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Abstract. We distinguish between two main types of model: predictive and 
explanatory. It is argued (in the absence of models that predict on unseen data) 
that in order for a model to increase our understanding of the target system the 
model must credibly represent the structure of that system, including the 
relevant aspects of agent cognition. Merely “plugging in” an existing algorithm 
for the agent cognition will not help in such understanding. In order to 
demonstrate that the cognitive model matters, we compare two multi-agent 
stock market models that differ only in the type of algorithm used by the agents 
to learn. We also present a positive example where a neural net is used to model 
an aspect of agent behaviour in a more descriptive manner. Keywords: 
modelling, methodology, agent, economics, neural net, genetic programming, 
representation, prediction, explanation, cognition, stock market, negotiation. 

1. Introduction – types of modelling and their goals 

There are two ways in which our models are constrained by reality: verification and 
validation.  Verification is where the design of a model is constrained by prior 
knowledge, for example when a chemist’s model of interacting atoms is constructed 
so that it is consistent with atomic physics. Validation occurs after the model has been 
constructed – it is a check that the output of the model is consistent with known 
behaviour, for example by testing to see whether the error of a model’s predictions 
with respect to unseen1 data can be explained by noise. 

Different types of models relate to different kinds of goals and involve verification 
and validation in different ways.  For example in a predictive model, where the goal is 
to predict unseen data, the validation is all important and comes first. Later the 
construction of the model (i.e. the verification) may be examined to try and find out 
why the model successfully predicts the phenomena.   

Another important type is the explanatory model, here the goal is to explain the 
outcomes in terms of the design – the validation does not need to be done with unseen 

                                                        
1 A hold-out sample is insufficient for a predictive model as (Mayer 1975) graphically 

illustrates. 



data, but the design must be a credible representation of the structure of the process if 
the explanation is to be of any use.  The methodology of modelling is discussed in 
greater detail in (Edmonds, 2000). 

This approach differs significantly from the standard modelling procedures in the 
social sciences – especially conventional economics and its derivatives in political 
science and sociology.  For example, in conventional economic theory, competition is 
an unmodelled process that is claimed to drive all economic actors to behave as if 
they were constrained optimisers.  What is actually modelled in conventional 
economic theory is a competitive equilibrium that is said to capture the result of the 
unmodelled competitive process. A survey by Moss (forthcoming) of the 14 game 
theoretic papers2 published in 1999 in the Journal of Economic Theory showed that 
seven of the papers proved the existence of a Nash or similar equilibrium for an n-
person game, six papers reported models and results for two-person games 
(sometimes in round robin tournaments) and one paper reported results for a three-
person game.  There were no papers reporting the process of any game with more 
than three players. 

A social process involves a process of interaction among individuals.  By ignoring 
the process, or considering only very limited numbers of agents (i.e. between 1 and 3 
agents), economic modellers do not even seek to capture social interaction.  In 
consequence, it is not possible to validate their models against observed social 
behaviour.  Instead, with extremely strong assumptions they hope to take a “short cut” 
to capture the outcomes only – in other words to make a predictive model. The 
trouble is that they do not predict. because they fail on unseen data.  There seems to 
be a sort of “double-think” going on – the use of hold-out sets rather than unseen data 
would be acceptable for an explanatory model and the lack of representational content 
would be acceptable for a predictive model, but main-line economic models fail to be 
either. 

The nature of a social process depends upon the behaviour of the individuals in the 
course of their social interactions.  In multi agent systems, that behaviour is 
represented by some specification of individual cognition. That specification will not 
capture all of the behaviour of the individual, of course, but only what is relevant to 
the modelling purpose – i.e. what elements of the modelling target is going to explain 
the outcomes.  For an explanation to be effective these elements need to be present in 
the target systems and they have to be necessary for the outcomes. 

The use of multi-agent modelling techniques is a step towards descriptive 
modelling, because the separate entities (agents) in the model correspond to the 
separate entities in the target domain (people or institutions).  In other words the 
structure of the target system is represented in the model at least to some extent as an 
essential part of the model design.  In practice, because the agents in the system are 
identifiable as entities in the target domain, the interactions between agents in the 
model are programmed so that they also correspond to those between the entities 
modelled. 

It is still common in multi-agent modelling to take an existing algorithm (designed 
with another purpose in mind) and use it for the cognition of the agent, regardless of 

                                                        
2 A paper was judged to be concerned with game theory if “game theor*” appeared in its title, 

abstract or  among its key words.  



whether this can be justified in terms of what is known about the behaviour of the 
modelled entities.  For, example there have been many economic models which have 
utilised standard Genetic Algorithm techniques3 without regard for whether this can 
be justified by reference to the target domain (Chattoe 1998).   

In this paper we will argue that neural network techniques can be a valuable part of 
the multi-agent modellers palette, but that simply “plugging in” existing techniques 
will not help in understanding what we model.  In the absence of models that predict 
unseen data this seems to be simply an anachronism.  Rather, if we construct models 
whose structure including that of the cognition corresponds to a description of the 
target domain, then the behaviour of the whole system can provide an explanation of 
this behaviour in terms of the elements of that description. 

Thus the algorithm that is to drive an agent’s behaviour must be, at least, chosen 
and adapted to correspond to what is known concerning the modelled entity’s 
behaviour and cognition.  This is as true for neural network techniques as for other 
types of algorithms – the fact that at a micro level there might be a correspondence 
between brain structure and NN techniques does not give any guarantee that this is 
true at the macro level of agent behaviour or in social phenomena arising from agent 
interaction. 

Section 2 of this paper compares two artificial models of a stock market, which are 
identical except for the cognitive model of the traders – these are not designed to be 
realistic but merely to demonstrate that the type of cognitive model matters. Section 3 
is a more positive example of multi-agent modelling which seeks to represent 
negotiators cognition using a mixture of techniques.  We conclude in section 4. 

2. A Negative Example – A Model of Stock Market Traders 

To emphasis that the type of the cognitive algorithm is crucial to the behaviour of a 
whole system (and not merely its adjustment or parameterisation), I will describe two 
versions of a model of stock market traders (roughly following Palmer et al. 1994) 
where the only difference is that different types of algorithm were used for their 
decision making mechanism were used: a GP based algorithm and a NN algorithm.  
The different cognitive models lead to qualitatively different outcomes – differences 
that I suggest will not be eliminated by any simple “tuning” of the algorithms.  The 
corollary of this is that it matters that we use appropriate representations of 
cognition, and do not simply “plug in” algorithms “off the shelf”.  

2.1    The inter-agent structure 

First I will describe what is common to both versions of this model, namely what is 
exterior to the trading agents. Their environment and the structure and type of their 
interactions. 

                                                        
3 Sometimes these are altered so that they more efficiently optimise on simple problems but are 

even less realistic! 



There are seven traders, three stocks and one market maker.  Each time cycle the 
market maker posts prices for the stocks and traders can buy (if they have cash or are 
also selling stocks) or sell (if they have that stock) at the price posted in each of the 
three stocks.  They pay a fixed cost for each trade they make. They do not have to 
trade.  There is a dividend for each stock which varies upwards and downwards in a 
slow random walk, so that different stocks have the best dividend rate at different 
times.  This dividend is paid each cycle and is the only fundamental underlying the 
value of each stock.  Cash and levels of the stocks are adjusted at the end of each 
cycle. 

The market maker always accepts trades, unless it has run out of stock to sell, in 
which case it sells what it has left.  The prices it sets are initially random but from 
then on are moderated according to demand – that is, if there traders are buying a 
stock it raises its price and if there are net sales it lowers the price.   

The traders are initialised with 100 units of cash at the start and a small but random 
level of each stock.  During the first five time cycles the traders can learn about the 
market but make small random purchases or sales.  There after the assets of each 
trader depends on its trading decisions (to buy, sell or keep stocks).  The traders’ 
learning algorithms attempt to find actions that will increase its assets or, 
equivalently, to correctly predict stock price movements.  The internal algorithm 
decides on its intentions, which is then modified by what is possible given its 
resources – this moderation is the same for both versions.  The maximum purchase or 
sale of each stock is 5 units. 

The inputs that the internal learning algorithm has in order to guide its actions are 
as follows: 

• The prices of the three stocks during the previous two cycles and 5 cycles ago; 
• The value of the stock index (average of the prices) during the previous two 

cycles and 5 cycles ago; 
• The last actions of its contacts in terms of buying and selling the three stocks; 
• And one constant: the Boolean value of “true”. 
At the beginning of the simulation a randomised “contact structure” is imposed 

upon the traders, with each trader having three contacts, that is a specified and fixed 
set of three of the other traders.  Each trader can observe its contacts, that is each 
cycle the actions of its contacts in terms of buying or selling each of the three stocks 
are employed as additional inputs for its decision making algorithm.  Thus each trader 
could learn to imitate another trader’s actions. 

2.2    The GP cognitive algorithm version 

The GP learning algorithm is a strongly typed GP algorithm following (Montana 
1995). Each trader has 20 “models”, where each model is made up of a GP tree for 
each stock.  The nodes are as follows: 

IDidLastTime indexLastTime indexNow maxHistoricalPrice 
AND divide doneByLast greaterThan lastBoolean 
lastNumeric lessThan minus NOT OR plus priceDownOf 
priceLastWeek priceNow priceUpOf times  



The terminals are consist of the names of its contacts, the names of the stocks, True 
and False. The evaluation of the models is done by assessing what the trader’s total 
assets would be if it had employed the model over the last 5 time periods.  The 
operations are 85% tree crossover, 5% new randomly generated models and 10% 
propagation. 

Figures 1 and 2 give a flavour of the resulting interactions of the agents.  Figure 1 
below shows the prices of the three stocks and figure 2 the total assets (at current 
stock prices) of the agents. 
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Fig. 1. Price of stocks in the GP version 
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Fig. 2. Total value of trader’s assets in the GP Version 



 
There is quite a lot of market activity – traders continue to drop in out of stocks 

resulting in speculative “cycles”.  As a result the fortunes of the different traders vary 
over time in comparison with each other.   

 

2.3    The NN cognitive algorithm version 

The neural net version of the model broadly follows (Chialvo and Bak 1999). This has 
a standard fixed and layered topology with weights on the arcs which are adjusted. 
This is a winner-take-all network where only the strongest node in each layer (after 
the input) fires.  Feedback is entirely on the basis of error, the arcs that fired leading 
to an erroneous prediction are slight depressed.  The NN used is a variation of this to 
allow more than one set of arcs to fire in parallel – a “critical  level” is set and all 
those nodes whose inputs sum to over this level fire, the feedback is as before but 
with the addition that the critical level is adjusted if the network is generally under 
firing. 

In this network there were 47 inputs two intermediate layers of 35 nodes each and 
11 output nodes. The inputs were as follows:  

• For each of the three stocks, for the last and previous time whether it has 
gone significantly up, down or not changed; 

• For the index, for the last and previous time whether it has gone 
significantly up, down or not changed; 

• Whether the index is historically high or low; 
• And for each of its contacts and each stock whether they bought, sold or 

did nothing. 
The predictive outputs were: 

• For each of the three stocks whether it has gone significantly up, down or 
not changed; 

The arcs were initialised with weights around 100 (the initial critical level) and 
decremented by a factor of 0.99 when leading up to an erroneous prediction. 

 



0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200

Time

P
ri

ce

Fig. 3. Price of stocks in the NN version 

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200

Time

V
al

ue

Fig. 4. Total Value of trader’s assets in the NN Version 
 
Here we have a very different picture – traders invest early, predicting that prices 

in a couple of stocks will go up, which turns out to be a self-fulfilling prophesy.  
Those traders that bought into those stocks first did best. The assets of traders increase 
largely as a result of the dividends they gain on those stocks. 



2.4    Some speculations about the causes of the different outcomes 

It would be almost impossible to prove that the two algorithms could not be “tuned” 
so they produced qualitatively similar results, but I would argue that this unlikely.  It 
is unlikely because the qualitative difference in outcomes can be explained in terms of 
the different characteristics of the two algorithms.   

The GP algorithm is far more “brittle” and noisy – there is a continual stream of 
new models being created as part of its operation, and small changes in a model’s 
content can mean a very large change in its impact. The NN algorithm is also a 
critical system – paths that are just below the critical level are not further depressed 
and have the potential for “resurfacing” when the current paths fail, but whilst there is 
a small probability that a successful model in the GP algorithm can be forgotten, this 
is not the case in the NN, where a successful path will remain as long as it is 
successful.  Finally, while the GP algorithm employs a retrospective evaluation of 
models, the NN is incremental – it can build up the feedback a little bit each time 
period.  The incrementally means that the NN will tend to be more consistent in its 
behaviour whilst the GP can be more context-sensitive (for example if the market 
entered a new phase exactly 5 periods ago). 

The point is not that one algorithm is a better than the other, but which more 
accurately reflects the happenstance of real traders’ behaviour.  In this case the one 
algorithm might be a better representation of one kind of trader and the NN of 
another. 

3. A Positive Example – A Model of Multilateral Negotiation 

The model of multilateral negotiation reported in this section is under development as 
part of a European project on using multi agent systems to inform and support the 
management of water resources across Europe under anticipated conditions of climate 
change.  A characteristic of water issues is that they involve conflicting interests.  
Extraction of water for irrigation conflicts with leisure and environmental interests.  
Flood protection schemes can rely on dykes, which shift the flooding problem 
downstream, or on the creation of flood plains that enthuse environmentalists but 
impact heavily on farmers.  Industrial water use conflicts with domestic water quality.  
Even the list of conflicts is far from exhaustive.  Moreover, the number of issues 
relevant to the various stakeholders is large. 

The purpose of the model is to identify, both in general terms and in relation to 
particular cases within European river basins, how to structure negotiations over a 
large number of conflict-laden issues among interested stakeholders in order to 
achieve a commonly acceptable set of outcomes. The implementation was designed 
specifically to investigate the importance of different attitudes among negotiations 
towards the behaviour of other negotiators.   

It is possible – and certainly should not be excluded by assumption – that over the 
course of any complicated negotiation process, there will be changing criteria for 
determining with which other agents one should seek agreement.  Consequently, any 
representation of cognition that supports the selection of negotiating partners must 



allow for flexibility and the evolution of selection criteria.  The Chialvo-Bak (1999) 
learning algorithm is a clear candidate in this regard.  Because synaptic strengths are 
only altered by small amounts when an expected or required result is not realised, 
agents incorporating this representation of cognition remain flexible and adaptive.  
Moreover, the winner-takes-all strategy, whereby the strongest of alternative synapses 
is always chosen, ensures fast execution. 

Negotiators’ cognition is represented by a problem space architecture within which 
the Chialvo-Bak specification of neural networks is used to implement learning 
behaviour (Chialvo and Bak 1999).  There is a middle layer network for each agent 
composed of a random network of 200-300 neurons.   

An abstract, canonical model has been implemented that can represent specific 
local sets of issues.  This was achieved by ascribing to each agent a digit string to 
represent its negotiating position.  Each digit in the string could take any integer value 
within a user-specified range.  A second digit string of the same length indicated the 
importance to the agent of the values of the digits at corresponding positions on the 
string representing the negotiating position.  So if the negotiating position string were 

1 5 3 7 6 9 2 
and the string indicating the importance of the elements of the negotiating position 
were 

3 1 2 5 8 3 4 
then the value of the first string at position 5 (with a value of 8 in the second string) 
would be the most important element in the agent’s negotiating position.  The least 
important would be the negotiating issue represented by the digit at position 2 
corresponding to the value 1 in the importance string.  Evidently the positions 
represented by the first and sixth digits in the position string were of equal and 
moderate importance. 

The simulation experiments were run with either 30 or 40 negotiating positions 
which could take any of five values.  There were nine negotiating agents. 

In line with the conflict resolution literature, each agent would seek agreement 
with other agents on the positions which it found least important and then on the next 
least important, and so on until full agreement were reached.  Agents will agree to less 
important positions held by another agent when, by so doing, the other agent agrees to 
a position that the first agent finds more important. 

  It is not too surprising that we have found the sine qua non of successful 
negotiation to be a common commitment to achieve some agreement.  We have also 
found that the standard prescription for conflict resolution – agree on the least 
important elements first – does not result in overall agreement in a setting with many 
negotiators.  This is because, once differences have been resolved with one agent, 
resolving differences with another agent might involve reopening or opening up new 
differences with the previous negotiating partner.  It seems likely that a necessary 
characteristic of the negotiation process will be the emergence and evolution of 
coalitions among negotiators.  Further simulations and development of the model will 
be required to investigate appropriate means of creating such. 

The inputs to the neural network are collections of endorsements of other agents.  
Another agent will be endorsed as “trustworthy” if it reaches an agreement and is 
subsequently found to have observed the agreement.  An agent will be endorsed as 
“reliable” if it responds positively to an offer made by the endorsing agent.  An agent 



is “helpful” if it brings together two other agents that reach some sort of agreement.  
An agent is similar if it shares more of the same negotiating position than any other 
agent known to the endorsing agent.  There is also an endorsement “known” to cover 
those agents that are known to the endorsing agent.  Finally, there are three negative 
endorsements: untrustworthy, unreliably and unhelpful which obvious meanings. 

Each combination of endorsements is associated with an input neuron with 
synaptic connections to seven neurons of the middle layer network.  The initial order 
of goodness is determined by randomly ordering the individual endorsements from 
best (with value 5) to least good (with value 1).  The pejorative endorsements are 
given the negative of the value of their positive counterparts.  Then all combinations 
of endorsements are valued at the sum of the values of their components and, for each 
value, an output neuron is created. 

When all of the neurons are created, each neuron that is not an output neuron is 
linked by synapses to seven other neurons within that network.  Each synapse is given 
a strength of 1 ± a small random perturbation in the interval [0, 0.02).  On the first 
occasion when an agent encountered a set of endorsements, the network was trained 
to associate that set with its predetermined initial value.  The training took the form of 
finding a synaptic path from the neuron associated with the endorsement set to an 
output neuron.  The synapse with the largest weight from each neuron was selected to 
form the path.  Following the Chialvo-Bak algorithm, if the output neuron did not 
correspond to the correct value of the endorsement set, weight of every synapse in 
that path was reduced by 0.02  and the sum of the weight reductions was distributed 
among all of the other synapses in the network.  This procedure was repeated until the 
input neuron associated with the endorsement set was linked by the strongest 
synapses to the correct output neuron.  The choice of which agent’s negotiation offer 
to accept is determined by which agent is associated with the highest ranked set of 
endorsements.  Having chosen an agent’s offer in this way, if an agreement on any of 
the negotiating issues results, the synapse values are left unchanged.  If, however, no 
agreement is reached, then the weights of the synapses connecting the input neuron to 
the rank-determining output neuron are reduced and the weights redistributed as 
described above. 

In the simulation experiments, we capture the ranking of endorsement sets 
triggered by each agent at each time step in order to determine whether the specific 
ranking makes any difference to the pace and outcome of the negotiations.  If the 
specific ranking does make a difference, then it is of obvious interest to note which 
endorsements are most effective in choosing agents with which an agreement will in 
fact be reached. 

4. Conclusion 

Neural network algorithms can be a valuable addition to the palette of techniques 
available to the multi-agent modeller.  However their use needs to be justified by 
reference to the behaviour of individuals in the target domain if the model is to have 
any value in terms of understanding, just as with any other approach.  It is 



theoretically possible that a model might be predictively successful on unseen data 
but, at present this seems unlikely without  greater understanding being gained first. 

There are some problem with using algorithms that are produced by fields such as 
neural networks or evolutionary computing, and that is that there is very little 
understanding about their domain of applicability.  This makes it very difficult to 
know when a particular technique is appropriate.  The tendency in many papers is to 
imply that a certain technique is generally better, rather than it has advantages for 
certain types of problem.  This specificity of advantage seems inevitable given the 
“No Free Lunch” theorems of (Wolpert and Macready 1995, and 1997), which show 
(in a very abstract way) that no technique is better than the others over all possible 
problem domains. 
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