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Abstract

When modelling complex systems one can not include all the causal factors, but one has to settle for partial

models. This is alright if the factors left out areeither so constant that they can be ignoredor one is able to recognise

the circumstances when they will be such that the partial model applies. The transference of knowledge from the point

of application to the point of learning utilises acombination of recognition and inference – a simple model of the

important features is learnt and later situations where inferences can be drawn from the model arerecognised. Context

is an abstraction of the collection of background features that are later recognised. Different heuristics for recognition

and model formulation will be effective for different learning tasks. Each of these will lead to a different type of

context.

Given this, there are (at least) two ways of modelling context: one can either attempt to investigate the contexts

that arise out of the heuristics that a particular agent actually applies (the ‘internal’ approach); or (if this is feasible)

one can attempt to model context using the external source of regularity that the heuristics exploit. There are also two

basic methodologies for the investigation of context: a top-down (or ‘foundationalist’) approach where one tries to lay

down general,a priori principles and a bottom-up (or ‘scientific’) approach where one can try and find what sorts of

context arise by experiment and simulation.

A simulation is exhibited which is designed to illustrate the practicality of the bottom-up approach in elucidating

the sorts of internal context that arise in an artificial agent which is attempting to learn simple models of a complex

environment. It ends with a plea for the cooperation of the AI and Machine Learning communities asboth learning and

inference is needed if context is to make complete sense.
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1. Introduction

Frequently at workshops and conferences on context, one finds that the emphasis is on drawing
distinctions between different types of context and illustrating how little each type has to do with the

others1. If this trend continues it will quickly become impossible to use the term “context” at all. Now it
is certainly the case that naively conflating different usages of the term can cause confusion, but I wish
to claim that there is a good reason that we use the same term for these different entities. The reason, I
claim, is that context arises from a study of thepragmatics of learning and applying knowledge. These
roots of context explain why and how the different types of context and approaches to studying them
arise. This account centers on thetransference of knowledge between learning and application. If this is
the case, then accounts of context which capture eitheronly context-dependent learning oronly
context-dependent inference will be inadequate.

This paper is structured as follows: section 2 is about the causal structure of complex systems
showing the inevitability of the selection of important factors in any model we construct; this motivates
the account of context as an abstraction of the features that are not explicitly included in the model but

1. This was the case at ECCS’97 and also reflects Pat Hayes’ summation of the two AAAI Fall symposia on the
subject.
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used in the recognition of its applicability in section 3; section 4 relates how the choice between
concentrating on the actual heuristics used by an agent and on the external regularities that they exploit
lead to the familiar ‘internal’ and ‘external’ approaches to context; the account also explains why
different sources of commonality will result in the different types of context encountered in different
fields (section 5); section 6 traces two possible methodologies for the investigation of context
(‘top-down’ and ‘bottom-up’) noting the present bias towards ‘top-down’ studies; in order to show the
viability of ‘bottom-up’ studies taking the ‘internal’ approach to modelling context a simulation study
is described in section 7; I conclude in section 8.

2. Causal Structure

In any but the simplest (e.g. linear) systems, effects can have a great many causes (when modelled in
absolute terms). In most systems, the web of causation is so dense that the number of factors that could
be included in a model of an event is limited only by the resources we put into it. This is what has been
called “causal spread” by Wheeler and Clarke in [19]. It has led some philosophers to argue that many
(i.e. non-statistical) notions of causality are only meaningful for simple systems (e.g. [18]). This causal
spread makes thecomplete modelling of an event impractical – we are forced to concentrate only on a
small subset of possible factors. Of course, this omission of factors in our models is only effective if
either they are so reliable that their omission is unimportant for practical purposesor if we are able to
recognise when our restricted model is likely to be applicable. In either case we will not attempt to use
the model when it is inapplicable.

Formalisations of causality always involve assumptions about the set of possible factors. Usually
they merely present a test which can be used to reject the hypothesis that a given factor or variable is
causally irrelevant. The strongest formulation I have found is that of Pearl [15]. He presents an
algorithm for finding all the factors thatare causes, but under the assumption thatno causally relevant
factor has been omitted from the initial set of possible factors.

I will illustrate this “causal spread” with two examples, which will be used to motivate the approach
that follows. The first is the causation involved in a man breaking a leg and the second the inference
involved in interpreting an utterance.

Example 1. A man is distracted and falls off a small ledge onto a pavement. When he lands his leg
breaks. What caused his leg to break? It could be attributed to many things: the hardness of the
pavement; the weakness of his femur; the way he landed on the leg; gravity; the mass of his body; him
falling off the ledge; the ledge itself; the height of the ledge; the distraction; or even the man’s
distractability. There seems to be no end to the number of factors onecould include as causes of the
fracture. Whether onedoes count each of these as causes is arbitrary from an absolute external
viewpoint. It can depend on the extent to which we judge each of them asunusual. For example, if the
ledge was there due to a freak subsidence we might say that this subsidence was the cause – if the ledge
was normal (the side of some steps) but the distraction was exceptional (there was a couple making
love in the middle of the street) we would say the distraction was the cause.

Example 2. Two people, Joan and Jill, are talking: Joan says “We’ll go and have a friendly chat in a
bar.”; Jill replies “Yeah, right!” which is (correctly) taken to mean by Joan that Jill thinks that this is a
bad idea and doesnot want to go. In what way was the negative message conveyed? In other words,
what allowed Jill to infer the meaning of Joan’s utterance? There could be many such factors: the tone
of Jill’s voice; that the peer group to which Jill and Joan belong always say “Yeah, right!” when they
disagree; that Jill is pointing a gun at Joan; that they are both are locked away in jail and so the
suggestion was impossible to carry out; that Jill had been neurotically repeating “Yeah, right!” over and
over for the past two years since her sister died etc. The answer could have been any one of these or any
combination of them. Even if many of these factorswere present Joan may have only used one or two
of them in her inference, the rest being redundant.
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Our models of the world (physical or social) are distinctly limited constructs. We could not possible
learn useful models of our world if we had to include all thepossible causes. In practice, we have to
restrict ourselves to but a few causes that wejudge to be the significant. The means by which we reach
such judgements can vary greatly depending on the circumstances (including our knowledge etc.).

In general (as developing human beings) we start by learning simple models of our world, i.e. those
with only a few explicated causes and only introduce more causes as we need to. The more causes we
include in our model the more generally applicable, but also the more unwieldy, it becomes. If we are
lucky, the natural world is so structured as to allow us to abstract away some of this detail and find a
more generally applicable model for certain aspects that are relevant to us. Sometimes we can construct
models that have sufficiently wide conditions of application that it is convenient for us toconsider them
as general truths. However, such cases, are exceptional – they tend to be highly abstract and so to apply
them one typically has to bring the cluttering detail back in to the model in the process of applying it to
a particular situation. In many models in the field of physics, this detail is frequently bought in as either
initial conditions or auxiliary hypotheses.

In this paper I want to consider aspects of the more usual models we learn and apply, not the
exceptional ones that are we consider as generally applicable. There is a view that somehow more
general models arebetter, because they are not restricted to particular domains of applicability, and
hence should be the focus of our study. According to this view more specialised knowledgeshould be
represented as specialisations of these ‘general’ models. I dispute this – I contend that although there is
great theoretical economy of representation in the more abstract and generally applicable models, the
huge difficulties of applying them to common situations often precludes them as a sensible way to
proceed. It would be incredible indeed if it just so happened that the world was constructed so that it
wasalways sensible to work via the most general structures possible!

3. Contexts emerge from Modelling Heuristics

The efficacy of our limited learning and inference in dealing with our complex world is dependent
on the presumption that many of the possible causes of events that are important to us remain relatively
constant. Otherwise we would need to include all the possible causes in our models and decision
making processes, which would not be feasible. This relative constancy is what makes our limited
modelling ability useful: we can learn a simple model in one circumstance and successfully use it in
another circumstance that is sufficiently similar to the first.

Roughly, I am going to attribute the label of ‘context’ as a stand-in for those factors that arenot
explicitly included in the simple models we learn, or, to put it positively, those factors that we use to
recognise when a model is applicable. This is similar to Zadrozky’s approach:

“...for any procedure we can divide its parameters into two sets: those that change
with each invocation of the procedure and those that are there but remain constant. The
latter set will be called its content and the former its focus.” [21]

It is the possibility of the transference of knowledge via fairly simple models from the
circumstances where they are learnt to the circumstances where they are applied which allows the
emergence of context. The utility of ‘context’ comes from the possibility of such transference. If this
were not feasible then ‘context’, as such, would not arise. This process of transference is illustrated
below in figure 1.
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Figure  1. The use of context in the transference of knowledge between learning and application

For such a transference to be possible a number of conditions need to be met, namely:
• that some of the possible factors influencing an outcome are separable in a practical way;
• that a useful distinction can be made between those factors that can be categorised as foreground

features (including ‘causes’) and the others;
• that the background factors are capable of beingrecognised later on;
• that the world is regular enough for such models to be at all learnable;
• that the world is regular enough for such learnt models to be at all useful when applied in

situations where the context can be recognised.
While this transference of learnt models to applicable situations is the basic process, observers and

analysts of this process might identify some of these combinations of features that allow recognition
and abstract them asa ‘context’. This usually is possible because the transference of knowledge as
models requires that the agent doing the transference can recognise these characteristic combinations,
so it is possible that an observer might also be able to do so and give these combinations names. Note
that it is notnecessarily possible that such an observer will be able to do this as the underlying
recognition mechanism may be obscure. Of course, it may be that the agent doing the transferenceitself
analyses and abstracts these features, and thus makes this abstract available for reflective thought.

Given the above conditions are possible, I am defining ‘context’ as:
the abstraction of those elements of the circumstances in which a model is learnt,

that are not used explicitly in the production of an inference or prediction when the
model is later applied, that allow the recognition of new circumstances where the
model can be usefully applied.

Due to the fact that context is characterised as an abstraction of an aspect of a heuristic for the
learning and application of knowledge, the properties of such contexts can not be meaningfully
analysed if one only considerseither the learningor the application of such knowledge. If one did this
one would not only be missing out on over half of the story but also undercutting the reasons for its
very existence. If the problems of learning are ignored then there is no reason not to encode such
models without context – the non-causal factors can be treated as either given or the same as the other
features of the model, de-contextualising them. If the problems of inference are ignored then there is no
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reason to separate the recognition of an appropriate context from that of recognising the correct
prediction in that context.

4. Internal and External Conceptions of ‘context’

Given the above picture of context and ignoring, for the moment, the effect that different heuristics
will have in different domains, there are at least two ways in which we (as people discussing the idea of
context) can make a reference to this process. I will call these the ‘internal’ and ‘external’ ways of
referring to context. The distinction drawn here is not new (e.g. [10]), but I wish to re-tell it in terms of
the picture presented herein.

4.1. The internal approach

We can refer to the context as that which an individual (or group of individuals)actually uses as a
result of their learning. This has the disadvantage that different individuals or groups will develop
different constructs as a result of their circumstances and the heuristics they happen to use. On the other
hand these can be empirically investigated.

It is not clear that the contextual mechanism that an individual uses to remember and recognise a
situation will be best represented by symbolic inference. For it may be that one such ‘context’ isn’t
clearly separable from another. Deciding which context is relevant may be more of a process of
recognition than an inferential process. If this is the case the recognition might be better modelled by
something like a neural network than using a logic-based system. It may be that there isn’t sufficient
continuity for the results of the recognition process to be meaningfully ascribed separate identities. But
even if thisis the case, it does not mean that it is useful forus to analyse and model these mechanisms
using computational, symbolic or other reified terms.

4.2. The external approach

Alternatively, we could try to abstract from the concrete manifestation of individual’s constructs
outwards to the regularities and features these constructs rely on in order for their modelling heuristics
to be useful (or even possible). Thus we have talk of context-as-a-resource in NL [11], or the
context-we-inhabit in AI [3].

The problem with this approach is that the number of possible outward features thatmightbe useful
can be large. In order to focus on the parts that might actually be useful for an intelligence that is
attempting to exploit them one has to consider (maybe implicitly) the internal construct of a context
anyway. There may be some good grounds for identifying some relevant regularities on a priori
grounds (for example, temporal context) but even in these cases it is hard to see how the properties of
such contexts could be deduced foractual agents in real examples, without some validation that the
presumed a priori grounds wereactually used by the agent.

Thus in each case the pragmatics of learning, transferring and applying knowledge creeps in. The
only escape from the relevance of these pragmatic roots of context is if one is not considering anactual
or applicable rationality and reasoning but only some artificial rationality for use on problems in
restricted domains (e.g. a heavily idealised or purely normative rationality).

5. Context in Different Domains

Different modelling heuristics will be useful in different domains, which explains why different
sorts of context arise in these different domains. The modelling heuristics typically exploit some sort of
commonality. This commonality ensures that some of an event’s features will remain constant from the
time of learning a model to its application. This commonality makes the modelling of events feasible



page 6

by limiting the number of features have to be explicitly included in the model, under the conditions that
the commonality is either pervasive or recognizable.

Sometimes these common features can be identified, and the external approach to context adopted
(as discussed in section 4.2 above), but at other times this may not be obvious so that one is forced to
indentify the heuristics that happen to be used by the agent, leading to the internal approach
(section 4.1). I list three broad areas of commonality below, and discuss the likely tractability of the
contexts that may arise from them as an objects of study.

5.1. Shared physical environment

One of the most obvious and straight-forward commonalities is a shared spatial location or time.
This can either mean that a model is learned at a particular location and time and then applied at similar
location or time (e.g. on Sunday in church), or it can mean that there is a spatial and temporal
commonality between conversers allowing a listener to infer the meaning of indexicals. Such physical
commonalities are, by their nature, readily indentifiable. This means that laws of spatial and temporal
context are among the most amenable of all contexts to analyse. For an introduction to the situation
calculus approach for this type of commonality see [2].

5.2. Shared social environment

The richest source of commonality we have as humans, arises from our shared culture, in particular
our language. In fact the trouble is that often, this source istoo rich for us as academics. As Graeme
Hirst points out there are oftenno external features that are identifiable as the commonality, since the
commonality may be a purely social construct with no accompanying external markers [11]. This
would mean that the external approach would not be viable. Of course, in such situations the internal
approach is almost as difficult, since the heuristics used by individuals may vary amoung individuals at
the same time and over time for one individual the same. This embarrassment of riches may well mean
that there are nogeneral characteristics that can be abstracted from the multitude of heuristics used to
model these social constructs, and hence no generally applicable characteristics of social contextper se.

This does not mean that the relevant commonalities and heuristics can not be discovered in
particular instances. For example, if a set of social norms has been established within a certain social
group, then it might be sensible (in circumstances where one recognises that the situation lies within
that grouping) to model others’ behaviour in terms of deviations from these norms. If these norms have
been sufficiently externalised into an explicitly expressed set of rules this will be identifiable as a
source of social context. Akman outlines some other feasible approaches to aspects of social context
in [1].

5.3. Shared biology

A third area of commonality is our shared biology. This may provide a shared experience of
emotions, experience of inhabiting a body, experience of consciousness and other shared knowledge
(e.g. basic language structure). These may be very important in a child’s early development but are
complicated and ‘masked’ with cultural overlays in later life. However their relative constancy across
humans and their pervasiveness may allow for studies of context arising from these commonalities in a
way that is difficult with commonality based in social constructions. Apart from linguists who apply the
concept of deep-structure, I do not know of any studies of context which focus in these biological

areas2.

2. Although Drescher’s ‘schema’ touch on this area [5].
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6. Bottom-up and Top-down Approaches to Modelling Context

In addition to the differences in context resulting from the heuristics relevant to a domain and
whether an ‘internal’ or ‘external’ approach is taken, there are also differences that are imposed by us
as modellers due to the different approaches we use for investigating these situations. One of the most
important (in terms of contrasts in approach) is whether one attempts to formulate one’s models using a
‘top-down’ or ‘bottom-up’ approach. A top-down approach is where one attempts to lay down general
principles (encoded variously as axioms, rules, algorithms, etc.) based on current ora priori thought. A
bottom-up approach would involve attempting to induce models of context from the details of the
learning and inferential processes as they might occur in practice, and later seeing if any appropriate
abstractions or generalisations suggest themselves.

6.1. Top-down

The approach to modelling context most frequently taken in AI, and perhaps epitomised by the
approach of John McCarthy [12], which is to specify a general structure for representing statements
concerning contextual reasoning and then to investigate some of the possible axiomatisations of logics
that encapsulate principles that are thought desirable. Thus the general principles are formulated first
and the properties emerging from these are investigated later. The initial standard for judging such
constructs is the plausibility and generality of the abstract principles – thus like mathematics this is a
foundationalist approach. Of course, theultimate judgement comes from the usefulness of the approach
in formalising or implementing actual systems. This approach is partly a result of a desire to elucidate
generally applicable AI principles and partly a bias resulting from the selection of formal logics as a
tool for modelling practical reasoning.

Of course, some work in AI takes a less general approach than this, especially where the work is
focused towards a specific problem or problem domain.

6.2. Bottom-up

In other domains it is much more difficult to establish general principles for learning and inference.
Here a more bottom-up approach needs to be taken. A small sub-domain is typically chosen and then
relevant examples considered to establish the likely heuristics involved. In this approach the specific
data and facts come first and the more abstract principles and theories come second. The models are
formulated to capture or explain observed processes and will be judged in this light. Later more abstract
models (or laws) might be posited from testing against these models and the data. Thus this approach
could be dubbed the ‘scientific’ approach.

The bottom-up approach is perhaps taken most seriously by those who advocate a constructivist
approach to AI. Here care is taken to assumeas little as possible in advance so that as much as possible
of the behaviour is available for capture in the models induced [17].
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Figure  2. Top-down and bottom-up approaches to the investigation of context

The community interested in context is unevenly split into these two approaches. The
‘foundationalists’ are searching for a sort ofmathematics of context, their approach is principle-based
and has a potentially general applicability. However they are dogged by problems of scalability from
the toy-problems they are tested on and will only be as strong as theira priori principles turn out to be.
The ‘scientists’ are typically working in a specific domain with more realistic processes and problems,
they face the same difficulties of generalisation as other scientists – it is a slow and difficult process to
discover successful theories. On the other hand any progress they make will be strongly grounded in
real processes and have clear conditions of applicability. In other sciences both kinds of approach have
turned out to be useful, the foundationalists have typically had a role in producing a palate of
formalisms, a few of which turn out to be useful to the scientists who use them for describing or

modelling the actual phenomena3. The high odds against a particular type of formalism turning out to
be useful means that it is vital that themaximum possible variety of approaches be developed. The
scientists have the job of finding the mappings from the phenomena concerned to models expressed in
these formalisms. This job is harder, which possibly explains why they are in the minority.

7. A Bottom-up Investigation of Internal Context in an Artificial Agent

To illustrate how a bottom-up investigation of context might proceed, I exhibit a simulation which
allows the analysis of the emergence of context in the knowledge learned by an artificial agent in a
controlled environment. The model and results are preliminary and are intended to be more suggestive
of future methodology than significant in detail.

7.1. Overview

The idea is to place an artificial agent in a environment that is well beyond its capacity to model but
one which exhibits some regularities. The agent is designed to learn about its environment using
feedback from its attempts to predict outcomes in that environment. It learns using a method that allows
the development of pattern-recognition, inference and context-like constructs. I then study the structure
of the knowledge that the agent learns in order to identify whether context-like constructs emerged.

3. They have also had a less glorious, but still important, role of setting up the straw men for the ‘scientists’ to
knock down!

abstract & general
principles (laws)

real world or
artificial learning

and reasoning processes

inference comparison

inductionabstraction

Top-down or ‘foundationalist’ approach

Bottom-up or ‘scientific’ approach

specific models of
learning and reasoning



page 9

7.2. The Learning Algorithm

The learning algorithm is based upon the neural network invented by Chialvo and Bak in [4]. This
algorithm learns a set of mappings between single inputs and single outputs using purely negative
feedback. The information is stored as the set of weights associated with the arcs connecting a set of
nodes. The algorithm works as follows: an input node is fired, then the arc from this node with the
greatest weight fires which fires the node it leads to; this carries on until an output node is fired; if the
output is correct then nothing happens but if it is wrong all the weights on fired arcs are depressed and
this change in weight is redistributed to other arcs.

This ‘learning by mistakes’ algorithm is very efficient to train and use. Also, due to the fact that
successful associations are not positively reinforced, the network remains in a critical state so that if the
environment it is learning about returns to a previous state, the associations it had learned are relatively
quickly re-established. In other words, since an arc either fires or it does not, the network only needs to
marginally depress previously correct associations and hence does not totally ‘forget’ them. The
topology of the network turns out not to be critical for the working of this algorithm. This algorithm is
illustrated in section 3.

Figure  3. Chialvo and Bak’s learning algorithm

I have adapted this algorithm in two ways:firstly, to allow the network to learn mappings from
combinations of inputs to combinations of outputs and, secondly, to add ‘switching’ arcs that can turn
other arcs on or off.

The first adaption was achieved by introducing a global critical level for the network. Arcs leading
from a fired node can only fire if their weight is greater than the critical level. The critical level is
gradually changed so as to ensure that the appropriate level of firing occurs. As before, all fired arcs that
cause output nodes to fire when they should not have are depressed.

Secondly, arcs are of two kinds: switched and unswitched. Unswitched are as already described,
switched arcs are enabled by an arc that leads to them (anenabling arc)– they can only fire if: (1) the
nodes they come from have fired; (2) their weight is greater than the critical level;and (3) the arc that
leads to them has fired. If the firing of an enabling arc leads to the over-firing of an output node then it
is depressed in a similar manner to other arcs but to a lesser degree (e.g. depressed by 25% of the value
by which the other arcs are depressed). This algorithm is illustrated in figure 4.

input nodes output nodes

if wrong the fired arcs’
weights aredepressed
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intermediate nodes

otherwise there is
no feedback

the arc with highest weight
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Figure  4. Generalised version of the algorithm

7.3. Analysis of the Network in Terms of Learned Knowledge

This generalised version of Caviallo and Bak’s algorithm isnot designed to be a particularly
effective learning mechanism but rather a tool for investigating what sort of rules are learnable in an
environment. It is particularly appropriate for this task for two reasons:firstly, because the network can
be readily analysed since the arcs that have weights greater than the critical level can be interpreted as
implications; andsecondly, because the switched arcs allow the emergence of nodes that act as
contexts, in that they do not directly cause the firing of further nodes butenable a set of other
implications without this being imposed.

The network is designed so that it can learn the structures of directed arcs described in [9]. It is
designed to be as free from assumptions about the structure of the contexts as possible – thus it is ideal
for this kind of investigation where the purpose is to investigatewhat the appropriate assumptions are
in a particular environment. Broadly speaking, a context is represented by one (or more) nodes that
develop a role of ‘switching’ sets of associations, whilst other nodes represent facts about the
environment. There is, of course, no hard and fast distinction between context nodes and other nodes
but more that in some circumstances some nodes act moreas contexts and others act moreas the
content of the model in context. The difference is illustrated in figure 5.
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Figure  5. Nodes acting as contexts and other nodes

If the structure of the network allows it, there is nothing in the algorithm that prevents the network:
learning in a context-free way; having contexts imply other contexts, developing hierarchies of
contexts, having nodes acting as contexts in some situations and not in others etc. It can be interpreted
as implementing both inferential and pattern recognition processes: whether a node is fired is a matter
of pattern recognition as a result of the learning done by the network, but the resulting firable arcs can
be analysed in terms of (possibly context-dependent) implications about its environment.

7.4. The Environment

The environment is a small artificial stock market. Broadly it is an extension of [14]. There is a
small population of artificial traders who are each attempting to predict the next day’s stock prices
based on data from the recent past. Each trader has a small population of candidate models of the price
behaviour in terms of past movement, dividends, comparisons against historical levels etc. Each agent
is continually: generating new variations of past models; evaluating them as to how well they would
have predicted prices in the recent past; choosing the best of its models; using this model to predict
future prices and taking an action to buy or sell dependent on this prediction. It is doing this in parallel
to the other agents – essentially each is trying to ‘out-think’ the other traders by predicting the effect of
each other’s predictions. The price series that results are weakly related to the fundamentals of the
stocks (e.g. the dividend to price ratio) but this is ‘masked’ by self-reinforcing patterns of speculation
among the traders.

I enhanced this model by substituting a genetic programming algorithm for the classifier system.
This enables the traders to develop their internal models in a more open-ended and creative way using a
much wider range of strategies, including imitation. I also introduced a round of communication
between traders before each session of buying and selling. The details of the traders and their
interactions can be found in [6, 7], but they are not critical here. What is important here is that it
provides: an environment that is beyond the capacity of agent to completely model [8]; that displays
distinct phases to which learning heuristics might apply; and that is tunable in the level and type of
learning difficulties it presents. To give an idea of the level of difficulty, figure 6 shows a typical
example of the price series that the agent is trying to learn. Although it is fairly unpredictable in detail,
there are distinct and recognizable phases of buying and selling indicated by the cyclical nature of price
swings and the clear negative correlation between the prices of the two stocks.

node acting more
as acontext

nodes and
arcs acting more
as thecontent
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7.5. Implementation

The whole model was implemented in SDML, a declarative modelling language developed at the
Centre for Policy Modelling for social simulation. For details of SDML see [13] and
http://www.cpm.mmu.ac.uk/sdml.

7.6. Preliminary Results

Since the purpose of this model is merely to demonstrate the feasibility of a bottom-up approach,
this description of the results will be cursory. Those who want more detail will either have to imitate the
techniques or wait for a fuller investigation of the subject by me.

Two runs were performed with the same learning agent but different environmental set-ups. The first
run’s environment consisted of a market with 5 traders, each of which had 20 models of initial depth 5,
while the second had only 2 agents each with 10 models of initial depth 4. The first will be called the
‘harder’ and the second the ‘easier’ learning task. The prices series that results from these are
illustrated in figure 6 and figure 7 respectively. The ‘harder’ series change more abruptly and exhibit a
more complex cycle than the ‘easier’ series.

Figure  6. A price series output from the market (two stocks) – harder learning task

Figure  7. A price series output from the market (two stocks) – easier learning task

For each task the agent was given an identical network structure of: 23 input nodes, 20 intermediate
nodes; and 11 output nodes. The input nodes were randomly connected to an average of four
intermediate nodes each, which were connected with 3 output nodes and switching 3 other arcs using
enabling arcs as described above. The agent then runs through the dates once, hence it is a one-shot
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incremental learning task. The network is deliberately limited in order to simulate the sort of learning a
real agent might attempt in a similar situation.

Despite the considerable difficulties it was faced with the agent did manage to induce some effective
(but, of course, fallible) rules about the prices series. For both tasks the agent specialised some of the
nodes to act as indications of context, that is it learnt arc weights such that these nodes acted to ‘switch’
other arcs and did not imply any of the output nodes directly themselves. In figure 8 I have plotted the
number of these ‘context’ nodes as the simulation progressed for both learning tasks. It can be seen that
the agent induced more contexts for the ‘easier’ task than the ‘harder’ one.

Figure  8. Number of nodes acting as contexts – both learning tasks

In figure 9 I have summarised the contexts developed by the agent at the end of the ‘harder’ learning
task. These were constantly being selected in and out, due to the nature of the learning algorithm. The
underlined headings indicate the conditions under which the context is recognised and the implications
under them are the rules that are hold in that context (i.e. are enabled by them). Thus the consequent of
one of these rules will only be inferred if the context is fired as well as the antecedent, but this does not
mean that the context is functionally the same as the antecedent as they are reinforced by the learning
algorithm in different ways. The enabling arcs’ weights are changed at a slower rate than the node-node
arcs (one quarter as slowly). Thus it will take many more occasions of negative feedback to change a
context node’s associations than one of the implicational arcs in that context. This allows learnt
contexts to last longer. Likewise the arcs that lead to the contextual node (i.e. those representing the
conditions which the context is recognised) can change more quickly than the ‘membership’ of that
context.

In this way I have allowed the emergence of context-like behaviour without imposing the sort of
two-tier structures that have been employed in other machine learning algorithms (e.g. [16, 20]). If I
had a network with more than one intermediate layer we could allow the emergence of contexts within
contexts etc. but this would take longer runs in order for any results to emerge.
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Figure  9. The ‘contexts’ induced by the agent by the last 10 dates – harder learning example

Future work with this model will involve attempting more runs of the current model; runs with a
more intricate network topology and runs on data generated by real-world processes. The idea is not to
discover any ‘golden rules’ for these domains but to start to tease out how and in what way different
contextual structures can arise from different sorts of regularity (or lack of it) in the data.

8. Conclusion

If one only studieseither the learning of context-dependent knowledgeor context-dependence
inference then one may well be missing the essence of context. I suggest that context only makes
complete sense when considering thetransference of knowledge from point of learning to point of
application. Identifiable contexts arise fromour modelling of those features that allow the recognition
of a situation in which an inferential model can be applied. If this is correct then a successful study of
context may need thecombined expertise of the AI and Machine Learning communities.
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last(Stock-2 unchanged)
last(Index unchanged) → Stock-2 down
last last(Stock-2 up) → Stock-2 unchanged OR Stock-2 down

last(Stock-2 up)
last(Index unchanged) → Stock-2 unchanged

True
last(Index down) → Stock-2 down

last last last(Index down)
last(Stock-2 down) OR last last(Index down) OR last last(Stock-1 unchanged) → Stock-1 up

last(Index high)
last last(Index unchanged) OR last last(Index up) OR last(Index down) → Stock-2 unchanged
Index up

last last(Index down) OR last(Stock-1 unchanged) OR last(Stock-2 down)
last last(Index down) OR last(Index high) → Stock-1 up

last last(Index up) OR last last(Index unchanged)
last(Index high) → Stock-2 unchanged
Index unchanged
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