6 - Complexity and Scientific Modelling.

6.6 Complexity and Evolution

It is often assumed that complexity increases with evolution. If this assumption is

based on the observation of the increase in themaximum complexity over all species (as

in [71]) then this is assured merely by the fact that life (presumably) started simply and

favoured some level of variety afterwards. That is complexity has increase not due to an

active tendency but merely via a passive one due to the fact that there is a lower bound to

it.

Evidence that either life as-a-whole or particular evolutionary branches have an

active evolutionary tendency towards complexity is more mixed. It is uncertain that the

average complexity over all species has significantly increased, since as well as the

appearence of larger and more sophisticated organisms, many new simple organisms have

appeared (partly to exploit the niches created by these larger organisms). In the case of

individual evolutionary lines the evidence is that sometimes they evolve to be more

complex but that certainly sometimes it goes in the opposite direction (as documented by

McShea [316, 317]).

More deeply worrying for this assumption is that it is unclear why evolution should

inherently favour the direction of the more complex rather than the simpler, especially

since it is plausible that the simpler is cheaper and easier to maintain (as Martinez points

out in [310]). There are some proposed mechanisms for complexity increase by evolution:

Kauffman suggests that there is an inherent tendency towards order in large inter-related

systems by mechanisms of self-organisation [249]; Arthur suggests that the competitive
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co-evolution of species will result in such an increase [19, 21], Wimsatt points out that the

evolution of multiple purposes for existing internal structures will tend to make the

workings of an organism more complex [468] and Dawkins argues that evolvability itself

will evolve [137].

A lot of the problems with this debate stem from the assumption that there is a single

obvious notion of complexity that distinguishes us from “lower” species. Both Ho in

[399] and myself in [147] attempt to separate out some of these different strands.

6.7 Complexity and Holism

Several holists (e.g. Rosen [384, 385, 386, 387, 388, 389], Morin [330, 331] or

Mikulecky [323] - see section 8.17 on page 145) have laid claim to the word “complexity”

to signify systems (or aspects of systems) that are irreducible. What is commonly called

complexity is renamed as mere “complication”. This is not a practical claim that many

systems are in practice irreducible, but a fundamental distinction between syntactically

based mechanisms and complex systems with an essentially semantic nature (e.g. living

organisms). Modellingaspects of such complex systems is not impossible, merely

inevitably partial and not unique.

Such an approach to complexity can be seen as a special case of my approach

namely thatcomplexity is that property of systems where it is impossible to model

satisfactorily in a top-down manner given almost complete information about its atomic

components and their interactions. The fact that they do not recognize anyintermediate

states of complexity seems to be more political than analytical since it impedes analysis of

the transition from systems that might be labelled “simple” to those that might be called

“complex” (as in the evolution of life example in section 3.2.1 on page 47).

I would prefer to make an analogy with the idea and use of “infinity”. One can not

say that any demonstrable thing is infinite (as opposed to potentially unbounded), but not

withstanding this, infinity remains a useful abstraction linked to the credible extrapolation

of real processes (as Rotman argues in [391]). The fact that models upon which one makes

actual decisions are finite (either in representation or calculation) does not prevent the

attribution of infinity to things being a useful guide to action. Similarly just because there

needs to be a qualitatively different step to get from finite steps to the infinite does not

prevent there being meaningful comparisons of size between different finite numbers. The
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same applies to the sort of ultimate complexity holists posit. The fact that such ultimate

complexity is unprovable for demonstrable models does not prevent its attribution being a

useful guide to action, but on the other hand just because such complexity might be

qualitatively different from normal scales of complexity does not mean that one can’t

make meaningful comparisons between them.

6.8 Complexity and System Identity

One of the questions that I avoided in posing my approach to complexity is that of

system identity, namely how and why one identifies a certain set of parts and interactions

as part of a unitarysystem. After all, every natural system (except, by definition, the

universe) can be seen as merely a component of another system, and, (if one extrapolates

from the progress of atomic physics) every natural system can be viewed as having

sub-systems. On the other hand it is clear that not every collection can be said to have a

meaningful identity as a system, for example the collection of a fish’s gills, the

constitution of the U.S. and a Martian rock.

One part of this conundrum can be illuminated by the observation that a system

often is seen to have a “tighter” set of internal relationships and processes than external

ones. This, however, is not a matter of the number or strength of such relationships. A

useful example is a simple but much used module of communication software. It could be

used by an unlimited number of different packages and components in a computer system,

so the external relationships vastly outnumbered the internal ones, but this would not stop

it being considered as an identifiable system.

Rather it is the complexity of the system, viewed as a relationship between its

components as compared to the complexity of the system it was a part of that might

indicate what could be usefully separated out as a system worth identifying. To use the

above example, if the module was used repeatedly by only one process or component (or

closely integrated set of processes) then one might well say that the module is more

naturally categorised as a component of the system it is a part of, whereby if it was called

by many different unrelated processes or components then its identification as a system in

its own right becomes more natural.

One problem with using complexity in this way to aid system identification is that

there is a danger of circularity: complexity is defined in terms of properties of models of
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systems and systems are identified in terms of their complexity. What prevents such

circularity making the definition tautologous or even contradictory is that at each stage the

complexity of a system is grounded in an observer’s model of it along with the type of

difficulty that is relevant to the observer’s goals, and the identification of systems is not

completely determined by considerations of complexity except those that are relevant to

the observer’s modelling and goals.

Greenberg, in a related approach, uses an axiomatisation of identity with respect to

indiscernible and complexes [198].

6.9 Complexity and Society

One of the significant facts that must influence the way an individual inter-acts with

society is that the complexity of that society will (at least nowadays and in the developed

world) be beyond that individual’s capacity to deal with (as pointed out by Beer [51]) or

make plans about (Chadwick [98]). Luhman postulates that we create institutions

precisely to filter out some of this complexity (as summarised by Bednarz in [50]) and

further that even meaning might be a mechanism to compensate for this complexity [299].

Elsewhere I argue that the complexity of modelling the society one inhabits necessitates

certain strategies on the part of the society’s members as well as effecting the approach an

external modeller might need to take [152].

Many (such as Casti) see the increasing complexity of society as a major problem,

based on an inequality between the complexity of the system to be controlled (society) and

the complexity of our models of it [88]. Some specify very general programmes of

remedial action in terms of design (e.g. Galbraith in [166]) or type of approach [157, 158].

Others suggest smaller and more concrete steps for the reduction of legal

complexity [82, 248]. A few are more optimistic, envisioning the emergence of a new

society suited to such internal complexity (e.g. [132]).

Some holists stress the difficulty of modelling any aspect of society (e.g. Lyon

stresses the caution needed with applying the new techniques of the “sciences of

complexity” here [302]), but others (e.g. McIntyre in [314]) argue that this is overstated.
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7 Conclusion

I have argued that attributing complexity only to models and not natural systems and

by relativising its conception to the chosen framework (composed of language of

modelling, identification of parts and overall behaviour and the type of difficulty that

concerns one), one arrives at an analytically useful conception of complexity. This

conception not only captures much of the intuitive idea of complexity it also allows the

meaningful comparison of many different formulations of complexity as well as throwing

some new light on some philosophical problems.

In particular I have met the five goals set out in the introduction (section 1.3 on page

19), which were.

1. To lay bare assumptions and relativisations involved in the usage of the term.

2. To allow a meaningful comparison between different formulations of complexity

across different fields of study.

3. To lay the foundations for formalisations of complexity, in different circumstances.

4. To aid the formulation of deeper insights into possible causes of complexity.

5. To allow the development of systematic approaches to simplification.

Additionally I have focused on a particular measure of complexity to capture

the difficulty of decomposing expressions and sketched a possible formal structure to

relate different formal languages to the analysis of the sources of complexity in specific

systems, which also provides a framework for the study of systematic methods

simplification. Ancillary work has included a short survey of the vast number of

formulations of complexity (section 8 on page 136) and a software tool for the exploration

of syntactic structures (described in section 11 on page 188).

7.1 Further Work

This work is foundational in that it could form part of a new “science of

complexity” [89]. Much more can be done in this regard, including:

• Further investigation into the relation between syntactic structures and the

complexity of expressions.

• The development of automatic, or semi-automatic methods of simplification.
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• The integration of this work into other’s work in the field of “complex systems”,

especially with regard to identifying possiblecauses of complexity.

• The further development of measures of complexity for different purposes.

• The use of this work as the synthesis of many formulations of complexity,

including their categorisation and generalisation from similar families.

Perhaps the most important way this work could be extended is towards a model of

the process of modelling itself. This would involve extending and formalising the

semantic picture of modelling presented in section 2.3 on page 33, and could be seen as an

extension of measure theory to non-numeric structures. As Badii and Politi put it in their

conclusion to their book on complexity:

“The natural extension of the study of complexity… seems, therefore, to

point inevitably to a theory of model inference.” [36] p.280
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8 Appendix 1 - A Brief Overview of Some Existing

Formulations of Complexity

This is an overview of some of the articles which directly invoke the idea of

complexity in their analysis, either by defining it or by specifying its properties. There is

no comprehensive overview of this subject across disciplinary borders, but there are some

relevant collections: [8, 14, 92, 159, 192, 346, 351, 422, 439, 475] and many more articles

which include surveys within the bounds of individual subject areas:

[14, 36, 57, 60, 70, 75, 79, 87, 94, 104, 106, 115, 217, 286, 295, 304, 355, 395, 397, 407,

414, 457, 477, 478, 498].

8.1 Abstract Computational Complexity

Blum [67] proposed an abstract definition of computational complexity. If pi(n) are

the functions representing the computation of the programs Pi, then ci(n) are a set of

complexity measures iff ci(n) is defined exactly when pi(n) is defined and the predicate

ci(n)=m is decidable. This definition neatly includes the time and space measures as well

as many other sensible resource measures (such as the number of jumps executed) and is

strong enough to prove many of the important theories concerning them.

However this definition is too broad as it allows measures which don't obey the

subprogram property (if P is a program that first applies a subprogram Q to an input and

then a subprogram R to the result, then the complexity of P should be at least as great as

that of Q or R). Thus according to this approach you get programs with more complex

subprograms.

Fixes for the abstract definition of computational complexity are suggested by

Turney in [444, 445, 446], and Ausiello suggests a weakened version in [31]. [66] argues

that computational complexity should be extended over other fields like the real numbers.

8.2 Algorithmic Information Complexity

The Algorithmic Information Complexity (AIC) of a string of symbols is the length

of the shortest program to produce it as an output. The program is usually taken as running

on a Turing Machine. It was invented by Solomonoff [419], Kolmogorov [266] and

Chaitin [99, 100, 101] separately, although perhaps anticipated by Vitushkin (section 8.45

on page 161). It has been one of the the most influential complexity measures (along with
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that of computational complexity) and has inspired many variations and enhancements

including ‘sophistication’ (section 8.42 on page 159), and ‘logical depth’ (section 8.4 on

page 138). Although Solomonoff considered it as a candidate for selection amongst

equally supported scientific theories (i.e. a measure of simplicity – section 8.37 on page

156), Kolmogorov and Chaitin considered it as a measure of information (see section 8.15

on page 144 and section 8.24 on page 149).

It has many interesting formal properties [99], including:

1. The more ordered the string, the shorter the program, and hence less complex.

2. Incompressible strings (those whose programs are not shorter than themselves) are

indistinguishable from random strings.

3. Most long strings are incompressible.

4. In a range of formal systems you can't prove (within that system) that there are

strings above a certain fixed level of complexity (derived basically from the AIC of

its axioms).

5. In general it is uncomputable.

Property 2 illustrates the deep connection between AIC and disorder. This is

particularly evident in physics where a very close connection between Algorithmic

complexity and entropy has been shown [449], to the extent that it is often referred to as

an entropy.

Property 4 indicates that the AIC complexity is more of an information measure.

While one might believe that it is not possible to produce more information within a

formal system than is encoded by the axioms, it would be extremely counter-intuitive if

there was a limit to how complex one could prove strings in it to be.

AIC has been applied in many ways: to define randomness in a non-probabilistic

way [309, 499]; to capture descriptive complexity [293] (see also section 8.8 on page

141); Rissanen uses a statistical version to motivate a principled trade-off between the size

of model and its error in [377, 378, 379]; to biological complexity [203, 223, 345]; to

cognitive models [397]; economic models [452] and data compression [499].

Lempel-Ziv encoding can be seen as a computable approximation to it [279, 495].
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Given that it is better characterised as an information measure rather than

complexity, it has very close connections with entropy, as explored

in [169, 420, 496, 497]. It is generalised in [80].

Good summaries of the many formal results and applications can be found in

[40, 41, 70, 118, 286]. Other formal results include [80, 284, 456, 451, 494]. A summary

of philosophical applications can be found in [285], with others in [102, 301, 469].

For more discussion on this see section 4.3.4 on page 84 and section 3.4.1 on page

57.

8.3 Arithmetic Complexity

This is the minimum number of arithmetic operations needed to complete a task.

This is important in order to make computational algorithms more efficient, for example

Strassen [424] improved upon Gauss's method for solving linear equations from

operations to .

This is more of a practical definition and not intended as a general model of

complexity. The operations of arithmetic are very particular. It also does not take into

account the precision of the operations or of rounding errors. A summary of the theory of

the arithmetic hierarchy can be found in [178].

8.4 Bennett's ‘Logical Depth’

Bennett [54, 55, 56] defines ‘logical depth’ as the running-time to generate the

object in question by a near-incompressible program. Strictly the depth of a string x at

level s is: , where p ranges over

programs,T(p) is the time taken by programp, p* is the smallest such program andU is a

universal Turing computer.

He states that this is intended as a measure of the value of information. For example,

tide-tables can have a greater value than the equations which were used to calculate them

as a lot of useful computation has been done. Thus he says [57]:

“Logically deep objects… contain internal evidence of having been the

result of a long computation or slow-to-simulate dynamically process and

could not plausibly have originated otherwise.”.

O n3( )

c n2.71×

Ds x( ) min T p( ) p p∗– s U p( ) x=∧<{ }=
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The plausibility of its origin comes from the assumption that the most likely

program to produce an output would be the shortest one. This idea comes from

Solomonoff.

He justifies this as a physically plausible measure of complexity by its obedience to

the “slow growth law” of complexity. This informal law states that complexity can only

arise slowly through stochastic processes, as presumably has occurred in evolution. By its

construction one cannot produce a deep object from a shallow one by a deterministic

process and only improbably by a stochastic one.

Thus random strings and very simple ones both have a low logical depth. A random

string is incompressible and hence the minimal program that produces it, is a simple

copying program, which is quick. A simple pattern can be produced by a simple program,

and so will also be fairly quick.

Koppel [268] shows that Logical Depth is the same as Sophistication (section 8.42

on page 159) for infinite strings.

8.5 Cognitive Complexity

In cognitive psychology, several types of complexity are distinguished. The most

discussed of these is Cognitive Complexity. This was defined by Kelly as a part of his

theory of personality [250]. He developed his ‘role construct repertory’ test to test it. Since

then it has been used as a basis for discussion on the complexity of personal constructions

of the real world (and particularly of other people) in psychology. It asks the subjects to

rate a number of people known to them (e.g. closest friend of same sex) on a number of

attributes (like Outgoing vs. Shy). The dimension of the inferred mental model of these

people is then estimated as their cognitive complexity.

So, for example, people who assign to all their friends positive attributes and to their

enemies negative attributes would have a one-dimensional mental model of their

acquaintances, as everybody is aligned along this good/friend - bad/enemy scale. Such

people are said to be “cognitively simple”. A person who indicated that some of both their

friends and enemies were good and bad would have at least a two-dimensional model with

people placed across a good-bad, friend-enemy pair of axes. This person would have a

higher score and would be called “more cognitively complex”. Thus the level of cognitive

complexity indicates the number of potential relationships between the various attributes.
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Quite a number of variations of this has been suggested to capture this idea [404].

Unfortunately these seem to measure slightly different things as they do not correlate in

practice [204], although they do have some robustness over time [342]. There does not

seem to be any strong connection between cognitive complexity and IQ [95],

innovation [187], intellectual sophistication [416], loquacity [81] or educational

level [366]. It does seem to have some relation to the ability to use complex

language [48, 409]. The application of hierarchically structured algorithmic information is

discussed in [397]. A synthesis of several measures of cognitive complexity is suggested

in [413] in the internal representation used by subjects.

Other related measures include: [59, 382, 426].

8.6 Connectivity

The greater the extent of inter-connections between components of a system, the

more difficult it is to decompose the system without changing its behaviour. Thus the

connectance of a system (especially when analysed as a graph [367]) becomes a good

indication of the potential for complex behaviour, in particular the likelihood that the

system will achieve an equilibrium. The connectivity of a system has been variously

measured, including the number of relations (section 8.30 on page 153) and the

cyclomatic number (section 8.7 on page 140).

Applications include: the reliability of circuits [470]; the stability of random linear

systems of equations [25]; stability in computational communities [259]; stability in

ecosystems [86, 227, 353]; the diversity of ecosystems [308]; the structure of

memory [273]; logical and computational properties of bounded graphs [319];

competition in networks [373]; random digraphs [405]; chemical reaction

mechanisms [491]; and general emergent behaviour in biological systems [197].

8.7 Cyclomatic Number

The most basic graph measure (apart from the number of vertices) is the cyclomatic

number of the graph. This is basically the number of independent loops in a graph. It is

easily calculated by the formulaν(G) = m - n + p, where m is the number of arcs, n the

number of vertices and p the number of disjoint partitions the graph divides into.
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This intuitively captures the inter-connectedness of a graph or system; a

hierarchically structured machine is completely predictable (a tree has no loops), whilst

one with many feedback loops can exhibit more complex behaviour. An army is organised

on hierarchical lines, presumably to simplify the chain of command to make it more

predictable and hence more controllable. On the other hand, a creative committee meets to

allow the maximum number of communication channels to enable the unpredictable to

occur.

In general there is no direct relation between the size (number of nodes) and the

(cyclomatic) complexity. If a system is represented by a graph with the presence of some

relation indicated by an arc, then the number of nodes will limit the cyclomatic

complexity. This effect is only significant with very few nodes as the number of possible

arcs goes up exponentially with the number of nodes. For the theory of this area see [436]

McCabe [313] uses this as a measure of program complexity, in particular to

calculate the number of different logical paths through a program to gauge how many tests

it might need. Other applications include: complexity of simulation models [403]; and the

difficulty of software maintenance [49, 125, 232].

For discussion on this see section 5.4 on page 106.

8.8 Descriptive/Interpretative Complexity

Löfgren [293] writing from a biological and psychological context, distinguishes

between descriptive and interpretative complexities. In a system with a description (like

DNA) and its realisation (the proteins in the cell), he associates his two measures of

complexity with the two processes of interpretation and description. That is the

complexity of encoding the realisation into a descriptive code and decoding it back into a

realisation of that code.

Löfgren chooses Kolmogorov complexity (section 8.2 on page 136) for the process

of description and an ordering based on logical strength (section 8.20 on page 146) for the

interpretative complexity.

8.9 Dimension of Attractor

Chaotic processes are difficult to model. A small change in state now causes a large

change later which makes it impossible to predict the exact state beyond a certain time
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limit. This does not mean that all aspects of the process are impossible to model. It is

possible to estimate the processes' attractor in state space; this is often fractal with chaotic

processes. The dimension of the attractor is a measure of how complex the process is.

Depending on the method of convergence for the calculation of a dimension for the

attractor you get a slightly different measure. These, in fact, form a sequence of

dimensions. For an accessible introduction see Baker [39].

8.10 Ease of Decomposition

The ease with which a system can be decomposed into sub-systems has close

connections with the “analytic complexity” of section 5.2 on page 87. The general area is

covered by [18, 110, 144, 338, 421]. Some techniques for systematic decomposition are:

the use of a matrix algorithm to plan the use of multiplexers for circuits [278]; a graphical

approach in [242]; decomposing difference equations [30, 306]; a hierarchical

holographic algorithm [72]; the design of decision support facilities [225]; a systems

approach [157]; and a technique based on whether data relations commute [131].

The converse of and complement to decomposability is reconstructability

analysis [94].

8.11 Economic Complexity

“Complexity” in economics, frequently means merely that some of the usual

simplifying assumptions do not hold. An example of these assumptions is that an agent

acts as if it can infer the action to perfectly optimise its utility. This goes back to Simon’s

distinction between procedural and substantive rationality [415]. See the paper in

Appendix 7 - Complexity and Economics, for a full discussion of the concept of

complexity in economics. Some papers that cover this are [10, 14, 20, 172, 173, 200].

In game-theory, there has been some more direct formulation of actual complexity

measures, including: a critique of the “number of states” measure [43] (section 8.32 on

page 153); the information of strategies [290]; a survey of the area [229].

Another area deals with choice processes, including: the group-theoretic complexity

of decision rules [163]; a survey of choice processes and complexity [192], the

computability of choice functions [251]; hierarchies [484]; and the cardinality of

collections of decisions [52].
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8.12 Entropy

In physics, entropy measure the level of disorder in a thermodynamic system. The

more disordered it is, the more information is needed to describe it precisely. In particular

systems with very low entropy are simple to describe (they don't move around a lot). Thus

complexity and entropy can be associated, although this was not intended by its

originators [408]. Entropy based measures are essentially probabilistic. The

Boltzman-Gibbs-Shannon entropy is most frequently used in physics, but Algorithmic

Complexity can also be used if the complexity of the whole ensemble is low [497].

The principle of maximum entropy [282] has been used to help formalise

complexity [114, 156, 171].

Entropy based measures have often been used as measures of complexity including:

the regularity in noisy time series [354]; the topology of chemical reactions [492];

coalitions of economic agents [452]; physical computation [496]; the difficulty of system

diagnosis [183]; artificial life [371]; and the complexity of graphs [332].

8.13 Goodman's Complexity

Goodman [186] has devised an elaborate categorisation of extra-logical predicates,

based on expressiveness. For example, a general predicate is deemed more complex than a

symmetric one, as it includes the later as a specific example. Likewise a three place

predicate is more complex than a two place one. Goodman builds upon this starting point.

The idea is that when faced with two theories that have equal supporting experimental

evidence one should choose the simpler one using this measure.

The complexity of a complex statement is merely the sum of the complexities of its

component predicates, regardless of the structure of the statement. It is similar in spirit to

Kemeny’s measure (section 8.18 on page 146). A recent defence and reformulation of this

idea has been made by Richmond in [376].

8.14 Horn Complexity

The Horn complexity of a propositional function is the minimum length of a Horn

formula (in its working variables) that defines that function. This was defined by Aanderaa

and Börger [1] as a measure of the logical complexity of Boolean functions. It is
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polynomially related to the network complexity [2], described below (section 8.26 on

page 151).

8.15 Information

The amount of information a system encodes or the amount of information needed

to describe a system has a loose connection with its complexity. As noted above, there is a

close connection between the amount of information and disorder. Using the Algorithmic

Complexity (section 8.2 on page 136) measure of information, disordered patterns hold

the most information, patterns encoding the maximum amount of information are

indistinguishable from random patterns.

Information can be measured deterministically using algorithmic information

complexity (section 8.2 on page 136) or probabilistically using entropy (section 8.12 on

page 143). Either of these can be used to define mutual information (section 8.25 on page

151). See also section immediately below (section 8.16 on page 145).

Klir exhibits an axiomatic framework for complexity similar to those I list in section

5.2 on page 87, combined with the requirement that complexity should be proportional to

the information required to resolve any uncertainty [262, 263, 264, 265]. This may be

seen as a formulation of Waxman’s “problem complexity” [463].

A number of approaches which seek to combine elements of both algorithmic and

shannon information include: [170, 378, 452, 496].

Computational complexity has been extended to cover information flow by adding a

cost function to the information used by a computation [440, 441, 442].

Applications include: charting the increase in information in the evolution of finite

automata [26, 27]; the fluctuation of information in 1-D automata [47]; its connection with

logical depth in evolution [53]; its connections to computational complexity [138]; the

connection between various measures of information via random vectors [144]; the

regularity of short noisy chaotic series [160]; error-prone sections of programs by

potential information flow [214, 277]; systems problem solving [262]; the classification of

strategies in repeated games [290]; the estimation of the information of a pattern [340];

and a principle of the minimum increase in evolution [399]
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8.16 Information Gain in Hierarchically Approximation and Scaling

Attention in physics has focused on the complexity of chaotic physical processes

with a fractal nature, where one gets different behaviours at different levels of granularity.

In 1986 Grassberger introduced “Effective Measure Complexity” [193], which measured

the asymptotic increase in information with increased scale. He develops this in

[194, 195].

Badii, Politi and others [33, 34, 35, 36, 130] use trees of increasingly detailed

Markov models to approximate a growing pattern. Each branch off a node is a possible

extension of the pattern that may follow. He then defines the complexity of the pattern as

the (Shannon) information gain in each level over the size of the tree at the level, taking

the limit at infinitely many levels. Any Markov process has zero complexity. This is to

reflect the difficulty in predicting complex systems. The class of easily predicted systems

that Badii focuses on are those which exhibit different behaviours at different levels of

detail. He says

“A system is complex if it reveals different laws (interactions) at

different resolution (coarse grinning) levels.”.

[202] argues that these measures assume that the process is stationary, i.e. is

basically a Markov process and [457] classifies them according to whether they are based

on homogeneous or generated partitions and whether they are based on dynamic or

structural elements. Other papers in this area include: [3, 7, 28, 29, 350, 480, 490]. A good

review of this whole area is [36].

8.17 Irreducibility

Holists often use the word “complexity” for that which is irreducible [339] (at least

by current practice). This is, in a sense, an extreme case of the difficulty of decomposition

(section 8.10 on page 142). Such approaches include: [13] where the importance of size to

qualitative behaviour is pointed out; [468] which argues that the evolution of multiple and

overlapping functions will limit reduction in biology; [11] which discusses the application

to public policy in forestry; [247] which charts how chaos challenges the reductionist

approach; [257] which applies this to modelling organisations; as a result of

self-organisation [205]; the incompatibility of information and computation [243]; as a

result of the epistemic cut between syntax and semantics [347]; number of elements an
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instance of a pattern must consist of to exhibit all the characteristics of a class [210]; and

[323] which discusses Rosen’s approach [384, 389] and relates this to the “sciences of

complexity”. This approach to complexity seems particular to biology, for general surveys

of the connection of complexity with holism see [244, 348, 388, 481].

Some suggest that this may be due to using the wrong formal language for

modelling, including [74, 167, 246, 244, 330, 344, 410, 482, 488].

8.18 Kemeny's Complexity

In the field of “simplicity”, Kemeny [254] attributes an integral measure of

complexity to types of extra-logical predicates. He does it on the basis on the logarithm of

the number of non-isomorphic finite models a predicate type has. On the basis of this he

gives extra-logical predicates a complexity which could be used to decide between equally

supported theories. This is similar in style and direction to Goodman’s measure in section

8.13 on page 143.

8.19 Length of Proof

Simpler theorems, on the whole, need shorter proofs. On the other hand longer

proofs are tedious to follow. Thus it is natural to search for short proofs (e.g. as in [96]).

One can arbitrarily lengthen almost any proof. This alone makes length alone as a

measure of complexity unsatisfactory. Some short “elegant” proofs are very complicated

and some careful long explanatory proofs easy to follow. For this measure to make any

sense needless length needs to be eliminated (see minimum size measures in section 8.24

on page 149). Other papers touching on this include: [180, 209].

8.20 Logical Complexity/Arithmetic Hierarchy

Mathematical proof theorists classify mathematical objects and processes according

to the projective hierarchy (sometimes called the arithmetic hierarchy). If the definition of

an object is logically equivalent to a statement with alternating quantifiers:

where Q is a quantifier and R is a quantifier free logical proposition in the variables

x1,…,xn then the object is said to be a member of the class .

Likewise if the statement is of the form:

x1∀ x2∃ x3 x4…∃∀ QxnR x1 … xn, ,[ ]

Π 1

n
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then it is in the class .

If a statement is provably equivalent to both a  statement and a  statement it

is called a  statement. The top numeral refers to the type of function or object allowed

in the statement. The whole hierarchy looks like figure 28 (inclusions go upwards).

 Figure 28.The arithmetic complexity hierarchy

Basically, as one ascends the hierarchy the statements in the classes can have more

expressive power and they are more difficult to prove or model (in the mathematical

sense). Girard [178] surveys this area thoroughly. [107] shows that the arithmetic

complexity of the problem of deriving a word from a fixed starting point is arbitrarily

more complicated than the word problem itself.

8.21 Loop Complexity

The loop complexity of a primitive recursive function is the iteration depth of the

primitive recursive register operators in its definition. Thus x+1 would be level 0, x+y

level 1 (as it can be defined recursively from x+1), x×y level 2 etc. This can be used to

define a hierarchy of sets  of functions with loop complexity not greater than

n [322]. This is one of the large collection of measures used to predict the maintainability

of software, for a survey of these see [498].

x1∃ x2∀ x3 x4…∀∃ QxnR x1 … xn, ,[ ]

Σ 1

n

Σ 1

n
Π 1

n

∆ 1

n

LOOPn
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8.22 Low Probability

The connection of probability and complexity is intricate. The probability of a

highly ordered complex system arising by chance is low, hence sometimes complexity is

associated with low probability [136]. On the other hand if complexity is conflated with

informational measures such as entropy (section 8.12 on page 143) or algorithmic

information (section 8.2 on page 136) then complexity is associated with high probability.

This has led many to look for other measures such that complex systems will lie between

order and disorder including those in section 8.16 on page 145 and section 8.46 on page

161.

In the contrary direction the philosophy of “simplicity” (section 6.5 on page 129 and

section 8.37 on page 156) has lead to the identification of a higher a priori probability of

the truth of a theory with a lack of complexity. That this is mistaken see the arguments in

section 6.5 on page 129 and the paper in Appendix 6 - Complexity and Scientific

Modelling.

An application of low probability to the difficulty of system diagnosis is in [183].

8.23 Minimum Number of Sub Groups

The Krohn-Rhodes prime decomposition theory [17, 272] tells us that we can

decompose any semi-group in to a wreath product of alternating simple groups and

semi-groups of order 3. There are decompositions which are minimal in terms of the

number of such alternations, i.e. they have the least number of groups in their

decomposition. The number of such groups is called the complexity of the original group.

If you take the product of a group with another group then the result will be more

complex, which accords with our intuitions.

Gottinger [190] derives this measure from three “Axioms of Complexity”, which I

reproduce below, using the author’s system of notation (  is the complexity

function). He is writing in the context of considering the semi-group of the

transformations between states of a machine.

1.a)  implies

b)

2. For all machines

θ:Mf Z→

f g θ f( ) θ g( )≤

θ f1 … fn⊕ ⊕( ) max θ fi( ) i 1 … n, ,={ }=

f1 f2, Mf∈

θ f1 f2⊗( ) θ f1( ) θ f2( )+≤
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If there is a feedback operation » from  to , then

3. , .

Here: is the semi-group for a flip flop operations and  is a simple delay.

Axiom 1a) is the familiar subsystem property, saying that subgroups (strictly

homomorphic images of groups) are no more complex that their parent group. Axiom 2

asserts that, if there is no “feedback” between two semi-groups, the complexity of their

parallel composition is not more than the sum of their complexities. If there is a feedback

operation then the complexity of their parallel composition is not more than the sum of

their complexities plus the sum of the complexity of the feedback operation. Axiom 3

states that certain very small semi-groups have zero complexity. These are believable in

terms of our intuitions about complexity (even if not all all of them are obvious).

Axiom 1b) is not so acceptable. It states that the complexity of a serial composition

of sub-groups is only as complex as its most complex component, however complex or

numerous the other sub-groups might be. All the other sub-groups in the serial

composition make no difference to the overall complexity and new ones could be added ad

nauseam! It is this axiom which makes this characterisation of complexity one of a

maximal nature.

The name “simple group” is very misleading. Simple groups are merely groups that

cannot be decomposed into smaller groups. The commutative (abelian) groups are well

understood and have a high degree of symmetry. On the other hand some non-abelian

groups are far from simple! Some are so big and complex that they have be renamed as the

“monster” groups. All these groups will have the lowest possible complexity by this

measure.

Given a set of groups, all of the same size, then the more a group decomposes into

small groups the more complex it is deemed to be. A group that hardly decomposes at all,

where we are left with little easy structural analysis, is deemed simple.

This has been applied to economic and social systems in [10, 189, 191, 163].

8.24 Minimum Size

As discussed in section 3.4.3 on page 58, minimum size overcomes some of the

inadequacies of mere size as a complexity measure. It avoids the possibility of needless

f1 f2

θ f1 f2⊗( ) θ f1( ) θ f2( ) θ f1 f2»( )+ +≤

θ U3
f( ) 0= θ D1( ) 0=

U3
f D1
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length and is nicely independent of the particular expression chosen. It would correspond

to using a perfectly efficient language, the occurrence of any redundancy in a specific

expression was eliminated by perfect compression.

However the minimum size of a particular representation can still be a largely

accidental feature of the description process. Different ideas are sometimes more

succinctly expressed in different languages (national and formal). For example, to express

a conjunction in a negation-implication fragment of classical propositional logic is

necessarily longer than that for implication itself. This would not mean that implication

was simpler that conjunction.

Minimum size also ignores any question of inter-relatedness or relevance. Compare

the cases of 1001 inter-related facts about logic and 1001 unrelated general knowledge

facts (presuming this to be possible). It is probably possible to compress the 1001

inter-related facts more than the unrelated ones because the very fact of their relatedness

indicates a degree of redundancy. The minimum size approach to complexity would thus

attribute a lower complexity to the 1001 related facts but few would say these were less

complex. What is true is that the system of unrelated facts holds more information but is

far complex (as a system).

In a way that is similar to what occurred for length measures, some of these seem to

have had the label “complexity” applied post-hoc, so it is difficult to judge how seriously

they were meant as a complexity measure.

The most frequent special case of a minimum size measure is Algorithmic

Information which corresponds to a minimal sized Turing Machine (see section 8.2 on

page 136), but other minimum size approaches are also used with other formal languages,

in particular finite automata (see section 8.32 on page 153), this approach is criticised

in [43] for the analysis of equilibria in repeated games.

Crutchfield generalises the minimal size criterion over the whole formal language

hierarchy, so that complexity is the minimal size in the “lowest” formal language for

which this is finite [121]. He contrasts this complexity measure with a version of effective

measure complexity (section 8.16 on page 145) which he calls “statistical

complexity” [123]. The method for finding such an expression is given in [119] and

applied to the process of modelling chaotic process in [120, 121].
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Minimum size measures have also been applied to capture the static complexity of

cellular automata in [472]; and to a minimal complexity in evolution [296].

8.25 Mutual Information

 If you have defined an entropy like measure (e.g. Shannon Entropy or Algorithmic

Complexity), H(A) and from that a joint entropy H(A;B) which is the entropy of A and B

joined, then you can define. This can be interpreted as, i.e. the extent of the shortening

when considered together rather than separately.

 A high mutual information between remote parts of a system can indicate a closely

connected or self-similar system. The connectiveness in such a system can be the cause of

its complexity. Bennett [55] points out that this arises for rather different reason in

equilibrium and non-equilibrium systems. In equilibrium situations the mutual

information comes from the intervening medium (like in a gas), in non-equilibrium

systems it must come from some other connection. He points out that simple operations

like duplicating and mixing up random bits of DNA generate large amount of remote

non-equilibrium mutual information.

[287] shows that past-future mutual entropy is not related to entropy in a

straight-forward manner. [7] formulates “physical complexity” as the mutual information

(defined relative to a Landuer-Turing Machine) between a systems and its universe.

Mutual information has been applied to capture some of the dynamic complexity of

cellular automata in [289].

8.26 Network Complexity

Network or circuit complexity is the minimum number of logical gates needed to

implement a logical function [400]. This is very difficult to compute in most cases but

some upper and lower limits can be proved. This measure depends on the choice of logic

gates that you can use to build the circuits from.

This measure has an immediate importance for electronic engineers who seek to

minimise the expense of logic gates as in [278]. This is polynomially related to Horn

Complexity (section 8.14 on page 143). For surveys of results in this field see

[40, 142, 400].
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8.27 Number of Axioms

Meredith and Lukasiewics both put considerable effort into finding small axiom sets

for classical propositional logic. For example Lukasiewics [300] proved that

was the shortest possible single axiom for the pure implicational propositional

calculus. However it is far from obvious that this is helpful. The axiom has no

immediately comprehensible meaning and it makes for an incredibly tortuous proof

theory. For more on this see section 5.6.1 on page 113.

8.28 Number of Dimensions

In any model of a process, the number of dimensions it takes is of critical

importance. A necessarily high dimensional model has the potential for great complexity.

Conversely if there is a simple relationship between dimensions in a model you can often

reduce the models dimension by forming composite dimensions with out any loss of

descriptive power. Hence if a model is necessarily of high dimension then there is no very

simple relationship between any of its several dimensions, i.e. the model must be

reasonably complex.

This has been applied to concept learning [298]; the performance of connecting

networks [307] and in cognitive complexity (section 8.5 on page 139). Fractal dimension

is used to measure plant development in [113].

8.29 Number of Inequivalent Descriptions

If a system can be modelled in many different and irreconcilable ways, then we will

always have to settle for an incomplete model of that system. In such circumstances the

system may well exhibit behaviour that would only be predicted by another model. Thus

such systems are, in a fundamental way, irreducible. Thus the presence of multiple

inequivalent models are considered by some as the key characteristic of “complexity”.

These people are usually holists, namely [323, 389]. See also section 4.3.1 on page 83.

This approach can be extended in restricted circumstances to measuring complexity

by the number of inequivalent descriptions [88, 89].

p q→( ) r→[ ] r p→( ) s p→( )→[ ]→
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8.30 Number of Internal Relations

If one is focusing on the topology of a model, then one improvement on the simple

size of the network as an indication of its complexity is the number of relations indicated

between the nodes.

Rouse and Rouse [392] in their study of the time taken to complete tasks found a

strong correlation between the time taken to perform fault diagnosis tasks with complex

relations and the number of internal relations in that circuit (represented by a wiring

connection). Van Emden [450] examines the mathematics of a variety of entropic

measures based on the information indicated by the internal relations at different levels.

8.31 Number of Spanning Trees

An interesting graphical measure is the number of spanning trees of a graph (see

also section 8.7 on page 140). A spanning tree is a subgraph with no loops which includes

all the vertices. The number of spanning trees grows very fast with the cyclomatic number

and size of the graph. A tree has only one spanning tree [252]. [58] applies this to a

classification of games. [226, 237] use such trees as the basis for a measure of complexity

to capture the variety in the structure of trees.

8.32 Number of States in a Finite Automata

Much formal work [231] has been done on the number of states of finite automata.

In these works this number is frequently taken as the complexity (e.g. [164]). Again it is

easy to elaborate a model by adding redundant states, a difficulty which is circumvented

by selecting a minimal or “acceptable” model (see section 8.24 on page 149 above).

Gaines [165] is pessimistic about a useful general theory of complexity, saying:

“The ordering of models in terms of complexity is arbitrary and depends

upon our individual points of view.”,

and again:

“When we specify an order relation upon the models we may find that

the behaviours of many important systems require complex models under our

ordering, whereas, with a different ordering on the same class of models, they

all become simple.”.



Syntactic Measures of Complexity

- page 154 -

He, nonetheless, introduces the useful concept of admissibility (borrowed from

statistics [465]) and applies it to the search for simple finite-state automata for various

string patterns. He uses a working definition of complexity which counts the number of

states of an automaton and then goes on to identify, with the help of the program ATOM,

admissible models of various sizes. Here models are said to be admissible if any other

model that gives a better approximation of the behaviour is more complex (in the sense of

number of states).

In [164] he shows that even a small amount of randomness can cause an indefinite

increase in an induced automata model. This work is extended in [396] to stochastic

automata.

Von Neuman speculated that there was a critical threshold which allowed

self-reproduction [454]. In [303] it is shown that Turing machines with very few states

can exhibit complex behaviour.

Complexity as the number of states in a finite automata has been widely applied: to

characterise the emerging complexity resulting from the actions of cellular

automata [289, 472, 473, 474, 476]; in economic game theory [229]; to characterising

social structure [9] and in characterising the computation done in chaotic systems [122].

8.33 Number of Symbols

The number of symbols is not a reliable guide to complexity. Merely to count the

number of symbols in philosophical works would give one little indication of their

complexity. Also compare the following logical statements:

(6)

and

(7) .

Under almost any length measure the first is more complex than the second, yet

intuitively a trivial instance of identity is less complex than the troublesome mingle

axiom.

You do need a certain number of symbols for expressive power.   Jaskowski [240]

proved that you need at least one axiom with eleven symbols or two with nine in an

axiomatisation of Classical Logic.

a b→( ) a b→( )→

p p p→( )→
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Size does create resource problems and hence needless size is undesirable. This is

especially true for us humans who have a distinct limit on our short term memory. So,

things that overload our short term memory can be difficult to understand. This is

completely different situation from that where we can readily hold the information in our

head but find it difficult to comprehend. We can deal with first difficulty given enough

paper and time, the second is not necessarily any easier when written down.

This measure is used most frequently in linguistics (e.g. [45, 153, 256, 305].

8.34 Number of Variables

The number of variables in a statement can have an immediate impact both on

proofs that use it and the complexity of its models. Both of these effects depend on the

structure of the statement. For example the axiom  has a catastrophically

simplifying effect on both proofs and models compared to that of .

As with the number of symbols (section 8.33 on page 154 above) the number of

variables can have a limiting effect on complexity but the number of variables is not a

sufficient condition for complexity. Diamond and McKinsey proved [139] that for a broad

range of logics you need at least one axiom with three variables in it.

8.35 Organised/Disorganised Complexity

Weaver [464] classified scientific problems into the simple, and the complex.Then

he further classified the complex problems into those of disorganised complexity and

organised complexity. Simple problems are those with a few variables like the path of a

billiard ball and a complex problem is one with many variables like a gas. Disorganised

complexity is typified by many independent variables, so that it is amenable to statistical

techniques. Examples of this are the properties of a gas or a nation's accident statistics.

Organised complexity occurs when“There is a sizeable number of factors which are

interrelated into an organic whole”Examples given by him include the immune system of

animals and economic fluctuations.

a b→

a a→
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8.36 Shannon Information

Although Shannon [408] did not envisage his measure of information being used to

quantify complexity, some of his successors have either used it as such or based

complexity measures upon it.

The Shannon measure of information is a statistical measure based on the

probability of receiving a message. If  are the probabilities of

receiving the messages  then the information carried by the message

is defined as . The more improbable the message, the more information it

gives the recipient.

See the section on information (section 8.15 on page 144) and entropy (section 8.12

on page 143).

8.37 Simplicity

When faced with two theories which are equally supported by the available

experimental evidence, it is natural to choose the simpler of the two. Further than this,

when a theory has been elaborated in order to explain the evidence, it is often fruitful to

search for a simpler theory. The study of the grounds for choosing between equally

supported theories has acquired the label “Simplicity”

(see [4, 78, 186, 253, 254, 339, 485]).

From the point of view of theories about the world, all purely logical propositions

are equally and ultimately certain and hence “simple”. Thus measures of simplicity do not

help us to distinguish between logical theories, they were not meant to. Many theories of

Simplicity have chosen grounds other than simplicity as the criterion for choosing

between equally supported theories, e.g. Popper's refutability [358] or Defrays [241]

identification of Simplicity with high probability. Some theories with connections with

complexity are Goodman's (section 8.13 on page 143), Kemeny's (section 8.18 on page

146) and Sobers (section 8.41 on page 158).

For a fuller discussion of this see section 6.5 on page 129 and Appendix 6 -

Complexity and Scientific Modelling.

p m1( ) p m2( ) …, ,

m1 m2 …, , n1 n2 …, ,

log2 p ni( )( )
i

∑–
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8.38 Size

There is clearly a sense in which people use “complexity” to indicate the number of

parts but seems rarely used just to indicate this. It would be odd for a person opening a

phone book or a large box of matches to exclaim “Oh, how complex!”. Contrast these

examples with those of a mathematical text book or an intricate (old fashioned) watch,

where this would be more appropriate. Size seems not to be a sufficient condition for

complexity.

On the other hand a certain minimum size does seem to be a necessary condition for

complexity. It is very hard to imagine anything complex made of only two parts. However,

this minimum size can be quite small: small non-abelian mathematical groups can be very

complex indeed as are many other formal systems with a sparse axiomatisation. The rate

of potential complexity seems to increase very fast with size. This does not, of course,

mean that all large systems are complex.

Size based measures of complexity seem to come about in two circumstances: as a

result of a post-hoc labelling of a formal device (as in simple induction proofs where the

length of a proof, the number of connectives or the depth of nesting is in need of a

convenient label) and to indicate a potential for complexity (as in the number of variables

in a formula).

Anderson points out that size can make a qualitative difference to the behaviour of

systems [13] as [454] also suggests, but [303] indicates that in the presence of powerful

inferential machinery that the critical size can be very small.

Applications include: the social organisation and community size [83]; the

minimum number of gates in a circuit [278]; the cyclical behaviour of systems [458];

self-replicating sequences [44]; rule-based systems [341]; neural networks and cellular

automata [188]; and grammatical development [256].

See also the discussion in section 3.4.1 on page 57 and the other size and numerosity

based approaches in this appendix.

8.39 Size of Grammar

A pattern, if viewed as the result of production rules in a language, has a

grammar [231]. In general the simpler the pattern, the simpler the grammar. So the size of

the grammar gives us a handle on the complexity of the pattern. The size and complexity
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of the grammar can vary depending on what sort of language you are assuming the pattern

to be a representative of. For instance Gaines [164] shows that the assumption that a

process can be modelled by a deterministic finite automaton leads to very large models

(proportional to the length of the evidence) in the presence of even a small amount of

indeterminism. This measure would identify all patterns of a particular language as

equally complex unless the pattern happens also to be a member of another language as

well. Sahal [396] demonstrates similar results, but with stochastic automata.

Frequently the size of grammar is taken relative to a Turing machine (section 8.2 on

page 136) or finite automata (section 8.32 on page 153). Other approaches include simple

depth (section 8.44 on page 160) or star height in regular languages [153].

Applications include: biological macromolecules [146]; chaotic systems in physics

(section 8.16 on page 145); and communication complexity [235].

8.40 Size of matrix

The size of a minimal characteristic matrix for a logic is an indication of the logic's

complexity [209]. Classical logic has the smallest possible matrices (2x2), and more

complex logics like R, do not have finite characteristic matrices at all. This measure is an

indication of the the complexity of logic's semantics but does not have a direct relationship

with the complexity of its proof theory (see section 5.6.2 on page 117).

This sort of approach has been applied to: the stability of computational

communities [259]; flow dominance in layout problems [215]; and hierarchical

decomposition of systems [72].

8.41 Sober's Minimum Extra Information

In the field of the “simplicity” of scientific theories, Sober [418] rejected the idea of

an absolute measure in favour of that of an ordering based on how much extra information

would be needed to select an answer to a particular question: this is implicitly as

relativised informativeness. Thus simplicity was to be relative to a question (represented

by a set of possible answers). The theory that needs the least minimum extra information

to select an answer to the question is deemed the simpler one. When one is judging

theories with respect to a number of questions one must decide a weighting of the relative

importance of the questions, to decide the overall simplicity.
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Sober applies this to mathematical and logical fields by examining how the

fundamental axioms are chosen. This is done by seeing how much information they

contribute to the question of whether the axiom is true in our world or not. According to

Sober

“This mirrors our belief that a contraction in the axiom set is a gain in

simplicity. Moreover, a proof that the axioms are mutually independent is a

proof that the axiom set is maximally simple; no axiom is redundant. And a

proof that the axiom set is complete simplifies our view of the area being

axiomatised, for it assures us that relative to the axiom set, every truth is

redundant.”

Next Sober considers some logical properties of (extra-logical) relations by

considering the informativeness of them relative to the general question of whether two

objects are related. Thus he arrives at similar conclusions to Goodman (e.g. a symmetrical

relation is simpler that an anti-symmetrical one etc.).

8.42 Sophistication

Koppel [268] defines “sophistication” as a measure of the structure of a string. He

says:

“The minimal description of a string consists of two parts. One part is a

description of the string's structure, and the other part specifies the string from

among the class of strings sharing that structure (Cover 1985). The

sophistication of a string is the size of that part of the description which

describes the strings structure. Thus, for example, the description of the

structure of a random string is empty and thus, though its complexity is high,

its sophistication is low.”

Formally for finite strings the c-sophistication of S, a string, is

, where (P,D) is a

description of S, if P is a total, self-delimiting program that computes S from the data, D

and where H(S) is the algorithmic complexity of S, the minimum possible |P|+|D| such that

(P,D) is a description of S.

Thus by allowing the data to be longer than the minimum, the program might be

shorter. The idea is that any random, incompressible part might come from the data, and

min P D P D,( ) is a description of S andP D+ H S( ) c+≤∃{ }
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the sophistication measures the minimal length of the program that computes the

structured aspect of the string.

Grassberger’s effective measure complexity [194] can be seen as an entropic (and

hence computable) version of sophistication. The relation to similar measures (e.g. the

algorithmic information of section 8.2 on page 136 and logical depth section 8.4 on page

138) are covered in [269].

8.43 Stochastic Complexity

Rissanen [379] finds the idea of “shortest code length” (like algorithmic complexity)

attractive but difficult to apply when modelling physical processes. He estimates the

minimum code length of data encoded with a probabilistic model, using Shannon's coding

theory.

This can be seen as a statistical and computable version of algorithmic information

(section 8.2 on page 136) as well as an attempt to establish a principled trade-off between

a model’s complexity and error rate (see Appendix 6 - Complexity and Scientific

Modelling).

Re-christened as the minimum description length (MDL) principle [378], it has been

successfully applied to machine learning [377, 493].

8.44 Syntactic Depth

The deeper phrases are embedded in a statement (according to some syntax), the

more difficult they are to understand. Identifying the ease of comprehension is one of the

primary purposes of measures of syntactic complexity in formal language theory. In 1960

Yngve [483] proposeddepth of postponed symbols as a measure of syntactic complexity,

this was criticised by Miller and Chomsky [326] on formal grounds. They preferred the

degree of self-embedding because it was “… precisely the property that distinguishes

context-free languages from the regular languages.” Other measures proposed in [383]

include depth and nesting.

The depth of a syntactic expression is the maximum number of arcs from root to leaf

when represented in a tree form. This has nothing to do with either “logical depth”

(section 8.4 on page 138) or “thermodynamic depth” (section 8.46 on page 161).
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From the point of view of a modeller, depth is a useful way to stratify a space of

expressions in a recursive language, as typically the number of possible expressions goes

up exponentially with the depth. Although as [349] points out this could be done in any

number of ways. Thus depth is relevant to the problem of induction whether by humans

(see section 6.5 on page 129 and Appendix 6 - Complexity and Scientific Modelling) or in

machine learning [111, 148, 333].

Syntactic depth as an indication of complexity has also been applied to menu

design [239]; the difficulty of resolution of ambiguity [174] and circuit design [355, 356].

8.45 Tabular Complexity

Tabular complexity is an adaptation of Kolmogorov'sε-entropy [267] by

Vitushkin [453]. It is a measure of the complexity of finite-state automata (see also section

8.32 on page 153). To calculate it one takes the tables representing the change of state and

the output of the semi-group of the states of the automata and then decomposes these

tables into smaller sub-tables, also allowing for the decomposition of the “wiring” (the

connections) between these sub-tables etc. The minimum total volume obtainable is the

tabular complexity, i.e. it is the volume of the most compact tabular representation.

Thus tabular complexity is similar to It is only applicable to processes modellable by

finite automata (a proper subset of those computable by a Turing Machine). The tabular

complexity can be very difficult to calculate but estimates can be produced by exhibiting

specific tables.

8.46 Thermodynamic Depth

Seth Lloyd [291, 292] defines thermodynamic depth as , where  is

the long-term probability of the trajectory  (being a sequence of discrete

states) arising by chance. This is intended as the total amount of (Shannon) information

(section 8.36 on page 156) required to specify that trajectory.

This is closely related to the breadth of a system, which is defined as

(8) ,

where  ranges over the possible trajectories of the system,p is a

function of the time-specific probabilities of each trajectory andq is the long-term

(equilibrium) probability of the trajectory arising from chance andK is a constant.

logq α( )– q α( )

α α1α2…αn=

K p α( ) q α( )
p α( )
--------------log

α
∑–

α α1α2…αn=
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This is the unique form of a measure,f, with the following properties:

1. f is a function ofp andq,

2. f is continuous inp andq,

3. f is additive along its trajectories in a similar way to Shannon entropy, i.e. if

 and  are trajectories then

(9)

4. i.e. discount information

obtained from equilibrium.

When a trajectory has probability of 1, then the depth is the same as the breadth.

This is further developed in [169] into a measure which combines algorithmic and

entropic information.

8.47 Time and Space Computational Complexity

Computational complexity is now a much studied area with many formal results. It

is usually cast as the order of the rate of growth of the resources needed to compute

something compared to the size of its input.

Such time and space complexity measures are the most studied computational

measures. Articles which include the word complexity often refer to these. They reflect

the degree of effort required to compute a problem, independent of particular instances of

that problem. They are fairly rough measure because they only give the degree of increase

to within a constant factor, e.g. the order of the polynomial with which they increase. This

is because of possible variations in the abstract computer that does the calculation.

Several variations of this have been proposed, including: extension to other fields

like the real numbers [66]; continuous complexity models [318]; information based

complexity (which adds a cost function to the information used) [440, 441, 442]; and

using uniform rather than logarithmic size [211].

Applications include: social choice theory [251]; grammatical

inference [155];learning [184]; simplification in logic [315]; feasibility of reasoning by a

limited agent [281]; communication [235]; induction [111]; simulation [335]; control

theory [486, 487]; perceptrons [500]; improving performance on 3-SAT problems [230];

and propagation in boolean circuits [425].

Summaries of the field can be found in [40, 41, 70].

α α1α2…αm= β βm 1+ βm 2+ …βn=

f p αβ( ) q αβ( ),{ }( ) f p α( ) q α( ),{ }( ) p α( ) f p β α( ) q β α( ),{ } 
 

α
∑+=

p α( ) q α( )= f p α( ) q α( ),{ }( ) 0=⇒
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8.48 Variety

A complex system is likely to exhibit a greater variety in terms of its behaviour and

properties. Thus variety is an indication of complexity (though not always as sometimes a

very complex system is necessary in order to maintain equilibrium). Variety can be

measured by the simple counting of types, the spread of numerical values or the simple

presence of sudden changes. In this way it overlaps with information (section 8.15 on page

144) and entropic (section 8.12 on page 143) measures.

Applications include: punctuated behaviour [38]; stability of ecosystems [353];

competing behaviours and control [357]; tree structures [237]; number of inequivalent

models [89]; the interaction of connectivity and complexity [218]; and evolution [316].
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9 Appendix 2 - Longer Proofs

9.1 (Non-existence of) Complexity Measures on Strings

Definitions

Let L be the set of non-empty strings with symbols from , i.e.

.

If x and y are the same pattern, but using different symbols, I will write , e.g.

.

Let  be a function to the non-negative reals (this is the intended

complexity function.

I will write the concatenation ofx andy asxy.

Let  be the set of non-empty substrings ofx (including itself), e.g.

.

I will show the substitution ofy for  throughout x as , e.g.

.

Two patterns are irrelevant to each other, , if they have no symbols in

common, i.e. , e.g.I(aaba,cc) but notI(babcb,ddad).

When x and y are irrelevant to each other I will denote their concatenation: .

Let  be shorthand for the stringx concatenated with itselfn-1 times, e.g.

.

In all of the below ; ; and

 (whereN is the set of natural numbers).

S a b c …, , ,{ }=

L a aa ab b …, , , ,{ }=

x y≈

aab bbc≈

C:L ℜ+→

℘ x( )

℘ aba( ) a b ab ba aba, , , ,{ }=

c S∈ x c y⁄( )

aba a cd⁄( ) cdbcd=

I x y,( )

I x y,( ) ℘ x( ) ℘ y( )∩ ∅=≡

x y⋅

x
n

ab( ) 3
ababab=

w x y z, , , L∈ a b r s t, , , , S∈

α i n m s1 s2 … t1 t2 …, , , , , , N∈, , ,
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Theorem

If S has at least three distinct symbols then there is no non-trivial measure from

<L, ⋅, ≤> into <ℜ+, +, ≤>, that is, if thereis a functionC:L→ℜ+, defined onL to the

non-negative real numbers such that,∀x,y∈L:

(Irrelevant Join)

(Subform)

such that:

(Subpattern Property)

(Irrelevant Substitution)

Then for all x, .

There needs to be at least 3 symbols for the technical reason that sometimes

you sometimes temporarily need a third symbol to apply “Irrelevant Substitution”. For all

of the below I use a constant, , defined as . The triviality of the measure will

come from a proof that .

Proof:

Lemma 1

Proof of Lemma:

Choose , , now

.

Lemma 2

If x has no repetitions of any symbols in it, then .

Proof of Lemma:

Let , where  are pairwise distinct.

Now using repeated instances of Irrelevant Join and Lemma 1 we have:

.

C x y⋅( ) C x( ) C y( )+=

x y≤ C x( ) C y( )≤⇔

x ℘ y( )∈ x y≤⇒

I x y,( ) s ℘ x( )∈, C x s y⁄( )( ) C x( ) C y( )+=⇒

C x( ) 0=

k 0≥ C ss( )

k 0=

C s( ) 0=

t S∈ s t≠

C t( ) C t t s⁄( )( ) C t( ) C s( )+= =

C x( ) 0=

x s1s2…sn= si S∈

C s1s2…sn( ) C s1( ) C s2…sn( )+ … C s1( ) … C sn( )+ + 0= = = =
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Lemma 3:

If , then . (TheSubstitution of Symbols)

Proof of Lemma:

Let  be the symbols that occur inx and  be the

corresponding symbols iny.

Now using Lemma 1 and repeated applications of Irrelevant Substitution we have:

.

Lemma 4:

.

Proof of Lemma:

By induction onm.

Base step: .

Inductive step:

.

Lemma 5:

Proof of Lemma:

This is a special case of Lemma 4, with n=2.

Lemma 6:

.

Proof of Lemma:

now given , choose  such that .

So  is a substring of  which is a substring of .

By thesubpattern property, we have

,

therefore by Lemmas 4 and 5: ,

x y≈ C x( ) C y( )=

s1 s2 … sn, , , t1 t2 … tn, , ,

C x( ) C x( ) C t1( ) … C tn( )+ + + C x s1 t1⁄( ) … sn tn⁄( )( ) C y( )= = =

C s
n

m

 
 

mC s
n

 
 

=

C s
n

1

 
 

C s
n

 
 

1.C s
n

 
 

= =

C s
n

m 1+

 
 

C s
ṅn

m

 
 

C t
n

m

t s
n⁄ 

 
 
 

C t
n

m

 
 

C s
n

 
 

+ C s
n

m

 
 

C s
n

 
 

+= = = =

mC s
n

 
 

C s
n

 
 

+ 
 

= m 1+( ) C s
n

 
 

=

C s
2

m( )
 
 

mk=

C s
n

 
 

klog2n=

m 1≥ α m( ) 0> 2
α

n
m

2
α 1+≤ ≤

a
2

α

a
n

m

a
2

α 1+

C a
2

α

 
 

C a
n

m

 
 

C a
2

α 1+

 
 

≤ ≤

kα mC a
n

 
 

k α 1+( )≤ ≤
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so  since .

But by the choice of

so , as .

Given thatm can be arbitrarily large,  must be arbitrarily close to .

Lemma 7:

.

Proof of Lemma:

Using Lemma 6, we have:

.

Lemma 8:

If x is a rotation ofy then

(wherex is a rotation ofy if ).

Proof of Lemma:

let w andz be strings such that .

For ,  is a sub-pattern of  which is a sub-pattern of ,

so by the sub-pattern property

⇒

(using lemma 7)

⇒

Sincen can be arbitrarily large, .

k
α
m
---- C a

n
 
 

k
α 1+

m
-------------≤ ≤ m 0>

α

α mlog2n α 1+≤ ≤

k
α
m
---- klog2n k

α 1+
m

-------------≤ ≤ m 0>

C a
n

 
 

klog2n

C x
n

 
 

klog2n C x( )+=

C x
n

 
 

C s
n

s x⁄( ) 
 

C s
n

 
 

C x( )+ klog2n C x( )+= = =

C x( ) C y( )=

w z L wz x=( ) zw y=( )∧( )∈,∃

x wz= y, zw=

n 1> wz( ) n 1–
zw( ) n

wz( ) n 1+

C wz( ) n 1–
 
 

C zw( ) n
 
 

C wz( ) n 1+
 
 

≤ ≤

klog2 n 1–( ) C wz( )+ klog2n C zw( )+ klog2 n 1+( ) C wz( )+≤ ≤

klog2
n 1–

n
------------ 

  C wz( )+ C zw( ) klog2
n 1+

n
------------ 

  C wz( )+≤ ≤

C wz( ) C zw( )=
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Now to show that .

= Lemma 6

= Lemma 1

= Irrelevant Join

= Irrelevant Substitution

= Substitution expanded

≥ Sub-pattern

= Lemma 8

= Definition ofk

= Irrelevant Substitution

= Substitution expanded

≥ Sub-pattern

= Lemma 8

≥ Sub-pattern

= Lemma 8

≥ Sub-pattern

= Lemma 8

= Irrelevant Join

= . By the definition of k and Lemma 7

Finally I will show that , which will prove the theorem.

Let x be a string containing the followingn pairwise distinct symbols: .

Construct a new string  fromx, using n applications of the

following:  is constructed from  (using the convention that  isx) by

replacing all instances of  in  that were also in  using these four steps:

(1) rotatex until the first symbol is the chosen instance of ;

(2) append the string  to the front of the rotated string;

k 0=

k klog23+

k C c
3

 
 

+

k C c
3

 
 

C a( ) C b( )+ + +

k C c
3

 
 

C ab( )+ +

k C c
3

c ab( )⁄( ) 
 

+

k C ababab( )+

k C ababa( )+

k C abaab( )+

C c
2

 
 

C abaab( )+

C c
2

c abaab( )⁄( ) 
 

C abaababaab( )

C abaababaa( )

C baaabaaba( )

C baaabaab( )

C aabbaaab( )

C aabbaaa( )

C aaaaabb( )

C a
5

 
 

C b
2

 
 

+

klog25 k+

x L C x( );∈∀ 0=

s1 … sn, ,

x̂ fn fn 1– …f1 x( )…( )( )=

fi x( ) fi 1– x( ) f0 x( )

si fi 1– x( ) x

si

s1…si 1–
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(3) rotate the new string until the chosen instance of  is at the end;

(4) append the string  at the end.

Fact 1:

 since a rotation does not change a string’s complexity by

Lemma 7 and appending symbols at the beginning or end of a string can only increase its

complexity due to the subpattern assumption.

Fact 2:

By construction , since by construction every symbol inx is

replaced by the string .

By repeated applications of fact 1, we have .

So , since

and  contains no symbol repetitions (Lemma 2).

..................

9.2 Cyclomatic Number as a Lower Bound for Minimal Damage Cut

The cyclomatic number can be calculated as the number of arcs minus the number of

nodes plus the number of disjoint partitions the graph is in. Each cut of the formula that

incurs “damage” removes at least one arc and the formula is not fully “analysed” into

components until you are left with a collection of trees and the cyclomatic number of a

collection of trees is zero.

9.3 Decomposition of Formulas into Complexes

The proof deferred from section 5.3.2 on page 95.

Any formula can be decomposed into complexes. i.e.

For anyx∈L there area0,…,an∈Cp andc1,…,cn∈X0 such that

x = a0
c1/a1…cn/an

and for i≤n, ¬R(a0
c1/a1…ci/ai,ci) so that

C(x) = C(a0) + … + C(cn).

Note that this is not necessarily a unique decomposition.

Proof:

si

si 1+ …sn

C fi x( )( ) C fi 1– x( )( )≥

x̂ s1…sn( ) x
=

s1…sn

C x̂( ) C x( )≥

C x( ) C x̂( ) C s1…sn( ) x
 
 ≤ ≤ klog2 x C s1…sn( )+ 0= = k 0=

s1…sn
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By induction on length ofx:

Base Step

x is of length1 ⇒ x∈X0⇒ x∈Cp

and thus is its own decomposition.

Induction Step

x∈Cp ⇒ trivial decomposition of itself.

x∉Cp ⇒ ∃y∈P(x)−{x}−X0; ¬R(xy/c,y) Defn Cp

Now by the induction hypothesisxy/c andy have decompositions:

xy/c = a0
c1/a1…cn/an

y = b0
k1/b1…km/bm

These two decompositions are irrelevant to each other, so

x = (xy/c)c/y

= a0
c1/a1…cn/an

c/b0
k1/b1…km/bm as¬R(a0

c1/a1…cn/an,b0
k1/b1…km/bm)

Now ∀i<n ¬R(a0
c1/a1…ci/ai,ai+1), ¬R(a0

c1/a1…cn/an,b0)

and for∀j<m ¬R(a0
c1/a1…cn/an

c/b0
k1/b1…kj/bj,bj+1), since¬R(xy/c,y).

Now, of course,

C(x) = C(a0) + … + C(an) +

C(b0) + … + C(bm).

..................

9.4 Generating a Measure from a Function on the Complexes

The proof from section 5.3.2 on page 95. First a lemma I will use in the proof:

Lemma

y,z∈℘(x), c,k∈X0−℘(x), ¬R(xy/c,y), ¬R(xz/k,z)

⇒ ¬R(y,z) or y∈℘(z) or z∈℘(y)

Proof:

By induction on the depth of formulas.
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Base (depth 0):

depth(x)=0 ⇒ x∈X0 ⇒ ℘(x)={x}

y,z∈℘(x) ⇒ y=x=z ⇒ y∈℘(z)

Induction step:

Assume lemma is true for all formulas of depth less thanx (depth(x)>0).

One of:

(i) x = uw

(ii) x = bst

For somew,s,t∈L, u∈X1, b∈X2, depth(w), depth(s), depth(t) < depth(x)

Case (i):x = uw

y,z∈℘(uw) = {uw} ∪ ℘(w)

There are essentially three possibilities: either(a) bothy andz equaluw, (b) only

one of them or(c) neither. Take each case in turn:

(a) y=uw=z ⇒ y∈℘(z)

(b) (w.l.o.g.) y=uw, z∈℘(w) ⇒ z∈℘(uw)=℘(y)

(c) y,z∈℘(w)

by the inductive hypothesis since¬R(xy/c,y), ¬R(xz/k,z) ⇒ ¬R(wy/c,y), ¬R(wz/k,z)

one of¬R(y,z), y∈℘(z) or z∈℘(y) holds.

Case (ii):x = bst

y,z∈℘(bst) = {bst} ∪ ℘(s) ∪ ℘(t)

Here there are essentially four possibilities (modulus the obvious symmetries ofs

andt): either(a) bothy andz equalbst, (b) one is equal tobst and the other is a member



Syntactic Measures of Complexity

- page 172 -

of ℘(s), (c) both are members of℘(s) or (d) one is a member of℘(s) and the other a

member of℘(t). Taking each possibility in turn:

(a) y=bst=z ⇒ y∈℘(z)

(b) (w.l.o.g.) y=bst, z∈℘(s) ⇒ z∈℘(bst)=℘(y)

(c) (w.l.o.g.) y,z∈℘(s)

¬R(xy/c,y), ¬R(xz/k,z) ⇒ ¬R(sy/c,y), ¬R(sz/k,z)

and so by the inductive hypothesis one of¬R(y,z), y∈℘(z) or z∈℘(y) holds.

(d) (w.l.o.g.) y∈℘(s)-℘(t), z∈℘(t)-℘(s)

¬R(xy/c,y)

⇒ ¬R((bst)y/c,y) asx=bst

⇒ ¬R(b(sy/c)t,y) y∉℘(t)

⇒ ℘(b(sy/c)t)∩℘(y)=∅ Defn R

⇒ [{b(sy/c)t}∪℘(sy/c)∪℘(t)]∩℘(y)=∅

⇒ ℘(t)∩℘(y)=∅

Similarly

¬R(xz/k,y) ⇒ ℘(s)∩℘(z)=∅

Now if q∈℘(x) then either: q=bst, q∈℘(s) or q∈℘(t). If q=bst then

q∉℘(y)∩℘(z) by the assumptions of (d). If q∈℘(s) then q∉℘(z) since

℘(s)∩℘(z)=∅. If q∈℘(t) then q∉℘(y) since℘(t)∩℘(y)=∅. In any of these cases

q∉℘(y)∩℘(z) so we have℘(y)∩℘(z)=∅, i.e.¬R(y,z).

This completes the proof of possibility(d), hence cases(i) and (ii)  and thus the

induction step.

..................

Now for the main proof.
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A function,g, onCp in L, g:Cp→ℜ+,

x∈X0 ⇒ g(x)=0

x≈y ⇒ g(x)=g(y)

x≤y ⇒ g(x)≤g(y).

will generate a unique complexity measure,C:L→ℜ+, onL, thus:

C(x) ≡dff g(a0) + g(a1) + g(a2) + … + g(an),

for some decomposition:x = a0
c1/a1

c2/a2…cn/an, into complexes:

a0,a1,a2,…,an∈Cp, as above and hence an ordering,≤, onL:

x≤y ⇔ C(x)≤C(y).

Proof:

We have to check two things:

That C is well-defined, that is given two decompositions ofx the sum ofg over these

is the same, that is:

(1) x = a0
c1/a1…cn/an = b0

k1/b1…km/bm

⇒ g(a0) + g(a1) + … + g(an) = g(b0) + g(b1) + … + g(bn).

And that the complexity of the result of an irrelevant substitution is the sum of the

complexity of the formula that is substituted in and the formula it is substituted into:

(2) k∈X0∩℘(x), ¬R(x,y)

⇒ C(xk/y) = C(x) + C(y)

I do this by induction on the maximum size of formulas.

Base (size 1)

|x|=1 ⇒ x∈X0 ⇒ C(x) = 0 = g(x)

and so C is well defined, showing(1).

k∈X0∩℘(x)

⇒ k=x

⇒ xk/y = y

⇒ C(xk/y) = C(y) = C(y) + 0 = C(y) + g(x) = C(y) + C(x)
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showing(2).

Induction Step

Assume(1) and(2) hold for all formulas with size less than that ofx.

Suppose thatx can be decomposed by two different non-trivial irrelevant

substitutions. So that:

∃y,z∈℘(x)-{x}, ∃c,k∈X0-℘(x), ¬R(xy/c,y), ¬R(xz/k,z)

If we could show thatC(xy/c) + C(y) = C(xz/k) + C(z), then by the induction

hypothesisC would be a well defined measure onxy/c, y, xz/k andz and thus we would

have shown (1) for all formulas up to and including size |x|.

Now if k∈℘(x)∩X0, ¬R(x,y), x andy have decompositions into complexes:

x = a0
c1/a1…cn/an, ∀i≤n ¬R(a0

c1/a1
c2/a2…ci/ai, ai+1)

y= b0
k1/b1…km/bm, ∀j≤m ¬R(b0

k1/b1…kj/bj, bj+1)

⇒ C(xk/y)

= C(a0
c1/a1…cn/an(k/(b0

k1/b1…km/bm)))

= C(a0
c1/a1…ci/(ai(k/(b0

k1/b1…km/bm)))…cn/an) as for one i≤n, k∈ai

= C(a0
c1/a1…ci/ai

k/(b0
k1/b1…km/bm)…cn/an) as k only occurs in ai

= C(a0
c1/a1…ci/ai

k/b0
k1/b1…km/bm…cn/an)ask1,…km do not occur ina0,…ai

= g(a0) + … + g(ai) + g(b0) + … + g(bm) + g(ai+1) +… + g(an)

since C is well-defined on a0,…an,b0,…bm by induction hypothesis

= g(a0) + … + g(an) + g(b0) + … + g(bm) by rearranging

= C(x) + C(y)

So all we have left to prove is∃y,z∈℘(x)-{x}, ∃c,k∈X0-℘(x), ¬R(xy/c,y),

¬R(xz/k,z)

⇒ C(xy/c) + C(y) = C(xz/k) + C(z) for formula of size |x|.

Using the Lemma immediately above, either:

(i) ¬R(x,y)

(ii) y∈℘(z) or z∈℘(y).
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Case (i)

¬R(xy/c,y) ⇒ ¬R(xz/k
y/c,y) as¬R(k,y)

⇒ C(xz/k) = C(xz/k
y/c) + C(y) by induction hypothesis as |xz/k|<|x|

similarly C(xy/c) = C(xy/c
z/k) + C(z)

Now x andy occur separately inx soxz/k
y/c = xy/c

z/k, and thus:

C(xy/c) - C(z) = C(xy/c
z/k) = C(xz/k

y/c) = C(xz/k) - C(y)

Case (ii)

y∈℘(z) or z∈℘(y).

W.l.o.g. say,y∈℘(z).

¬R(xz/k,z) ⇒ ¬R(xy/c
(zy/c)/k,(zy/c)) as y∈℘(z), y∉℘(xz/k)

C(xy/c) = C(xy/c
(zy/c)/k

k/(zy/c)) as xy/c = xy/c
(zy/c)/k

k/(zy/c)

= C(xy/c
(zy/c)/k) + C(zy/c) as¬R(xy/c

(zy/c)/k,(zy/c))

= C(xz/k) + C(zy/c) as xy/c
(zy/c)/k = xz/k

¬R(xy/c,y), zy/c∈℘(xy/c) ⇒ ¬R(zy/c,y)

C(z) = C(zy/c
c/y) = C(zy/c) + C(y) as¬R(zy/c,y)

C(xy/c) = C(xz/k) + C(z) - C(y) substituting out C(zy/c)

Which rearranged shows:C(xy/c) + C(y) = C(xz/k) + C(z)

..................

9.5 Three Conditions that are Equivalent on a Weak Complexity

Measure

This is the proof from section 5.3.5 on page 104. But first I show that condition (i)

implies the subformula property.

(i) ⇒ the Subformula Property

If R(x,y) ⇒ C(bxy) > max{C(x),C(y)} then

y∈P(x) ⇒ C(y) ≤ C(x)
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Proof:

The casey=x is trivial so assumey≠x.

By induction on depth ofx:

Base:

x∈X0 ⇒ y∈X0 ⇒ C(y)=0=C(x)

Induction Step:

x is of the form

(1) uz

or (2) bzw

Case (a):x=uz

y∈P(z)as y≠x

⇒ C(y)

≤ C(z) by induction hypothesis

= C(uz) = C(x)

Case (b): x=bzw

⇒ y∈℘(z) or y∈℘(w), say w.l.o.g. y∈℘(z)

if ¬R(z,w)C(x) = C(bzw)

= C(z) + C(w) by Irrel Join

≥ C(y) + C(w) by induction hypothesis

≥ C(y)

if R(z,w) C(x) = C(bzw)

> max{C(y), C(w)} by Rel Join

≥ C(y).

..............
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The following three conditions are equivalent on a weak complexity measure, for

b∈X2, x,y∈L:

(i) R(x,y) ⇒ C(bxy) > max{C(x),C(y)} (Rel Join)

(ii) y∈℘(x)-{x}, c∈X0-(x), R(xy/c,y) ⇒ C(y) < C(x) (Rel Subform)

(iii) y∈℘(x)-{x}-X0, x∈Cp ⇒ C(y) < C(x) (Subform of Complex)

Note that I have written them here in terms of the ordering on the reals rather

than the ordering≤ on L, for convenience. The equivalence is assured due to the

homomorphic mapping between them.

Proof: (i)⇒ (ii)

By induction on the maximum depth ofx.

Assuming y∈℘(x)-{x}, c∈℘X0-(x), R(xy/c,y)

Base:

x∈X0, vacuously true as℘(x)-{x}=∅

Induction step:

either(a) x is form (uz) for someu∈X1, z∈L

or (b) x is of form (bwz) for someb∈X2, w,z∈L
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Case (a):x=uz

c∈X0-℘(x) ⇒ c∈X0-℘(y)

¬R(uc,y)⇒ ¬R(uyy/c,y)

⇒ ¬R(xy/c,y)

⇒ y≠uy otherwise R(uyy/c,y)

⇒ y≠z

y∈℘(z) as y∈℘(uz)=℘(x)

R(xy/c,y) ⇒ R(uzy/c,y)

⇒ R(zy/c,y)

⇒ C(y)

< C(z) by the induction hypothesis

= C(uz)

= C(x).

Case (b):x=bwz

If R(w,z)

x≠y ⇒ y∈℘(w) or y∈℘(z), say w.l.o.g. y∈℘(w)

C(x) = C(bwz)

> max{C(w),C(z)} from (i).

≥ max{C(y),C(z)} as y∈P(w) ⇒ C(y) ≤ C(w)

≥ C(y)

If ¬R(w,z)

y≠w and y≠z
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as, if not, say (w.l.o.g.)y=w then:

R(xy/c,y) ⇒ R(bwzy/c,y) by assumption Case (b)

⇒ R(byzy/c,y) by assumption y=w

⇒ R(bc(zy/c),y)

⇒ R(zy/c,y) as¬R(y,c) by choice ofc

⇒ R(z,y)

⇒ R(z,w) as y=w

which is contrary to assumption.

⇒ y∈℘(z)-{z} or y∈℘(w)-{w}

R(xy/c,y) ⇒ R(zy/c,y) or R(wy/c,y), as¬R(w,z)

say w.l.o.g. R(zy/c,y) [⇒ ¬R(wy/c,y) as¬R(w,z)]

If  y∈ (z), y≠z then

C(y) < C(z) by induction hypothesis

≤ C(x) as z∈℘(x)

If y∈℘(w)-{w}

then R(wy/c,y)

or else if¬R(wy/c,y):

R(xy/c,y)⇒ R((bwz)y/c,y)

⇒ R(b(wy/c)(zy/c),y)

⇒ R(zy/c,y) as¬R(wy/c,y)

⇒ R(z,y)

⇒ R(z,w) as y∈℘(w)

which is contrary to theCase (b) assumption

⇒ C(y)< C(w) by the induction hypothesis

≤ C(x) as w∈℘(x)

..................
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Proof: (ii) ⇒ (i)

R(x,y) ⇒ R(bxc,y) for suitably chosen c∈X0

⇒ R((bxy)y/c,y)

Now y∈℘(bxy)-{bxy} so C(y)<C(bxy) by (ii)

Likewise C(x)<C(bxy)

⇒ C(bxy) > max{C(y),C(x)}.

..................

Proof: (iii) => (ii)

y∈℘(x)-{x}, c∈X0-℘(x), R(xy/c,y)

By induction on the length of the decomposition ofx.

Base:

x∈Cp ⇒ C(y)<C(x) by (iii)

Induction Step:

x∉Cp ⇒ there is a z∈℘(x)-{x}-X0, z∈Cp; ¬R(xz/k,z) k∈X0-℘(x)

⇒ y≠z as R(xy/c,y)

⇒ C(x) = C(xz/k) + C(z) by Irrel Subs

(*) ⇒ C(xz/k)≤C(x) andC(z)≤C(x)

y∈℘(x), ¬R(xz/k,z) means either

(i) y∈℘(xz/k)

or (ii)  y∈℘(z)

Case (i):

if y=xz/k then xz/k∈℘(x) but ¬R(k,x) ask∈X0-℘(x)

soy≠xz/k.

R(xy/c,y) ⇒ R(xz/k
y/c,y) as¬R(xz/k,z) and y∈℘(xz/k)

⇒ C(y)< C(xz/k) by induction hypothesis

≤ C(x) from (*)
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Case (ii):

z∈Cp

⇒ C(y)< C(z) by (iii)

≤ C(x) from (*).

..................

Proof: (ii) ⇒ (iii)

y∈℘(x)-{x}, x∈Cp

x∉X0 as℘(x)-{x}≠∅

y∉X0

⇒ R(xy/c, y) by DefnCp

⇒ C(y) < C(x) by (ii).

..................
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10 Appendix 3 - Formalisation of Syntactic Structure

10.1 Formalisation

In all of the below there is a set of atomic symbolsA = {a1, a2, …, an} and a sufficient

supply of variable symbols,V = {v1, v2, …} that are distinct from each other andA. The

brackets in the below are punctuation.

10.1.1 The syntax of trees

Let L be a set, then the set offinite ordered finitely branching trees labelled from L

(or ordered trees for short),TL, is built up recursively:

O1: if  then(l, ∅) ∈ TL;

O2: if  andb1, …, bn ∈ TL then(l, (b1, …, bn)) ∈ TL.

Given a set of variables,V, that are distinct from other symbols the set ofvariable

trees based on L and V, TL
+, is built up as follows:

V1: if  then (t, ∅) ∈ TL
+ ;

V2: if  andb1, …, bn ∈ TL
+ ∪ V then(l, (b1, …, bn)) ∈ TL

+.

Given a variable tree,t, the variables,v(t), can be re-collected as follows:

C1: if t = (v, ∅) andv ∈ V thenv(t) = {v};

C2: if t = (l, (b1, …, bn)) thenv(t) = v((l, ∅)) ∪ ∪i=1,…,n(v(bi)).

10.1.2 The syntax of rules

Given a set of syntaxesSS = S1, …,Sn, therules, RSS, are built up as follows:

R1: (⇒) ∈ RSS;

R2: if (a1, …,an ⇒) ∈ R andx ∈ TA
+ then(a1, …,an, x ⇒)∈ RSS;

R3: if (a1, …,an ⇒) ∈ R, x∈ TA
+ and{v1, …, vn} = v(x)∪ ∪i=1..m(v(ai)) then(a1, …,an ⇒

x, v1 ∈ S1, …, vn ∈ Sn) ∈ RSS.

10.1.3 The syntax of syntactic structures:

The set ofsyntactic structures, S, is built up as follows:

l L∈

l L∈

t L V∪∈

l L∈
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S1: (∅,∅) ∈ S;

S2: if {S1, …,Sn} ⊆ S then({S1, …,Sn},∅) ∈ S;

S3: if SS = {S1, …,Sn}, (SS,∅) ∈ S, and{r 1, …, rk} ⊆ RSS then(SS, {r1, …, rk}) ∈ S.

If (SS, R) is a syntactic structure thenSS is its sub-syntaxes andR is its rules. A

syntax isdependant on a second if either this second syntactic structure is a sub-syntax of

it or it is a sub-syntax of another syntactic structure that it is dependent on. Note that this

definition includesonly those syntactic structures that can be built up recursively like this,

so there are no 'circular' structures with syntactic structures being dependent on

themselves. If you draw a graph with syntactic structures as nodes and the relation of

being a sub-syntax of being a directed arc then any collection of syntactic structures forms

an acyclic digraph.

10.1.4 Generation from syntactic structures

Each syntactic structure,S=(SS, R), generates a set of trees,Gen(S), as follows:

G1:  if (⇒ x, v1 ∈ S1, …, vn ∈ Sn) ∈ R andt1 ∈ Gen(S1), …, tn∈ Gen(Sn) then(⇒ x, v1 ∈

S1, …, vn ∈ Sn)[t 1, …,tn] ∈ Gen(S);

G2: if (a1, …,am⇒ x, v1 ∈ S1, …, vn ∈ Sn) ∈ R, t1 ∈ Gen(S1), …, tn ∈ Gen(S) such that

a1(v1/t1)…(vn/tn)∈Gen(S),…, am(v1/t1)…(vn/tn) ∈ Gen(S) ands1, …,sk are thet1,

…,tn such that the corresponding v1, …,vn do not occur as subtrees of any of

a1, …,amthen(a1, …,am⇒ x, v1 ∈ S1, …,

vn∈Sn)[a1(v1/t1)…(vn/tn), …, am(v1/t1)…(vn/tn),s1, …,sk] ∈ Gen(S);

whereA[b1, …,bn]  is the tree withA as the top node label andb1, …,bn are the

branches anda(x/y) is the treea with every subtreex replaced by subtreey.

Thus the treesgenerated by a syntactic structure like this are trees with rules as node

labels and branches of the antecedents and other substitutions to be used in an application

of the rule.

10.1.5 Production from trees

Each tree,t ∈ Gen(S), produces a tree,Prod(t), by recursively applying the rules at

each node to theproduction of its branch trees and the substitutions from the generation of

lower syntactic structures, thus:
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(where in the belowt = (a1, …,am⇒ x, v1 ∈ S1, …, vn∈Sn)[s1, …,sm, t1, …,tn] )

P1: if t = (⇒ x, v1 ∈ S1, …, vn∈Sn)[t 1, …,tn]  thenProd(t)= x(v1/t1)…(vn/tn);

P2: if t = (a1, …,am⇒ x, v1 ∈ S1, …, vn∈Sn)[s1, …,sm, t1, …,tk]  and

s1= a1(v1/r1)…(vn/rn), …,sm= am(v1/r1)…(vn/rn) where{t1, …,tk} ⊆ {r 1, …,rn} then

Prod(t) = x(v1/r1)…(vn/rn).

10.1.6 Complete production

When a the process ofproducing from a tree,t, extends recursively downwards to its

substitutions, we get acomplete production, ComProd(t), thus:

CP1: if t = (⇒ x)[]  thenComProd(t) = x;

CP2: if t = (⇒ x, v1 ∈ S1, …, vn∈Sn)[t 1, …,tn]  andc1= ComProd(t1), …,cn= ComProd(tn)

thenComProd(t) = x(v1/c1)…(vn/cn);

CP3: if t = (a1, …,am⇒ x, v1 ∈ S1, …, vn∈Sn)[s1, …,sm, t1, …,tk] ,

s1= a1(v1/r1)…(vn/rn), …,sm= am(v1/r1)…(vn/rn) where{t1, …,tk} ⊆ {r 1, …,rn} and

c1= ComProd(r1), …,cn= ComProd(rn) thenComProd(t) = x(v1/c1)…(vn/cn).

A complete production of a tree has only symbols as the labels of its nodes and not

rules.

10.1.7 Complete productive generation from syntactic structures

Each syntactic structure,SS, can recursively generate the productions of all trees in

Gen(SS), called thecomplete productive generation, CPG(SS), thus:

CPG:if t ∈ Gen(SS) thenComProd(t)∈ CPG(SS).

It is CPG(SS) that we usually associate with a syntax in normal logical parlance.

10.2 The Expressivity of Syntactic Structures

For any phrase structured grammar (PSG), there is a SS whose complete productive

generation is the language generated by the PSG.

Proof Outline:

Let the PSG be defined in the usual manner by: a starting symbol, S; a set of

variables, ; a set of terminal symbols, ; and a setV S A B C…, , , ,{ }= T a b c …, , ,{ }=
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of production rules, P, of the form  where , where  indicates

the set of finite sequences made from the setL.

Basically I simulate the sequences of symbols with equivalent trees plus a count of

how many non-terminals are left and then extract these to another syntactic level. Then the

production rules of the PSG translate across in a straight forward manner.

Define aSS, , where  includes the following rules:

PSG1: ⇒W(S,s(0)) - the starting symbol

PSG2: W(a,p(b,s(c)))⇒W(a,p(s(b),c)) - associativity of P

PSG3: W(a,p(b,0))⇒W(a,b) - answer of p

PSG4: W(a,m(s(b),s(c)))⇒W(a,m(b,c)) - associativity of m

PSG5: W(a,m(b,0))⇒W(a,b) - answer of m

PSG6: W(J(a,J(b,c)),x)⇒W(J(J(a,b),c),x) - associativity of J

PSG7: W(J(J(a,b),c),x)⇒W(J(a,J(b,c)),x) - associativity of J

The intention is that: W(a,n) represents a word, a, being processed in the PSG with n

non-terminal symbols in it; S corresponds to the PSG’s starting symbol; 0 is zero; s(n) is

the successor function (i.e. n+1); p is for plus (i.e. p(a,b) is a+b); m is minus (i.e. m(a,b)

represents a-b with a lower bound of zero); and J is the string concatenation operator (i.e.

J(a,b) is the string of the a as a string followed by b as a string).

 also includes rules to reflect the production rules in the PSG.

For each rule in the PSG of the form  there corresponds a SS rule of

form

PSGi: ,

where  has the same depth as the number of non-terminals in

.

For each other rule in the PSG of the form  there corresponds

a SS rule of the form

PSGj:

gi gi→ gi gi, V T∪( ) *∈ L
*

S1 ∅ R0,( )= R0

R0

S a1a2…an→

S W J a1 J a2 J …J an 1– an,( ) …( ),( ),( ) s s …s 0( ) …( )( ),( )⇒

s s …s 0( ) …( )( )

a1a2…an

a1a2…an c1c2…cp→

W J f J J a1 J a2 J …J an 1– an,( ) …( ),( ),( ) g,( ),( ) s s …s 0( ) …( )( ),( )( )
W J f J J c1 J c2 J …J cp 1– cp,( ) …( ),( ),( ) g,( ),( ) p s s …s 0( ) …( )( ) i,( ),( )( )⇒
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if it increases the number of non-terminal symbols in the PSG, where i is the

increase in the number of non-terminals represented in the form .

Finally for each other rule in the PSG of the form  there

corresponds a SS rule of the form

PSGk:

if it decreases the number of non-terminal symbols in the PSG, where i is the

decrease in the number of non-terminals represented in the form .

If one rewrote the above SS rules by: w (n) for W(w,n); 1 for s(0); 2 for s(s(0)); …;

n+1 for s(n); b+c for p(b,c); b-c for m(b,c); and ab for J(a,b) they would look like:

PSG1: ⇒S (0)

PSG2: a (m+(n+1))⇒a ((m+1)+n)

PSG3: a (b+0)⇒a (n)

PSG4: a ((m+1)-(n+1))⇒a (m-n)

PSG5: a (n-0)⇒a (n)

PSG6: a(bc) (n)⇒(ab)c (n)

PSG7: (ab)c (n)⇒a(bc) (n)

PSGi: , where n is the number of non-terminals,

PSGj:

PSGk:

where n is the number of non-terminals on the LHS and i in the increase

(respectively decrease) in the number of terminals due to the action of the PSG rule.

Then all the trees of the form a (0) correspond to the resulting words in the PSG (i.e.

those with zero non-terminals in them).

Finally I define a second SS,  with the single rule:

T:

s s …s 0( ) …( )( )

a1a2…an c1c2…cp→

W J f J J a1 J a2 J …J an 1– an,( ) …( ),( ),( ) g,( ),( ) s s …s 0( ) …( )( ),( )( )
W J f J J c1 J c2 J …J cp 1– cp,( ) …( ),( ),( ) g,( ),( ) m s s …s 0( ) …( )( ) i,( ),( )( )⇒

s s …s 0( ) …( )( )

S a1a2…an n( )⇒

a1a2…an n( ) c1c2…cp n i+( )→

a1a2…an n( ) c1c2…cp n i–( )→

S1 R0,( )

W a 0,( ) a a S0∈( ),⇒
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to extract all the trees corresponding to the words generated by the PSG.

10.3 Flattening Syntactic Structures

For any finite collection of syntactic structures{S0, …, Sn} which is closed w.r.t.

sub-syntaxes, there is a correspondingflattened sequence of syntactic structures

(S0', …, Sk'), such that:

1. for each Sj, there is a Sk' with a generated set of trees that is identical;

2. for each i=1, …,k, free variables in rules in Si' only refer to one other Sj', where

i<j.

Proof Outline:

Reorder the collection{S0, …, Sn} as(T0, …, Tn) such that no Ti has a sub-syntax with

a greater index than itself, with the permutationθ:{1,…,n} → {1,…,n}. This is possible

since{S0, …, Sn} can be represented as an acyclic digraph.

Ensure that included in the atomic symbolsA = {a1, a2, …, an}, there is a distinct

symbol for each of(T0, …, Tn) plus one more, that are not used in any of the rules of any of

(T0, …, Tn), call theset0, …, tn, n.

For each syntactic structure,Ti = (SSi, Ri), in (T0, …, Tn), construct another

Ti' = (SSi', Ri'), to form a new sequence(T0', …, Tn') such that:

(a) For each Tj in SSi, put Tj' in SSi';

(b) for each rulerk = (a1, a2, …, am ⇒ c, v1 ∈ Tn1, …, vp ∈ Tnp) in Ri, put a rulerk' =

(ti(a1'), ti(a2'), …, ti(am') ⇒ ti(c'), v1, …,vp ∈ Ti-1) in Ri, where each aq' or c' is the

result of replacing all occurrences of thev1, …, vp by tn1(v1), …, tnp(vp). Also one

extra rule,(⇒ v, v∈ Ti-1), toRi'.

Essentially the generated results of the syntactic structures are accumulated up the

sequence, with the origin of each preserved by the extra symbols.

Finally append a sequence of extra syntactic structures(S1', …, Sn') which will

correspond to the original collection,{S0, …, Sn}, such thatSi' = ({T θ(i)'}, {t θ(i)(v) ⇒ v}).

This selects and strips the appropriate elements for the syntax.
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11 Appendix 4 - A tool for exploring syntactic structures,

complexity and simplification

11.1 Overview

In order to aid the exploration of the syntactic structures, I have written a program.

This allows the specification of a flattened sequence of interdependent syntactic structures

(as specified in section 5.5.4 on page 112 and formalised in section 10 on page 182). Each

structure has its own rules, allowing for substitutions from its immediate sub-syntax. Each

such structure can then generate its members on demand. Thus this tool implements the

automatic generation from an arbitrary dependent chain of syntactic structures as

discussed in section 5.5 on page 108 and formalised in Appendix 3 - Formalisation of

Syntactic Structure.

11.2 Examples

Here are a couple of simple examples to illustrate its use. Apart from the launching

menu each syntactic structure has its own window, with its name in the window title bar,

the name of any sub-syntax it might draw substitutions from just below, the list of

generating rules on the right and the generated members on the left. Since, in this tool

dependency on sub syntaxes is limited to a linear chain, it can be left to the context the

symbols in the rules for which substitution is required.
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Thus figure 29 shows a simple syntactic structure with two simple rules, to generate

an indefinite number of unique items.

 Figure 29.A window on a single syntactic structure

While figure 30 shows three syntactic levels: the first of which specifies a fixed list

of three variable names; the second which generates well formed implicational formulas

using the variables syntax and the final level which generates the theories of the

implicational fragment of R.
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 Figure 30.Three inter-dependent syntactic structures in separate windows

11.3 Programming

The algorithm was implemented in the object-orientated programming language

Objectworks/Smalltalk 4.1. It is composed of a hierarchy of classes to implement the

recursive generation of tree structures. Each class in the hierarchy is an incremental

generator, in that it only needs to store minimal data in order to produce the next tree in the

sequence (in order to avoid an exponential explosion of memory usage). For example, the

“TreeGenerator” class uses two other generators: one to generate possible skeletons of

valid polish notation strings and the other to generate the possible substitutions of symbols

into this skeleton.

Although a few critical generators cache their results for time efficiency (such as the

generator that produces the output corresponding to the cross product of two other

generators), they act as ‘lazy lists’, in that elements are only generated as required.

Since Objectworks/Smalltalk 4.1 is an object-orientated language the work in

generating from the syntactic structures is done by a series of object instances of classes.

Broadly it is the classes that hold the program code and the instances of those classes that
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execute the code and store the data. Classes are arranged in a hierarchy so that general

code that is placed in a higher class can be ‘inherited’ by lower classes (unless this is

overridden). Objects communicate by sending messages to each other.

The generating class hierarchy is show in figure 31 below. Dependency is indicated

by the indentation, those other classes it uses are listed after the class name. There are also

classes for syntaxes, trees, rules, trees of rules, lists and the empty syntax, but I will not

show these are they are either standard or preform simple storage and display functions.

 Figure 31.The hierarchy of generator classes

Each syntactic structure has generator assigned to it dependent on the type of its

rules and whether there is a sub-syntax which it will need to access for substitutions. This

could be either a

• RuleTreeLeafGen generator on aListGen of rules if the rules have no

antecedents - this just generates the rules in turn as a rule tree;

Generator
TransparentGen

StorageGen
StoragePowerCrossSymbolGen (calls PowerCrossGen)

RuleTreeLeafGen
SingleListGen
RepeatingGen

PairGen
PairListGen

PowerCrossGen (calls NullGen or SingleListGen or
PairListGen)

NoGen
NatNoGen

ModNoGen
SizeGenGen

SizeGenSyntaxGen (calls StoragePowerCrossSymbolGen
and one of: NatNoGen
or ModNoGen)

BunchGen
TreeSubsGen (calls SizeGenSyntaxGen and TreeGen)
TreeGen (calls PolNoLenGen and GenBunchGen)
GenBunchGen (calls BunchGen)
PolNoLenGen
ListGen
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• otherwise aTreeGen if there is no non-null sub-syntax - this generates all

possible legal trees of rules usingPolNoLenGen to generate polish notation

skeletons into which the possible rule substitutions (generated by

SizeGenSyntaxGen) are slotted;

• and aTreeSubsGen if there is - which does the same asTreeGen but substutes

all combinations of substitutions from lower syntaxes as required.

The full code for all these classes is far to cumbersome to include here but can be

read if desired at URL:http://www.cpm.mmu.ac.uk/~bruce/thesis/code or supplied on

request by mailing me at (b.edmonds@mmu.ac.uk).

11.4 Interface

The interface is very rudimentary, consisting only of scrollable passive output in

smalltalk windows and input via smalltalk expressions executed on the smalltalk

workspace.
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12 Appendix 5 - A comparison of different rankings of logical

formula

size
formula (ignoring formula essentially identical under renaming of

variables)

1

2

3 , ,

4 , , , , , ,

5

, , , , ,

, , , , ,

, , , , ,

, , , ,

,

6

, , , ,

, , , ,

, , , ,

, , , ,

, , , ,

, , , ,

, , , ,

, , , ,

, , , ,

, , , ,

, , , ,

, , ,

, , , ,
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, , ,

, , , ,

, ,

Table 2: Formulas up to size 6 sorted by size

a

a¬

a¬¬ a a→ a b→

a¬¬¬ a a¬→ a a→¬ a a→( )¬ a b¬→ a¬ b→ a b→( )¬

a¬¬¬¬ a a¬→( )¬ a a→¬( )¬ a a→( )¬¬ a¬ a¬→
a a¬¬→ a¬¬ a→ a a→( ) a→ a a a→( )→ a b¬→( )¬

a b→¬( )¬ a b→( )¬¬ a¬ b¬→ a b¬¬→ a¬¬ b→
a b→( ) a→ a b a→( )→ a b→( ) b→ a b b→( )→

a b→( ) c→ a b c→( )→

a¬¬¬¬¬ a a¬→( )¬¬ a a→¬( )¬¬ a a→( )¬¬¬
a¬ a¬→( )¬ a a¬¬→( )¬ a¬¬ a→( )¬ a a→( ) a→( )¬
a a a→( )→( )¬ a¬ a¬→( )¬ a¬ a→¬( )¬ a¬¬ a¬→

a¬ a¬¬→ a¬¬¬ a→ a a¬¬¬→ a¬ a→( ) a→
a¬ a a→( )→ a a¬→( ) a→ a a¬ a→( )→ a a→( ) a¬→

a a a¬→( )→ a a→( )¬ a→ a a a→( )¬→ a b¬→( )¬¬
a b→¬( )¬¬ a b→( )¬¬¬ a¬ b¬→( )¬ a b¬¬→( )¬

a¬¬ b→( )¬ a¬ b¬→( )¬ a¬ b→¬( )¬ a¬¬ b¬→
a¬ b¬¬→ a¬¬¬ b→ a b¬¬¬→ a b→( ) a→( )¬

a b a→( )→( )¬ a¬ b→( ) a→ a¬ b a→( )→ a b¬→( ) a→
a b¬ a→( )→ a b→( ) a¬→ a b a¬→( )→ a b→( )¬ a→

a b a→( )¬→ a a→( ) b→( )¬ a a b→( )→( )¬
a¬ a→( ) b→ a¬ a b→( )→ a a¬→( ) b→ a a¬ b→( )→

a a→( ) b¬→ a a b¬→( )→ a a→( )¬ b→ a a b→( )¬→
a b→( ) c→( )¬ a b c→( )→( )¬ a¬ b→( ) c→

a¬ b c→( )→ a b¬→( ) c→ a b¬ c→( )→ a b→( ) c¬→
a b c¬→( )→ a b→( )¬ c→ a b c→( )¬→
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number of
distinct

variables

formula (ignoring formula essentially identical under renaming of
variables)

1

, , , , , , , , ,

, , , , ,

, , , , ,

, , , ,

, , , ,

, , , , ,

, , , ,

, , ,

2

, , , , , ,

, , , , ,

, , , ,

, , , ,

, , , ,

, , , ,

, , , ,

, , , ,

, , ,

, , , ,

, , ,

3
, , , ,

, , , ,

, , ,

Table 3: Formulas up to size 6 sorted by number of distinct variables

a a¬ a¬¬ a a→ a¬¬¬ a a¬→ a a→¬ a a→( )¬ a¬¬¬¬
a a¬→( )¬ a a→¬( )¬ a a→( )¬¬ a¬ a¬→ a a¬¬→

a¬¬ a→ a a→( ) a→ a a a→( )→ a¬¬¬¬¬ a a¬→( )¬¬
a a→¬( )¬¬ a a→( )¬¬¬ a¬ a¬→( )¬ a a¬¬→( )¬

a¬¬ a→( )¬ a a→( ) a→( )¬ a a a→( )→( )¬ a¬ a¬→( )¬
a¬ a→¬( )¬ a¬¬ a¬→ a¬ a¬¬→ a¬¬¬ a→ a a¬¬¬→

a¬ a→( ) a→ a¬ a a→( )→ a a¬→( ) a→ a a¬ a→( )→
a a→( ) a¬→ a a a¬→( )→ a a→( )¬ a→ a a a→( )¬→

a b→ a b¬→ a¬ b→ a b→( )¬ a b¬→( )¬ a b→¬( )¬
a b→( )¬¬ a¬ b¬→ a b¬¬→ a¬¬ b→ a b→( ) a→

a b a→( )→ a b→( ) b→ a b b→( )→ a b¬→( )¬¬
a b→¬( )¬¬ a b→( )¬¬¬ a¬ b¬→( )¬ a b¬¬→( )¬

a¬¬ b→( )¬ a¬ b¬→( )¬ a¬ b→¬( )¬ a¬¬ b¬→
a¬ b¬¬→ a¬¬¬ b→ a b¬¬¬→ a b→( ) a→( )¬

a b a→( )→( )¬ a¬ b→( ) a→ a¬ b a→( )→ a b¬→( ) a→
a b¬ a→( )→ a b→( ) a¬→ a b a¬→( )→ a b→( )¬ a→

a b a→( )¬→ a a→( ) b→( )¬ a a b→( )→( )¬
a¬ a→( ) b→ a¬ a b→( )→ a a¬→( ) b→ a a¬ b→( )→

a a→( ) b¬→ a a b¬→( )→ a a→( )¬ b→ a a b→( )¬→

a b→( ) c→ a b c→( )→ a b→( ) c→( )¬ a b c→( )→( )¬
a¬ b→( ) c→ a¬ b c→( )→ a b¬→( ) c→ a b¬ c→( )→

a b→( ) c¬→ a b c¬→( )→ a b→( )¬ c→ a b c→( )¬→
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maximum
depth

formula (ignoring formula essentially identical under renaming of
variables)

0

1 , ,

2

, , , , , , ,

, , , , ,

, , , ,

, , , ,

, , , ,

3

, , , , ,

, , , , ,

, , , ,

, , , ,

, , ,

, , , ,

, , ,

, , ,

, , , ,

, , , ,

, , , ,

, , , ,

, ,

4

, , , ,

, , , ,

, , , ,

, , , ,

5

Table 4: Formulas up to size 6 sorted by maximum depth

a

a¬ a a→ a b→

a¬¬ a a¬→ a a→¬ a a→( )¬ a b¬→ a¬ b→ a b→( )¬
a¬ a¬→ a¬ b¬→ a a→( ) a→ a a a→( )→ a b→( ) a→

a b a→( )→ a b→( ) b→ a b b→( )→ a b→( ) c→
a b c→( )→ a b→( ) c¬→ a¬ b c→( )→ a¬ b a→( )→
a b→( ) a¬→ a¬ a b→( )→ a a→( ) b¬→ a¬ a a→( )→

a a→( ) a¬→

a¬¬¬ a a¬→( )¬ a a→¬( )¬ a a→( )¬¬ a a¬¬→
a¬¬ a→ a b¬→( )¬ a b→¬( )¬ a b→( )¬¬ a b¬¬→

a¬¬ b→ a b→( ) a→( )¬ a b a→( )→( )¬ a¬ b→( ) a→
a b¬→( ) a→ a b¬ a→( )→ a b a¬→( )→ a b→( )¬ a→

a b a→( )¬→ a a→( ) b→( )¬ a a b→( )→( )¬
a¬ a→( ) b→ a a¬→( ) b→ a a¬ b→( )→ a a b¬→( )→

a a→( )¬ b→ a a b→( )¬→ a b→( ) c→( )¬
a b c→( )→( )¬ a¬ b→( ) c→ a b¬→( ) c→

a b¬ c→( )→ a b c¬→( )→ a b→( )¬ c→ a b c→( )¬→
a¬ a¬→( )¬ a a→( ) a→( )¬ a a a→( )→( )¬ a¬¬ a¬→

a¬ a¬¬→ a¬ a→( ) a→ a a¬→( ) a→ a a¬ a→( )→
a a a¬→( )→ a a→( )¬ a→ a a a→( )¬→ a¬ b¬→( )¬

a¬ b¬→( )¬ a¬¬ b¬→ a¬ b¬¬→

a¬¬¬¬ a a¬→( )¬¬ a a→¬( )¬¬ a a→( )¬¬¬
a a¬¬→( )¬ a¬¬ a→( )¬ a¬ a→¬( )¬ a¬¬¬ a→

a a¬¬¬→ a b¬→( )¬¬ a b→¬( )¬¬ a b→( )¬¬¬
a b¬¬→( )¬ a¬¬ b→( )¬ a¬ b→¬( )¬ a¬¬¬ b→

a b¬¬¬→

a¬¬¬¬¬
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breadth
formula (ignoring formula essentially identical under renaming of

variables)

1 , , , , ,

2

, , , , , , ,

, , , , ,

, , , , ,

, , , , ,

, , , ,

, , , , ,

, , , ,

, , , ,

, , , ,

3

, , , ,

, , , ,

, , ,

, , , ,

, , , ,

, , , ,

, , , ,

, , ,

, , , ,

, , , ,

, , ,

, , , ,

, ,

Table 5: Formulas up to size 6 sorted by breadth (number of variables)

a a¬ a¬¬ a¬¬¬ a¬¬¬¬ a¬¬¬¬¬

a a→ a b→ a a¬→ a a→¬ a a→( )¬ a b¬→ a¬ b→
a b→( )¬ a a¬→( )¬ a a→¬( )¬ a a→( )¬¬ a¬ a¬→

a a¬¬→ a¬¬ a→ a b¬→( )¬ a b→¬( )¬ a b→( )¬¬
a¬ b¬→ a b¬¬→ a¬¬ b→ a a¬→( )¬¬ a a→¬( )¬¬

a a→( )¬¬¬ a¬ a¬→( )¬ a a¬¬→( )¬ a¬¬ a→( )¬
a¬ a¬→( )¬ a¬ a→¬( )¬ a¬¬ a¬→ a¬ a¬¬→ a¬¬¬ a→
a a¬¬¬→ a b¬→( )¬¬ a b→¬( )¬¬ a b→( )¬¬¬

a¬ b¬→( )¬ a b¬¬→( )¬ a¬¬ b→( )¬ a¬ b¬→( )¬
a¬ b→¬( )¬ a¬¬ b¬→ a¬ b¬¬→ a¬¬¬ b→ a b¬¬¬→

a a→( ) a→ a a a→( )→ a b→( ) a→ a b a→( )→
a b→( ) b→ a b b→( )→ a b→( ) c→ a b c→( )→

a a→( ) a→( )¬ a a a→( )→( )¬ a¬ a→( ) a→
a¬ a a→( )→ a a¬→( ) a→ a a¬ a→( )→ a a→( ) a¬→

a a a¬→( )→ a a→( )¬ a→ a a a→( )¬→ a b→( ) a→( )¬
a b a→( )→( )¬ a¬ b→( ) a→ a¬ b a→( )→ a b¬→( ) a→

a b¬ a→( )→ a b→( ) a¬→ a b a¬→( )→ a b→( )¬ a→
a b a→( )¬→ a a→( ) b→( )¬ a a b→( )→( )¬

a¬ a→( ) b→ a¬ a b→( )→ a a¬→( ) b→ a a¬ b→( )→
a a→( ) b¬→ a a b¬→( )→ a a→( )¬ b→ a a b→( )¬→

a b→( ) c→( )¬ a b c→( )→( )¬ a¬ b→( ) c→
a¬ b c→( )→ a b¬→( ) c→ a b¬ c→( )→ a b→( ) c¬→

a b c¬→( )→ a b→( )¬ c→ a b c→( )¬→
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cyclomatic
 number

formula (ignoring formula essentially identical under renaming of
variables)

0

, , , , , , , , ,

, , , , ,

, , , , ,

, , , ,

, , , ,

, , ,

, , ,

, , , ,

, ,

1

, , , , , ,

, , , , ,

, , , ,

, , , ,

, , , ,

, , , ,

, , , ,

, , , ,

, , ,

, , , ,

, , ,

2
, , , ,

, , , ,

, , ,

Table 6: Formulas up to size 6 sorted by cylomatic number of their minimal graph

a a¬ a¬¬ a b→ a¬¬¬ a b¬→ a¬ b→ a b→( )¬ a¬¬¬¬
a b¬→( )¬ a b→¬( )¬ a b→( )¬¬ a¬ b¬→ a b¬¬→

a¬¬ b→ a b→( ) c→ a b c→( )→ a¬¬¬¬¬ a b¬→( )¬¬
a b→¬( )¬¬ a b→( )¬¬¬ a¬ b¬→( )¬ a b¬¬→( )¬

a¬¬ b→( )¬ a¬ b¬→( )¬ a¬ b→¬( )¬ a¬¬ b¬→
a¬ b¬¬→ a¬¬¬ b→ a b¬¬¬→

a b→( ) c→( )¬ a b c→( )→( )¬ a¬ b→( ) c→
a¬ b c→( )→ a b¬→( ) c→ a b¬ c→( )→ a b→( ) c¬→

a b c¬→( )→ a b→( )¬ c→ a b c→( )¬→

a a→ a a¬→ a a→¬ a a→( )¬ a a¬→( )¬ a a→¬( )¬
a a→( )¬¬ a¬ a¬→ a a¬¬→ a¬¬ a→ a b→( ) a→

a b a→( )→ a b→( ) b→ a b b→( )→ a a¬→( )¬¬
a a→¬( )¬¬ a a→( )¬¬¬ a¬ a¬→( )¬ a a¬¬→( )¬

a¬¬ a→( )¬ a¬ a¬→( )¬ a¬ a→¬( )¬ a¬¬ a¬→
a¬ a¬¬→ a¬¬¬ a→ a a¬¬¬→ a b→( ) a→( )¬

a b a→( )→( )¬ a¬ b→( ) a→ a¬ b a→( )→ a b¬→( ) a→
a b¬ a→( )→ a b→( ) a¬→ a b a¬→( )→ a b→( )¬ a→

a b a→( )¬→ a a→( ) b→( )¬ a a b→( )→( )¬
a¬ a→( ) b→ a¬ a b→( )→ a a¬→( ) b→ a a¬ b→( )→

a a→( ) b¬→ a a b¬→( )→ a a→( )¬ b→ a a b→( )¬→

a a→( ) a→ a a a→( )→ a a→( ) a→( )¬ a a a→( )→( )¬
a¬ a→( ) a→ a¬ a a→( )→ a a¬→( ) a→ a a¬ a→( )→

a a→( ) a¬→ a a a¬→( )→ a a→( )¬ a→ a a a→( )¬→
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by number of symbols
(size)

by number of different
variables

depth  breath
cyclomatic complexity

of minimal graph

Table 7: Rankings of formula by different methods (bold lines group equally ranked formulas)

a a a a a

a a→ a a→ a a→ a¬¬¬ a b→

a b→ a¬¬¬ a b→ a a→ a¬¬¬

a¬¬¬ a¬ a¬→ a b¬→ a b→ a b¬→

a b¬→ a a¬¬→ a¬ a¬→ a b¬→ a b c d→( )→( )→

a¬ a¬→ a a a→( )→ a a a→( )→ a¬ a¬→ a a→

a a¬¬→ a¬ a→( ) a→ a b a→( )→ a a¬¬→ a¬ a¬→

a a a→( )→ a a→( ) a a→( )→ a b→( ) a b→( )→ a a a→( )→ a a¬¬→

a b a→( )→ a b→ a a→( ) a a→( )→ a b a→( )→ a b a→( )→

a¬ a→( ) a→ a b¬→ a¬¬¬ a¬ a→( ) a→ a b→( ) a b→( )→

a b→( ) a b→( )→ a b a→( )→ a a¬¬→ a b→( ) a b→( )→ a a a→( )→

a a→( ) a a→( )→ a b→( ) a b→( )→ a¬ a→( ) a→ a a→( ) a a→( )→ a¬ a→( ) a→

a b c d→( )→( )→ a b→( ) b¬ a¬→( )→ a b→( ) b¬ a¬→( )→ a b c d→( )→( )→ a a→( ) a a→( )→

a b→( ) b¬ a¬→( )→ a b c d→( )→( )→ a b c d→( )→( )→ a b→( ) b¬ a¬→( )→ a b→( ) b¬ a¬→( )→
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13 Appendix 6 - Complexity and Scientific Modelling

Presented at the 20th Wittgenstein Symposium, Kirchberg, Austria, 10-16 August

1997 [150]. References have been combined with main sequence.

Complexity and Scientific Modelling

by Bruce Edmonds

Overview

There have been many attempts at formulating measures of complexity60 of physical

processes (or more usually of the data models composed of sequences of measurements

made on them). Here we reject this direct approach and attribute complexity only to

models of these processes in a given language, to reflect its “difficulty”. This means that it

is a highly abstract construct relative to the language of representation and the type of

difficulty that concerns one.

A framework for modelling is outlined which includes the language of modelling,

the complexity of models in that language, the error in the model's predictions and the

specificity of the model (which roughly corresponds to its refutability or to the

information it gives about the process).

Many previous formulations of complexity can be seen as either: a special case of

this framework using particular modelling languages and focusing on particular types of

difficulty; attempts to “objectify” complexity by considering only minimally complex

models or its asymptotic behaviour; relativising it to a fixed mathematical structure in the

absence of noise.

Such a framework makes sense of a number of aspects of scientific modelling.

Firstly, as a result complexity is not situated between order and disorder, as several

authors have assumed, but rather such judgements arise given certain natural assumptions

about the language of modelling and the desirable trade-offs between the model

complexity, its specificity and its error rate.

60.Throughout I am distinguishing concerns of complexity from those ofsimplicity, which has come to

mean something slightly different in philosophy (see section entitled Complexity and Induction).
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Secondly, noise can be seen as that which is unpredictable given the available

resources of the modeller. In this way noise is distinguished from randomness. Different

ways of practically distinguishing noise can thus be seen as resulting from different

trade-offs between complexity, error, specificity and the choice of modelling language.

Thirdly, Complexity is distinguished from concerns of specificity such as

refutability, entropy and information. Complexity is thus seen to have context-dependent

relations with such measures but in general is independent from them.

Lastly, in this light less complex models arenot a priori more likely to be accurate,

but rather that given the typical structure of expressive modelling languages and our

limitations in searching through such languages, choosing the simpler model can be a

useful heuristic.

Complexity

There is an understandable wish to measure the complexity of natural systems rather

than just of models of systems, but if natural systems have inherent levels of complexity

they are beyond us. In practice there is no upper bound on their complexity, as one can

always consider them in more detail or by including more aspects. On the other hand, the

effective complexity of systems does depend on our models - the exact motions of the

planets may be puzzling when you have to describe them in terms of epi-cycles but appear

much simpler in terms of ellipses.

It may be objected that even if such “real complexity” is so intractable, one can still

make comparative judgements; i.e. it is natural to judge some natural systems as more

complex than others. An example of this is the claim that a cell must be simpler than a

whole organism. However in defending such judgements one is forced into relating that

which is compared within a common model. It is only once you have abstracted away

what you consider to be irrelevant details, that such judgements of relative complexity

become evident. Thus such comparative judgements get their force from their grounding

in such a descriptive common framework (i.e. model). Otherwise one can object that such

a judgement is simply false; e.g. that the chemical interaction of a cell with its

environment might well be more complex than the organism’s interaction with its

environment. In reply, it may be argued that some such models and frameworks are
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privileged but this pre-judges decisions about relevance and so is not helpful to an analysis

of complexity and its place in scientific modelling.

In any case complexity is more critically dependent upon the model rather than what

is modelled, so we will approach it from this point of view and leave the reader to judge

whether this distinction is fruitful in understanding the processes involved.

For our purposes we will define complexity thus: “The difficulty associated with a

model's form when given almost complete information about the data it formulates.”. This

is a special case of the definition given in [147].

The relevant type of “difficulty” depends somewhat upon your goals in modelling.

Different kinds of difficulty will result in different measure of complexity. but here it will

indicate the difficulty in finding the model in a search starting at the smallest model forms.

This could be size, depth or some other indication of the computation that is necessary to

discover it.

A Framework for Analysing Modelling

To frame the discussion of complexity, I will outline a model of modelling.

Firstly it is important to distinguish between the form and predictive meaning of

such models. The models themselves are always held in some form. The set of such

possible forms can be considered as a language in its broadest sense - frequently it may

correspond closely to an actual language, either natural or formal. I will call this the

modelling language.

Such models are amenable to some form of inference, in that they can be used to

predict some property given some other information (even if sometimes some of the

necessary information is only available after the predicted event). At least some of the

information comes from what is modelled in the form of measurements. The models

correspond, loosely, to what they model via these predictions.

Thus we distinguish its form from the correspondence between possible information

and the predictions that one could infer from it. This set of information along with the

respective predictions can be thought of as defining a subspace of the space of all relevant

possibilities. I will call this subspace the model's semantics, because one can draw an

analogy between a logic’s syntax and its semantics in terms of the set of logical models a

statement is true for.
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The primary way in which these models can be judged is by the degree of

correspondence between what is modelled and the predictions of the models - its error.

This however does not rule out the default model, that “anything can happen”. Such a

model is always trivially correct (and thus is typically chosen as a starting point). Thus we

also need an additional goal of preferring the more specific (or refutable) model. I will call

this the model's specificity. A modeller with infinite resources and time need only use

these two measures as guides in its choice of model. In some cases, of course these dual

aims might be in conflict. In a given modelling language one might be forced to choose

between a vague but accurate model and a specific but more erroneous one. In some

accounts the specificity of models are sometimes left out of analyses of modelling because

the types of modelling languages considered are inherently precise.

For us more limited beings, with very distinct practical considerations, the

complexity of our models become important [77]. As we shall see below we have to

balance the complexity, the error and the specificity of out models. Note that here,

complexity is a property of the form of the models while the error and specificity are

properties of its corresponding model semantics.

Other Formulations of Complexity

There is not room to do anything but mention but a few of the other formulations of

complexity here. I consider only four here.

The Algorithmic Information of a pattern can be considered as the difficulty of

storage when using a Turing machine from encoding it minimally or alternatively the

difficulty in finding such a program when working though possible programs in order of

length (also see the section entitled Complexity vs. Information). The Turing machine is

here used to be as general as possible.

The computational complexity of a problem class is the asymptotic difficulty of

computing a solution once a program has been found for a solution (usually either by the

time it takes or the memory needed). Thus this a special case where the “difficulty” is

relativised to the problem size.

Grassberger [194] defines the Effective Measure Complexity of a pattern as the

asymptotic behaviour of the amount of information required to predict the next symbol to

the level of granularity. This captures an aspect of the scaling behaviour of the information
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required for successful prediction by a markov process model. This thus captures the

asymptotic behaviour of a special case of my definition.

The topological complexity described by Crutchfield [122], is a measure of the size

of the minimal computational model (typically a finite automaton of some variety) in the

minimal formal language in which it has a finite model. Thus the complexity of the model

is both ‘objectivised’ by considering only minimal models but also related to the fixed

hierarchy of formal languages. Crutchfield also defines a measure of specificity similar to

Grassberger’s measure, as complementary to the topological complexity.

In each case the desire to attribute complexity purely objectively to a physical

process seems to force a relativisation to either some framework for which privilege is

claimed (e.g. a Turing Machine), to some aspect of the problem (e.g. granularity of

representation) or by considering only the minimal size. This, of course, does not

completely eliminate the inherent subjective effects in the process of modelling

(principally the language of modelling), and obscures the interplay of complexity,

specificity and the error involved.

Order and Disorder

It has been frequently asserted that complexity lies somewhere between order and

disorder [194] (what is sometimes called “the edge of chaos” [249]). Thus in figure 32

below many people (especially it seems physicists61) judge that the middle pattern is more

complex than the other two.

61.The accompanying text from [194] is revealing: “Some people hesitate between the middle and right

panels when being asked to point out the most complex one. But once told that the right one is created by

means of a (pseudo-) random number generator, the right panel is usually no longer considered as

complex.” (page 491).
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 Figure 32.Three patterns - after [194]

This idea seems to have dominated the literature about complexity in physics.

However, as I shall argue, for such a situation to be true you at least need some other

assumptions. As can be seen, in the modelling framework I have described there is

absolutely no need for this to be true. Although the highly ordered data might well

correspond to the simplest models, it will also often be the case that the most disordered

data corresponds to the most complex model forms.

To see this possibility consider the following situation. A modeller has an infinite

and precise symbolic language with a limited number of symbols and some fixed grammar

such that it includes some small expressions, but expressions of increasing size can be

constructed. Suppose this language describes members of a class of data strings of any

length of any sequence of symbols taken from a fixed alphabet.

A counting argument shows that most such patterns are disordered (as defined by

something like Shannon information or algorithmic information measures), but a similar

argument shows that only a few of these patterns can correspond to models with relatively

small minimal representations. That is, most of the disordered patterns will correspond to

models with relatively large minimal representations. Whatever the ordering in terms of

ease of search, in general the bigger forms will be more difficult to find, i.e. more

complex.

Thus, in this case, far from complexity and disorder being antithetical, one would be

hard pushed to arrange things so that a significant proportion of the most complex models

would correspond to even slightly ordered patterns.

So if complexity does not necessarily lie between order and disorder, where has our

intuition gone wrong? Without any prior knowledge about the process that produces the
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data we have no reliable way of distinguishing what is merely very complex behaviour

and what is irrelevant noise. The diagrams above mislead us because our experience about

the patterns we typically encounter, has led us to think we recognise the noise, and

separate it out from the relevant pattern. That this is not necessarily so, see figure 33,

where we suggest that each pattern as a magnification of a section of the one to its right.

 Figure 33.The same patterns with some suggested inclusions

Faced with this new information one might change one's mind and say the rightmost

pattern is the most complex. The initial judgement of the middle pattern comes not

because such disordered patterns do not correspond to complex models in some precise

languages, but because we are beings with limited resources used to receiving noisy data.

We know it is not usually sensible to try to describe such patterns in such precise

languages. This is for two reasons:firstly we do not have the time andsecondly broader

experience has taught us such models do not predict well on new data. In other words, we

know that such “overfitting” of data is not likely to be a profitable activity. The association

of what is apparently disordered with simplicity is thus the result of applying a natural

heuristic and thus does not represent a necessary relationship.

Introducing specificity into the account makes sense of this. We are naturally good at

distinguishing noise from relevant information, so that we do not realise when we are

doing it. The moral is that it is extremely useful to use less precise languages to describe

such patterns, even at the cost of some accuracy with respect to the data. If the language

allows expressions of varying degree of precision, then an overfitting model may well be

more complex than a more suitable and less accurate one. The most appropriate model for

a pattern with high entropy might be a very simple and very vague model. If the

complexity of the patterns is judged by the complexity of their most suitable model one
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comes to the intuitive judgement that complexity is “between” order and disorder. It is

only when one takes the unnatural step of leaving the specificity out of the account (e.g. by

restricting the models to a uniformly precise language) that one is faced with the

unnaturalness of the situation where the “best” model for a disordered pattern has to be a

very complex one, since it has to be precise.

Noise

The above account illustrates the importance of making a judgement as to what in

the data may be considered as noise. If we take noise as what is effectively unpredictable

in a pattern, then we will see that different approaches and conceptions of noise naturally

emerge given different responses to excess error.

Let us imagine we are faced with an unacceptable level of error in the predictions of

our best current model. What could be done?

Firstly, we could search for more accurate models by widening the search to look at

other equally precise models. It is sensible to try the easier models first, but if we exhaust

all the models at our current level of complexity we will be forced to try more complex

ones. In this case we are effectively discounting the case that the unexplained elements of

the data are unpredictable and treating noise as what is merelycurrently unexplained due

to its complexity. This is a view taken in the light of many chaotic processes which can

produce data indistinguishable from purely random data.

Secondly, we could decide to look for models that were less specific. This might

allow us to find a model that was not significantly more complex but had a lower level of

predictive error. Here we are essentially filtering out some of the data, attributing it to

some irrelevant source. This might correspond to a situation where you know that there is

an essentially random source of noise that has been imposed upon the data. This is the

traditional approach, used in a wide range of fields from electronics to economics.

Thirdly, and most radically, we could seek to change our language of modelling to

one that we felt was more appropriate to the data. Here we have noise as the literally

indescribable. For example, sometimes a neural network is set up so that extreme

fluctuations in the data are not exactly capturable by the range of functions the network

can output. In this way it is forced to approximate the training data and overfitting is

avoided.
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Thus randomness may be a sufficient characterisation of noise but it is not a

necessary one.

Complexity vs. Information

The above framework distinguishes between the complexity of the model form and

its specificity. The specificity of a model has been characterised in many ways, including:

the information a model provides, the system’s entropy, and the model’s refutability.

Such measures of specificity have often been linked to a model’ssimplicity, where

by simplicity we meanthat property of a model which makes it more likely to be true than

another, given that they have equal evidential support. This property is called

“simplicity”, because it is traced back to the principle of parsimony attributed to William

of Occam. Thus Popper characterises simplicity as a model’s refutability [358], while

Sober has associated it with the minimum extra information to answer a given

question [418]. This tradition has been continued by several authors who have used

various measures of information to capture it including Shannon information and

algorithmic information62. It is clear that suchsimplicity is not necessarily the opposite of

complexity, as described above (see section entitled Complexity and Induction).

That complexity is not rigidly linked to the specificity of a model can be shown by

considering any modelling language which has terms explicitly denoting non-specificity

(frequently called “error terms”). Clearly, the introduction of such terms can make an

expression simultaneously more complex and less specific.

This is not to say that there might not be good reasons to prefer a model which is

more specific, just that it is neither directly linked to either a model’s complexity or its

error rate. Rissanen makes a case for a particular trade-off between the specificity of a

model and its complexity - namely that one should seek the size of the minimal

description which includes the model and the deviations from the model.

Complexity and Induction

From this framework it is clear that a lack of complexity is, in general, not a reliable

guide to a model's error rate63, unless the problem and modelling language happen to be

62.Variously attributed to combinations of Solomonoff [419], Kolmogorov [266] and Chaitin [99].

63.In this I concur with [364] and [349].



Syntactic Measures of Complexity

- page 208 -

constructed that way64. On the other hand experience has frequently shown us that the less

complex theory often turns out to be more useful. The answer to this riddle becomes clear

when one takes into account the process whereby models are typically developed.

An ideal modeller without significant resource restrictions might well be able to

attempt a fairly global search through possible model forms. Some automatic

machine-based systems approximate this situation and there it does indeed seem to be the

case that smaller complexity is not a reliable guide to truth (e.g. [336]).

Usually, however, and certainly in the case of human modellers they do not have this

luxury. They can check only a very limited number of the possible model forms.

Fortunately, it is frequently the case that the meaning of the models allows us to

intelligently develop and combine the models we have and so produce new models that

are much more likely to produce something useful than a typical automatic procedure.

Thus it is frequently the case that it is sensible to try elaborations of known models first

before launching off into unknown territory where success is, at best, extremely uncertain.

On its own elaboration is, of course, an inadequate strategy. One can get into a

position of diminishing returns where each elaboration brings decreasing improvements in

the error rate, but at increasing cost. At some stage preferring simpler and more radically

different models will be more effective. Thus sometimes choosing the simpler model,

even if less precise and accurate is a sensible heuristic, but this is only so given our

knowledge of the process of theory elaboration that frequently occurs.

Conclusion

Complexity is usefully distinguished from both the probability of correctness (the

amount of error in its predictions) and the specificity of the model. It is relative to both the

type of difficulty one is concerned with and the language of modelling. Complexity does

not necessarily correspond to a lack of “simplicity” or lie between order and disorder.

When modelling is done by agents with severe resource limitations, the acceptable

trade-offs between complexity, error and specificity can determine the effective relations

64.For example, if we knew that nature had developed a certain class of systems starting simply and

elaborating from this and our language of modelling reflected this structure we would expect there to be a

threshold of complexity such that models below this were more likely. Such a principle would then be a

contingently true.
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between these. The characterisation of noise will emerge from this. Simpler theories are

not a priori more likely to be correct but sometimes if one knows that the theories are

made by an agent, for whom it is easier to elaborate than engage in a wider search,

preferring the simpler theory at the expense of accuracy can be a useful heuristic.
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14 Appendix 7 - Complexity and Economics

A paper presented at the Workshop on Economics and the Sciences of Complexity,

Namur, Belgium, 1997 [149]. References have been combined with main sequence.

From Complexity to Agent Modelling and Back Again - some
implications for economics

Bruce Edmonds

What is Complexity?

“Complexity” in economics

Since Herbert Simon’s distinction between substantive and procedurally

rationality [415], complexity in economics has (until recently) simply meantnot assuming

that an economic agent acted as if it had the computational resources to completely cope

with the demand placed on it by its environment (for a survey of this area see [229]). In a

sense this is intended as a negative definition to contrast with the usual simplifying

assumptions of mainstream economics. The use of the word “complexity” here reflects the

greater analytic difficulty which is caused by relaxing these assumptions. However, as

generally used, this usage is vague - it does not necessarily distinguish between different

kinds of limitations on the agent (memory, inference, ability to generalise, access to

information, etc.) or different kinds of overloading caused by the environment. It also

encourages the conflation of the complexity from the agent’s point of view and from the

modeller’s view. Thus although it has performed a useful role in critique it is not a very

helpful usage for more focused analytic discourse.

The “Sciences of Complexity”

Recently there has been an explosion of fields and techniques loosely grouped

around the “Sciences of Complexity” banner. Even though these have been considerably

over-hyped they include many new useful techniques and metaphors. They are not,

however, based on any coherent “complexity theory”. Key practitioners in these fields

recognise this and have frequently exhorted, anticipated and worked towards such a theory

(e.g. [89, 249]), but at the moment there is no such body of general theory which has a

useful analytical meaning outside individual component fields.
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What these widely differing areasdo share is a tendency to:

• use newer formal techniques (logics, automata, topological models, etc.);

• deal with systems where the behaviour of interest arises, at least partly, out of

some contingent occurrences (e.g. evolutionary computation);

• tend to use modelling techniques which tend to predict and capture mainly

second-order properties (e.g. it may not be able to predict a value at a particular

future time but may be able to tell you some statistical properties or reveal some

qualitative aspects of the process).

Thus in a broad sense these techniques try to capture some more abstract properties

of systems in areas where the application of more traditional techniques is not feasible.

Thus this is also a negative definition, indicating that newer approaches had had to be

applied. Again, if one needs to attempt a more exact and meaningful analysis this is an

inadequate characterisation of the term.

Complexity per se

So what is complexityper se? Let us approach this via a series of considerations.

Firstly one has to distinguish what complexityis and what maycause it. Without an

idea of the former it will be very difficult to get a clear idea of the later. In general there

will be many possible cause of complexity and there well may be nooverall

characterisation of such causes.

Secondly, I argue that complexity is not a propertyusefully attributed to natural

systems but only to our models of such systems. The reasons for this include:

• If natural systems have a complexity it would be beyond us; it is always possible

to arbitrarily increase the complexity of a system by considering more aspects or

more detail;

• The complexity of things variescritically with the model chosen;

In this way it is similar to the property of “primality” - primality is a property of

(some) numbers and not of things enumerated by numbers, even though the selection of

groups to be represented by numbers can effect whether the property holds (merely

because it can change the number being considered).

Thirdly, the complexity is a comparative thing, frequently we want to be able to say

“A is more complex than B which is, in turn, more complex than C”.
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Fourthly, complexity is relative to the framework you are modelling in. This

includes the language of representation of your model, your general framework (what is

given what you are trying to formulate) and your goals in modelling.

Finally complexity is usefully distinguished from ignorance. Ignorance can cause

complexity in many ways, including the mis-framing of a problem, and complexity can

certainly cause ignorance, for example where there are only limited problem solving

resources available. However, it is easy to give examples where the two concepts diverge.

Packaging these all up into a definition we get:

“Complexity is that property of models which make it difficult to

formulate its overall behaviour in a given language of representation, even

when given almost complete information about its components and their

inter-relations” [147]

Thus I have relativised complexity to the model, the type of difficulty, the language

of modelling and how one characterises “overall behaviour” and “atomic components”.

Many of the confusions that have abounded with the use of this word have occurred

because of unshared assumptions about these relativisations. Thus you will get different

kinds of complexity for different kinds of “difficulty”, different modelling languages etc.

Frequently the complexity of a pattern, system or data model is taken to be the

complexity of the most “suitable” model given a certain framework. The definition above

does not mean that you can make complexity to mean whatever you want. When a

framework has been agreed (either explicitly or, as frequently occurs in the hard sciences,

implicitly), complexity can be objectively measured and attributed, just as whether the

number of cows in a particular field is prime is an objective question despite the fact that

“primality” refers to our (numerical) model of the cows and not the cows themselves.

Such a definition imposes some obligation to explicitly make clear the chosen

relativisations but this is no bad thing. The justification of such an approach to defining

complexity ultimately comes down to the extent it makes the analysis of the effects and

causes of complexity clear (for more on this see [150]). We will now apply it to modelling

agents which economically interact.
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The effects of complexity on modelling by agents

We will define “environmental complexity” as a special case of the above definition

as:

The difficulty of making correct predictions about its environment

(measured by its error rate) for an agent using the best model it can infer from

the information available to it given its computational resources.

This is a more precise version of the “economic complexity” described in Section .

We will define the “model complexity”, pertaining to a particular model of an agent as:

The computational difficulty of reaching and testing a model given the

constraints of the language and the known data it has to fit.

I will consider four situations representing cases of increasing environmental

complexity. The environmental complexity will affect how the agent needs to evaluate its

models, in particular the kind of trade-offs between the model complexity, specificity and

error.

Ideal rationality and perfect information

If an agent is in a situation where it effectively has all the time it needs for relevant

computation and learning with respect to its environment (e.g. if the environment is

relatively static and the agent has a long time between decisions or if the whole population

acts as a sort of massively parallel search and inference mechanism and the agent has

access to the “results”) then it can be treated as if it had ideal rationality and perfect

information. If you have an agent in such a position then the only relevant criteria there is

for judging alternative models about its environment is that of theaccuracy (or conversely

error) of their predictions.

Ideal rationality and noisy information

A slight increase in the environmental complexity for the agent it when is has noisy

data but enough of it to determine the extent of this noise. This requires only a slight

increase in sophistication by the agent - it has enough data and computational resources to

determine the form of the correct model but might need to estimate its parameters. This

situation has been studied in economics as representing a simple learning process. Here
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the criterion of accuracy is not needed only for the determination of its best model but also

as a characterisation of its resulting behaviour.

Ideal rationality and inadequate information

Let us increase the prediction complexity further by now only giving it inadequate

(i.e. noisy and insufficient) information about its environment. Let us assume that the

agent can posit deliberately imprecise models, i.e. it can include room for inexact

predictions using some mechanism like error terms in its language of representation65.

Now the most appropriate model an agent can infer will typically be, at least somewhat,

imprecise, so that as well asaccuracy the agent also has to take into account thespecificity

of its models. Since the agent has insufficient information it has no way of certainly

distinguishing noisy data from very complex behaviour so there will be an inevitable

trade-off between the accuracy and specificity of candidate models. Although some [378]

have argued that particular trade-offs can be principled, in general the nature of this

trade-off will depend on the goals of the agent (e.g. its tolerance to risk).

Bounded rationality and inadequate information

Finally we come to the situation which is most environmentally complex. Here, not

only does the agent have inaccurate and insufficient information but also that it does not

have the computational resources to search the space of possible models for the optimal

one. In other words themodel complexity has to be taken into account along withaccuracy

and specificity in the evaluation of candidate models, for there will be a limit to the

complexity of models it can consider. Now we have a three-way trade off to consider. - the

nature of this will depend upon the agent’s goals (some examples of this are given in

section entitled The complexity, specificity, error trade-off).

65.If it only had a completely precise modelling language (i.e. its models could only make exact predictions)

it would tend to overfit noisy data, unless the language was deliberately restricted to avoid this.
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The effects of modelling by agents on complexity

For us modellers of these agents, there is the difficulty of capturing an agent’s (or

population of agent’s) resulting behaviour. I will call this the “behavioural complexity”,

which I define as:

The difficulty of finding a model of the overall population’s agents

behaviour given knowledge of the setup, algorithms and structure of each

agent.

The need to include more about the process of modelling by agents in our models of

them increases the behavioural complexity of such agents.

Ignoring the process of modelling by economic agents

Since we are agents with distinctly bounded rationality with access only to

imperfection information (as described in the section entitled Bounded rationality and

inadequate information), it makes sense for us to start with simple models and only

progress to more complex ones if wee need to, i.e. if our simpler models have inadequate

predictive and explanatory power. If the agents are in a situation where the environment is

changing sufficiently slowly and the agent has effective access to good information one

can conflate the agent’s best model of its environment and the true model of the

environment, as the agent has plenty of time and resource to effectively estimate the true

model.

In such circumstances it is sensible for us to choose the simpler model and ignore

the agent’s modelling process - it is notable that ifwe did not have distinctly bounded

rationality and inadequate information there would be no reason for usnot to search

through models of all complexities for the most accurate one.

Including the process of modelling by economic agents

The other case is where the conditions described above do not hold, i.e. where the

process whereby the agent models its environment itself has significant effects. That such

cases may exist in real life is surely not in doubt (e.g. in emerging markets, during periods



Syntactic Measures of Complexity

- page 216 -

of great volatility in the stock market or the behaviour of economists themselves). Whatis

debateable is:

1. the extent of these situations;

2. the tractability of them;

3. whether such an area of study can be said to be part of the tradition of economics as

it has developed.

Although point (1) is the most important, to be decided by empirical evidence, I do

not have either the knowledge or the time to consider this. I will only comment that since

the assumption that one does not loose anything important by conflating the agents model

with the true model is a very strong one, the burden of evidence should weigh more

heavily on it as opposed to its converse.

Point (2) is a valid point, and one which I am highlighting here in this paper. The

introduction of including processes of modelling by agents in our models,greatly

increases the behavioural complexity of the situation. In fact such an introduction seems to

introduce a qualitative jump in the whole enterprise of such modelling66. On the other

hand it does seem, that at least some aspects of such situations are meaningfully

formalisable and analysable (for example both [22] and [134] exhibit credible models of

economic systems which exhibit both rational expectations and more complex dynamics

in clearly defined circumstances).

Point (3) is in many ways trivial. The qualitative leap highlighted above may justify

categorising such modelling under a separate heading, but unless such models turn out to

be significantly less successful than more traditional ones, this would not justify this not

being a substantial and legitimate line of research.

66.Comparable, perhaps to the qualitative difference induced by the presence of some self-modelling ability.
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Towards dealing with the complexity of modelling agents - modelling

modelling

Thus I have built up a picture of the connections in this context between types of

complexity:.

 Figure 34.A diagram of the relationship between relevant types of complexity

If what I have said is correct, we are faced with a task of great behavioural

complexity. So how can we proceed? In particular how can we succeed in a way that is not

entirely specific to each situation? Such an enterprise comes down to nothing less than

establishing a framework for modelling the process of modelling itself. Below I briefly

discuss some of the key features that such a framework might have (for more details on

this see [333]).

The Form - meaning distinction

The most fundamental distinction, as discussed above, is between the form of an

agent’s model and its meaning. Where themeaning of a model is determined by the

mapping of the input and resulting predictions to the model. This is very similar to the

syntax-semantics distinction in formal logic67. This distinction is critical where we are

dealing with agents of bounded rationality. For example, although two models may be

equivalent in terms of its predictions, one could be so costly to use that it may be all but

useless in deciding on an appropriate action.

In a very general way this can be formalised by reference to the space of all relevant

possibilities (similar to phase space diagrams used in physics). Models, goals, a priori

knowledge, observations, goals and actions can all be associated with subspaces of this

(see figure 35).

67.In fact this distinction can be used to induce a logical structure between the agent’s models [333].
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 Figure 35.Form and meaning distinction

The complexity, specificity, error trade-off

As mentioned above, in situations of greater environmental complexity it is sensible

for the agent to accept some trade-offs between model complexity, specificity and error.

There are several desirable formal restrictions on these measures (which can be

found in [333]) and there are philosophical justifications and consequences for this

three-dimensional analysis of models [150]. Here I will just look at a three examples to

illustrate the different possibilities that can result.

1. A risk-averse agent might take the error rate as the primary criterion whilst

accepting the model complexity as representing only a limitation on its resources. It

would be very tolerant to vagueness (i.e. low specificity) only accepting a more

specific model where one could be found without losing any significant accuracy.

This would be particularly appropriate in safety-critical situations.

2. On the other hand if an agent is merely trying to predict some out-of-sample data as

well as possible on average, then there is no particular reason not to choose quite a

specific model. In addition (and depending somewhat on the problem domain) one
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might not want to choose an overly complex or simple model for fear of overfitting

or overpredicting (e.g. as illustrated by [336]).

3. Finally, if an agent had an external source of candidate models and it knew that

there would have been a tendency to elaborate (make more complex) these when

they were relatively unsuccessful on in-sample data, applying a heuristic of

preferring simplicity when the evidence is equal would be appropriate.

The modelling language

The collection of all possible model forms can be considered as alanguage in its

broadest sense. This might correspond to a natural or formal language, but might also be

something like a range of possible real-valued vectors (as in some connectionist models).

What is clear is that the modelling language can critically effect the nature and “success”

of the modelling process. For example if the agent has a relatively inexpressive language

that can only capture some of the real possibilities then it can be genuinely surprised by

observations from the environment (as distinct from merely experiencing what it

considered to be a low probability event). Here it literally can not model certain

combinations of possibilities, even if itcan model the whole possibility space.

For example, in chaotic processes one can be forced to models of ever greater size as

one approaches the critical point at onset of chaos if one restricts oneself to using finite

automata but this is simply handleable when using [122]. Despite its importance in

learning processes and calls for it to be further studied [393], very little is known about the

effect of different modelling languages.

Processes of model development

So far I have talked about the universe of such models (the modelling language) and

the way candidate models are evaluated (the complexity-specificity-accuracy trade-off).

The last main aspect of capturing such modelling is the mechanism by which new models

are developed.

Despite the fact that there are a multitude of candidate mechanisms to choose from

in AI and cognitive science two mechanisms have dominated economic models of

learning: those of optimization and evolution (GA/GP/EP etc.). Of these approaches those

based on the GP paradigm [270] appear the most appropriate, due to the potentially

expressive format of the genome. Using such an approach one can represent an agent as a
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population of competing mental models [148]; a possible architecture for such an agent is

shown in figure 36.

 Figure 36.Using a genetic population to model an economic agent

The evolutionary approach has the weakness that the development of variation is

blind to the process of selection. In other words it avoids the intentionality inherent in

human learning. There are, however many other credible models for learning (e.g. [108]).

Some future directions for economic modelling

I will end with some speculation as to possible future avenues that the modelling of

behaviourally complex systems could go.

Applying our model of modelling to ourselves

Finally let us apply the above model of modelling to ourselves as modellers with

bounded rationality and inadequate information. Further let us suppose that our current

economic models gave us an unacceptable level of error when applied to situations of
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greater environmental and hence behavioural complexity. What avenues might this

suggest?

1. Accept the level of error as inevitable.

2. Trade in specificity for accuracy, i.e. accept vaguer models of the same type to

decrease error.

3. Trade simplicity for accuracy, i.e. expend more effort in search for more complex

models of the same type.

4. Change the modelling language, i.e. consider new types of models.

These are roughly ordered in terms of increasing optimism. (1) represents a position

of extreme pessimism, and is probably only held by a few holists. (2) is a classical

defensive posture for the less specific your models are the lessrefutable they are. (3)

represents an optimistic approach - it assumes that the type of model is fine but just needs

refining (e.g. by adding a “missing” variable). (4) represents the most radical response,

appropriate when the existing modelling language can not even describe the behaviour to

be modelled. It is perhaps this option that is usually what is indicated by authors when the

“complexity” banner is unfurled.

Relatively new (non-numerical) techniques

The history of economics has been dominated by the use of numerical, statistical

and game-theoretic modelling languages. Here are three other possibilities that have been

taken up by the new sciences:

1. Formal logics, which allow for a much greater expressivity, especially when one is

dealing with qualitative as well as quantitative properties. For example in [311] the

assumptions behind some organisational theories are examined. Although these are

difficult to use, computer based tools to aid in their use are becoming increasingly

accessible for the normal user (e.g. SDML [151]).

2. Network based models can be used to capture topological properties in a flexible

way, for example in [334] we produced a network model of R&D development which
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captured some of the context-sensitive nature of the dependencies between

technologies.

3. Abstract formal languages, can used to capture generative and modelling

behaviours using artificial grammars. I am not aware of an application in

economics, but this has been applied to chaotic process [122] and in biology [196].

Conclusion - complexity again

I have analysed complexity and distinguished three different kinds of complexity

relevant to the modelling of economic agents: environmental complexity, the complexity

of an agent’s models and the behavioural complexity. The move to considering situations

of greater environmental complexity leads to the consideration of agents that evaluate

their models using more than just the accuracy of their models and this leads to a greater

behavioural complexity. In response to such complexity we may need to use new styles of

models that can capture the new behaviour and processes, i.e. the modelling language we

use might need to become more sophisticated and hence also the models we build in it.

We have gone from a more closely defined version of economic complexity -

environmental complexity all the way to the “sciences of complexity”. All these kinds of

complexity arelinked but are far from identical. Hopefully this paper has elucidated the

nature of these links.
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