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Abstract 

 
The Sackler Colloquium on on Adaptive Agents, Intelligence and Emergent Human 
Organization is intended to force a re-examination of current social theory by means 
of an exploration of adaptive agent models.  The primary issue addressed by this 
paper is why it should be assumed that adaptive agent models are suitable for that 
purpose.  The argument is predicated on the view that social science should start with 
observation and the specification of a problem to be solved and then reason from that 
basis to define the appropriate properties and conditions of application of relevant 
tools of analysis.  Accordingly, evidence is adduced from data for sales volumes and 
values of a disparate range of goods to show that, in all presented cases, frequency 
distributions are fat tailed.  This result implies that, if there is a suitable and stable 
population distribution, it will generally have infinite variance and perhaps undefined 
mean.  Agent based models with agents that reason about their behaviour and 
specifically do not conform to the rational choice model and are influenced by, but do 
not imitate, other agents known to them will typically generate fat tailed time series 
data.  There is no reason to suppose that this data is drawn from any stable 
distribution.  An agent based social simulation model of intermediated exchange is 
reported that has the same type fat tailed time series and cross sectional data that is 
found in data for fast moving consumer goods and for retail outlets.  This result 
supports the proposition that adaptive agent models of markets with agents that reason 
and are socially embedded have the same statistical signatures as real markets.  This 
statistical signature precludes any conventional hypothesis testing or forecasting – a 
point which pertains both to intermediated (e.g. retail or financial) markets in general 
and to the models.   However, these agent based social simulation models offer unique 
opportunities for validation on the basis of domain expertise and qualitative data.  
While they cannot be used for prediction or forecasting the specific consequences of 
any policy or commercial action, they can be used both to identify differences in 
stakeholders’ perceptions and to investigate the properties of effective responses to 
unpredictable events. 
 

 
 
 



1 The issues 
The purpose of this colloquium is to explore adaptive agent models                   

and, in so doing, to force reexamination of current social theory and                   
encourage rethinking of the processes by which human organization                   
emerges.∗ 

The presumption in the meeting overview, from which the above passage is 
extracted, is that adaptive agent models are particularly well suited to capture the 
nature and consequences of social complexity whereas current social theory is not.  
Two aspects of current social theory are identified in the meeting overview: the 
dominance of social theory based on the assumption that economic actors maximise 
utility and the assumption that “social organization evolves from a top-down 
hierarchical system of culture and norms that serves to shape individual behavior.”  It 
is then asserted that “Adaptive agents methods are likely to become the foundations 
for modeling and simulation that may help to resolve many of the problems of 
complexity and help in the development of policy tools that provide enhanced insight 
into the likely effects of policy action.” 

Why should adaptive agent models be relevant to, much less force the 
reexamination of, current social theory?  And why might adaptive agents models 
usefully inform the provision of enhanced insight into the likely effects of policy 
action?  After all, agent based simulation is hardly the first analytical approach for 
which great promise has been claimed.  Game theory and then dynamic game theory 
was going to provide powerful and relevant models of competition.  Yet a recent 
survey [1] of game theory papers in a leading economic journal showed that game 
theoretic analyses of processes was limited to two or in one case three agents and all 
n-person game theoretic models were concerned with equilibrium outcomes rather 
than any process.  Econometrics and Keynesian theory together were going to provide 
means of forecasting the effects of policy actions provided that the number of policy 
targets were the same as the number of instruments.  I recently asked on the email 
discussion list of the International Institute of Forecasters whether there are any 
counter-examples to the following claim: 

Since the invention of econometrics by Jan Tinbergen in the 1930s, there has not been a single 
correct econometric forecast of an extreme event such as a turning point in a trade cycle or a stock 
market crash. Every such forecast –  without exception – has yielded either a type I or a type II 
error. 

Apart from one undocumentable claim, the strongest responses were that, when 
applied to past data, some new modelling techniques look better than most previous 
modelling techniques.  No one was able to point to a correct forecast. 

This experience, and many like it across the social sciences, is reason enough 
carefully to investigate the claim that agents and simulation are indeed promising 
elements in a new approach to policy analysis.  A careful investigation specifies the 
problem to be addressed and does not alter the problem specification in order to 
conform to the requirements of any tool of analysis.  The selection of any analytical 
tool to be applied to the problem, or the requirements analysis of the properties of any 
such tool is to be based on available and applicable empirical evidence.  The tool of 
analysis considered in this paper is broadly in the class of agent based social 
simulation models. 

                                                 
∗ From the programme of the National Academy of Sciences Sackler Colloquium on Adaptive Agents, 
Intelligence and Emergent Human Organization. 
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The whole range of policy analysis in complex environments is much too broad 
to be the subject of the sort of careful investigation suggested here.  It is however 
possible to address a class of policies: those that seek to use some market or 
competitive mechanism to manage resources.  European privatisations of public 
utilities and transportation systems or the use of internal markets in the UK’s National 
Health Service or proposals for carbon trading and carbon taxes to mitigate the extent 
of anthropogenic global climate change are examples of such policies.  The choice of 
this class of public policies is motivated both by the importance of the policy goals 
and by the importance of representations of markets in the development of  much of 
the current social theory to which the meeting overview refers. 

In order to evaluate policies intended to use or create markets, we require 
analytical tools that capture the properties of markets that the policies are intended to 
exploit.  For this reason, we begin in section 2 by a consideration of data describing 
the demand for and sales of a range of goods.  The result is a demonstration that even 
most mundane goods are subject to the same sort of volatility and uncertainty that is 
found in financial market prices or earthquake magnitudes or any of a wide range of 
social and natural phenomena.  This finding motivates the discussion in section 3 of 
the relevant statistical issues from the standpoint of both econometrics and statistical 
physics.  Three mutually exclusive possibilities consistent with the available data are 
canvassed, one of which is consistent with current social theory and two of which are 
consistent with adaptive agent models.  In section 4, a model is reported to support the 
investigation of the implications adaptive agent models for policy analysis.  In section 
5, we explore some wider issues concerning the ways in which it is justifiable to 
adaptive agent models for policy analysis.  Perhaps the most striking conclusion is 
that neither current social theory nor any similar construct will ever support an 
effective policy analysis.  However, adaptive agent modelling is an effective 
substitute. 

2 The statistical signatures of competitive intermediated markets 
If a competitive market is one where neither buyers nor sellers are able to set the 

prices in their transactions, then pricing is either the outcome of a process of 
negotiation or some third party must set the price.  Such third parties are well known 
and include the market makers on the financial exchanges, retail shops and processors 
and sellers of information such as credit agencies.  An important policy question is 
whether competitive intermediated exchange is appropriate for allocating public 
services or the services of privately owned public utilities and, if this is an appropriate 
arrangement, under what circumstances is it appropriate. 

Economic propositions about the efficiency and social benefits of competition 
are based on equilibrium models.  It is therefore worth asking whether equilibrium 
models actually provide the best available descriptions of the phenomena we observe.  
We begin with statistical observation. 

Weekly scanner data from supermarkets show that sales of fast moving 
consumer goods such as alcoholic beverages in the US and the UK and tea, biscuits, 
shaving preparations and shampoo in the UK are marked by the kind of clustered 
volatility that we associate with asset prices in the financial markets.   

Benoit Mandelbrot [2] first noted that log price changes in financial markets are 
commonly power law distributed.  He pointed out that this phenomenon is consistent 
with a stable Paretian population distribution. The value of the stable Paretian 
distribution is that there is a known functional relationship between the moments of a 
distribution constructed by multiplying a constant by observations drawn from other 



Moss: Policy Analysis from First Principles  Page 3 

 3

distributions and the moments of those other distributions.  These functional 
relationships underlie such important statistical techniques as regression and 
correlation analysis. 

The characteristic function of the stable Paretian distribution takes the 
logarithmic form 
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where α in the interval (0,2] is a “peakedness parameter” and β in the interval [-1,1] 
determines skewness.  Together with values of δ and γ, these parameters determine 
the first four moments (mean, variance, skewness and kurtosis) of the distribution. 

The value of α is of the most interest here.  When α=2, this characteristic 
function reduces to that of the normal distribution.  For all values of α<2, the variance 
of the distribution is infinite.  Moreover, for values of α<1, the mean of the 
distribution is undefined.  This means that, for all values of α<2, the law of large 
numbers does not apply to the variance and for all values of α<1 the law of large 
numbers does not apply to the mean.  No laws or theorems of classical statistics or 
econometrics are applicable in these circumstances. 

It is, however, important to note that the central limit theorem will typically 
apply to data with a stable Paretian distribution.  Since aggregating time series data – 
say daily into weekly data points – is effectively to calculate the mean of daily data 
over seven data points and then multiply by seven, samples of these sample 
distributions will be approximately normally distributed even if the underlying daily 
data is not.  Consequently, it is possible to generate data that appears to be normally 
distributed simply by taking data of sufficiently low frequency.  However, the 
variance and possibly the mean of the distribution of sample distributions will not 
converge to stable values. 

Distributions with infinite variances are easily distinguished visually from 
normal distributions because, for the same means and variances, they have fatter tails 
and therefore thinner peaks – a condition known as leptokurtosis.  Figure 1 shows 
clear evidence of leptokurtosis in the weekly sales values of three brands of shampoo 
in UK supermarkets for the 65 weeks beginning 2nd January 2000.  Similar results are 
found for virtually every one of the 120 or so brands of shampoo for which I have the 
data as well as every brand of tea, shaving preparations, biscuits and, in the US as 
well as the UK, every one of some 200 brands of spirituous alcoholic beverage and 
beers.  The first row of Figure 1 shows weekly sales values.  Brand A is a leading 
brand with no discernable sales trend while sales values of brand B are declining and 
sales values of brand C are increasing.  Both of the latter have small market shares.  
The second row shows the time series of relative sales changes.  Over the 65 weeks 
there obvious clusters of volatility and it is these clusters that generated the extreme 
values that cause the leptokurtosis evident in the third row showing the frequency 
histograms of the relative sales changes compared with the corresponding normal 
distribution. 

These results are typical for all of the products considered as well as daily 
metered consumption of water in southern England.  Leptokurtosis and clustered 
volatility is evidently far more general than has previously been recognised. Without 
doubt, the consequences for forecasting are enormous since leptokurtosis alone, 
independently of the clustering of volatility, implies the failure of the law of large 
numbers. That is, increasing sample size does not result in any convergence of any of 
the moments of the sample distributions – a result that itself renders parametric 
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statistical forecasting techniques wholly otiose (Mandelbrot, 1998).  Clearly, if 
leptokurtosis undercuts the law of large numbers,  then the clusters of extreme events 
cannot in principle be forecast by statistical means. 
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Figure 1: Weekly shampoo sales and relative sales change; 2 Jan 2000-25 March 2001 
(Source: Information Resources International) 

 

3 Three responses to leptokurtosis and clustered volatility 
There have been two responses to this problem, both of them addressing the 

core issue of the failure of the law of large numbers in samples of the variance of time 
series data.  One of these responses has been offered by econometricians and is in 
effect intended to preserve the law of large numbers and the other is from the physics 
community and is intended to bury the law of large numbers for good – at least when 
it comes to forecasting financial asset prices.  A further response, drawing on agent 
based social simulation, is described below. 

3.1 Time varying parameters (TVP) 
The TVP approach is based on the assumption that the observed time series is 

drawn from a normally distributed population with constant mean and varying 
variance.  The variance at the time of any observation is itself a function of previously 
observed errors so that standard regression techniques can be used to model the time 
series of variances.  To capture the clustering of extreme events, the variance of a time 
series for any observation is treated as a function of previous error terms.  Recent, 
large error terms tend to generate large variances.  Because the observation is then 
drawn from a population with a larger variance, the probability of the observation 
being relatively far from the mean is greater than when the population variance is 
smaller.† 

The motivations offered for particular TVP estimating methods are invariably 
related to rational expectations, the mean-variance representation of risk and risk 

                                                 
† Bollerslev [3] identifies the core econometric processes of relevance here to be  the ARCH 

process [4], the GMM process [5] and GARCH [6]. 
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aversion or some similar equilibrium notion from economic theory.  There are, 
however, no microeconomic equilibrium models that generate both leptokurtosis and 
clustered volatility either analytically or by means of simulation. 

3.2 Self organised criticality and econophysics 
While there are no models demonstrating any microeconomic foundations of 

TVP-based leptokurtosis, there is an extensive class of models – both canonical and 
applied – that were developed and explored by statistical physicists because they do 
generate clustered volatility and hence leptokurtosis.  The physical problem being 
addressed was the observation that an extraordinarily wide range of physical 
phenomena are power law distributed.  The power law distribution is: 

( ) τ−ssN ~  

where N is the number of observations at scale s and τ>0 is a parameter.  Mandelbrot 
(1963) pointed out that the power law distribution is a characteristic of the stable 
Paretian distribution. 

The question of concern to statistical physicists starting with Per Bak and his 
colleagues [7] was to find the process that is both very general and yields power law 
distributed time series.  The canonical model they developed was an idealisation of a 
sandpile with grains of sand being continually added.  The sandpile model is closely 
related to a cellular automaton model in that it is located on a grid with non-periodic 
boundaries with grains of sand added to cells at each time step.  Whenever the number 
of grains of sand in a cell reaches some specified critical level – say 4 – there is a 
“toppling” of the sand in that cell.  This toppling takes the form of a redistribution of 
the grains of sand in the critical cell to other (not necessarily adjacent) cells in the 
grid.  Not all of the grains are redistributed but the number of grains in the critical cell 
is nonetheless reduced to 0.  That some grains are lost from the system in this way 
makes it dissipative. 

Of course adding toppled sand to the grains at other cells increases the numbers 
in those cells until some of them become critical and topple and so increase the 
number of grains in yet other cells, and so on.  The consequence is that, once the 
system reaches a critical state, there will be a sequence of topplings involving 
different numbers of cells in the grid.  The time series of these topplings is power law 
distributed. 

There is a growing family of such models that yield power law distributed time 
series and cross sectional data.  The key feature of these models is that they do not 
require fine tuning of the parameters of interest in order to produce data with this 
statistical signature.   In this sense, the models self-organise into the critical state and 
remain in that state thereby to produce such power law distributed data with clusters 
of extreme events. 

Jensen [8] has summarised the conditions in which self organised criticality 
(SOC) emerges as those where: 

• Model components (cells, agents, etc.) are metastable in the sense that they 
do not change their behaviour until some level of stimulus has been reached. 

• Interaction among the model components is a dominant feature of the model 
dynamics. 

• The model is a dissipative system. 
• The system is slowly driven so that most components are below their 

threshold (or critical) states most of the time. 
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In social terms, agents and the individuals they represent are metastable if they 
do not respond to every minute stimulus they face.  They would not, for example, 
reconfigure their desired shopping basket as a result of a penny rise in the price of a 
tin of tuna.  A particular implication of metastability is that the behaviour of 
individuals cannot be represented by utility maximising software agents.  The 
dominance of interaction among the agents amounts to social embeddedness in the 
sense of Granovetter [9] and Edmonds [10]: the behaviour of individuals cannot be 
explained except in terms of their interaction with other individuals known to them.  
Dissipation in a social system, analogous to the dissipation of grains of sand in the 
sandpile model, equates to individuals being influenced by other individuals without 
slavishly imitating them. 

There is a literature on SOC models of financial markets though these appear 
almost entirely in journals such as Nature, Physica A, Physical Review E and Physical 
Review Letters and, apart perhaps from Lux [11], have had no noticeable effect on the 
economics literature. 

There are several important differences between the self organised criticality 
and the TVP literatures. The former uses models to generate statistical signatures that 
do not replicate actual data series while the latter exploits the data to model changing 
values of the moments of a distribution function.  This is part and parcel of a more 
fundamental difference: self organised criticality suggests that, without unlimited 
computational and information processing capacities, forecasting extreme events is 
inherently infeasible while the TVP literature is based on a faith (since there is no 
supporting evidence) that forecasting extreme events is feasible.  A further difference 
is that SOC properties are, with a few special exceptions, known only from simulation 
experiments.  There are hardly any analytical proofs [8].  The TVP literature, by 
contrast, is based on algorithms with properties that have been proved analytically. 

3.3 SOC in social systems 
One question that has not been considered in either the TVP or the SOC 

literatures is whether there is any stable population distribution underlying observed 
or simulated time series or cross sectional data.  Since the TVP literature is concerned 
with the application of parametric statistical techniques, the assumption of a 
population distribution with stable characteristics is essential.  The only question is 
where the stability lies.  In the TVP literature there is assumed to be a stable function 
relating variance to previous deviations from the stable mean.  In the physics literature 
on SOC, a measure of success is naturally taken to be the degree of agreement 
between the power law distribution parameter obtained by simulation and the 
parameter obtained from the corresponding real data.  While this measure of success 
is appropriate in models of physical systems, it may not be an appropriate measure of 
success of models of social systems. 

The key difference here turns on universality.  The assumption that the laws of 
physics are always and everywhere the same has been enormously useful in the 
physical sciences.   It is also a natural assumption to make since fundamental physical 
relations are plausibly unchanged by their own consequences.  So the law of gravity 
does not vary because objects catastrophically collide, for example.  It is much less 
plausible to argue that social relations are unchanged by their consequences.  On a 
grand scale, it would be lunatic to suggest that social relations were unchanged by the 
French Revolution – and not just in France.  More particularly, major financial panics 
frequently result in changes in the rules and practices of financial markets.  Also, 
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institutional arrangements are altered by extreme natural events but the laws of nature 
are not affected by extreme social events. 

If we consider the natural and social systems as two data generating 
mechanisms, then we observe that the data emerging from natural systems typically 
have stable statistical properties while data emerging from social systems typically do 
not.  For example, earthquake magnitudes are power law distributed (the Gutenberg-
Richter law) and the observed power law distribution does not change over time.  So 
while it is not possible to predict the occurrence of specific earthquakes or 
earthquakes of specific magnitudes, it is possible to describe with considerable 
accuracy the distribution of earthquake magnitudes.  However, in social systems 
experience of extreme events leads to a search for means of reducing their incidence if 
that is possible or their impact if it is not.  The point is to change the observed 
distribution by, in effect, changing the data generating mechanism.  To the extent that 
such social engineering is successful, the magnitude of the exponent of the power law 
distribution will be reduced.  The goodness of fit of a power law distribution will be 
reduced although that will not eliminate the leptokurtosis and clustered volatility of 
the observed data. 

4 Implications for scientific method 
Three mutually exclusive explanations of observed leptokurtic data series were 

described above: a normal distribution with predictably time varying parameters, a 
stable Pareto distribution with infinite variance generated by a self organised critical 
social process and no stable distribution but also generated by a self organised critical 
social process.  There are no tests on observed data that will distinguish between TVP, 
stable Pareto or unstable leptokurtic distributions.  Clearly a systematic history of 
success at forecasting volatile episodes with TVP methods would give convincing 
support to the hypothesis that there is an underlying normal distribution with a 
predictably varying variance.  However, there is no such history.  The timing, 
magnitude and duration of volatile episodes remain in practice unpredictable.  We 
must look to some other means of discriminating among – or rejecting – these 
possibilities. 

In the natural sciences, the search for explanations of previously unexplained 
observations has taken the form of a search for a data generating mechanism that 
could be validated independently of the observations themselves.  A classic example 
is the validation of general relativity theory by comparing observations of star 
positions during a total solar eclipse with the predictions of the theory.  A more 
pertinent example is the development of the sandpile model to explain observed 
power law distributions and then experimental testing of the canonical model with 
sand, rice grains and the like [12]. 

Scientific methods that have proved to be successful in the natural sciences are 
not necessarily equally applicable in the social sciences.  However, it is hard to see 
any objection to treating a social system as a data generating mechanism and devising 
a model to represent that mechanism.  If the model captures self organised criticality, 
then it is not possible to validate it by statistical means for two reasons.  One, of 
course, is that the generated data will be leptokurtic and therefore have infinite 
variance.  There are no parametric hypothesis testing procedures for infinite variance 
distributions and non-parametric procedures provide information only about the data 
in hand.  The second reason is that self organised criticality implies that the timing, 
magnitude and duration of clusters of extreme events are in practice unpredictable.  
There seem to be two, mutually exclusive ways forward. 
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One is to continue to develop the TVP approach in the hope that it will someday 
yield consistently accurate forecasts of extreme events.  The other is to focus on the 
relevant system as a data generating mechanism and to devise means of modelling 
that mechanism independently of the statistical data itself. 

4.1 From problem to approach 
The issue of concern is policy analysis in conditions where the objective is to 

develop strategies to mitigate the impacts of clusters of extreme events the magnitude, 
duration and timing of which cannot be forecast.  The alternative to forecasting 
suggested here is to try to understand the social processes generating the extreme 
event clusters in order to assess the effectiveness of different responses to their 
occurrence.  The means to be chosen for understanding the underlying data generating 
process must obviously be able to capture a process yielding unpredictable extreme 
event clusters.  This requirement filters out all equilibrium processes. 

A second requirement is that the approach should be robust in explaining 
leptokurtosis and unpredictable clusters of extreme events.  A mathematical model 
that generates data with the appropriate statistical signature only under a very narrow 
range of values of key parameters would not be appropriate unless there were 
independent evidence that those parameters and the particular values required robustly 
describe observed phenomena.  While chaos and edge of chaos models meet the first 
requirement, there is some evidence that they do not meet the second.  Differential or 
difference equation models with strange attractors have been known from the 
discovery of chaos to require parameters to be set to specific ranges.  Kaufman (1993) 
has worked on models in which values of those parameters are driven to the chaotic 
range and are otherwise at “the edge of chaos”.  However, Per  Bak (1997, p. 127) 
reports that these results are not robust with respect to parameter settings and initial 
conditions.  If Bak is wrong, then edge of chaos approaches will satisfy the second 
requirement.  If he is right they will not. 

The third requirement is that the approach must support independent validation.  
To date, there has been no independent validation of the edge of chaos models. 

The approach investigated here starts expositionally from SOC.  Historically, 
however, a set of models designed and implemented by researchers in the Centre for 
Policy Modelling (CPM) to analyse the effects of social embeddedness and to be open 
to validation by stakeholders turned out to yield leptokurtic data with clustered 
volatility.  The research programme of the CPM that yielded these models and the 
models themselves were developed  in ignorance of SOC. 

Two examples of such models are Moss’ model of household water demand 
[14] and the effects of exhortation by government and other authorities during 
conditions of drought and Edmonds’ model of a financial market.  Moss represented 
agent cognition by means of a combination of the problem space architecture of Soar 
[15] and ACT-R [16] together with an endorsements mechanism[17].  Edmonds 
represented agent cognition by means of an elaborated genetic programming 
algorithm.  Both of these representations of cognition yield metastable agent 
behaviour in that some non-negligible weight of evidence and incentive is required to 
induce agents to change their behaviour. In both models, agents were socially 
embedded.  In the Moss model, social embeddedness took the form of observation of 
neighbours’ public consumption activities such as garden watering and car washing as 
well as word of mouth communication.  In the Edmonds model, there is word of 
mouth communication among agents.  In both cases, agents were influenced in their 
behaviour by the behaviour of and communication with the subset of other agents 
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with which they had formed some relationship of trust and regard.  This, of course, is 
the essence of social embeddedness. 

In these social simulation models, the representations of agent cognition could 
hardly have been more different.  Even the representations of the model spaces were 
different – Moss implemented a grid with periodic boundaries while Edmonds had no 
spatial location of agents.  Indeed, apart from metastability of agent behaviour and 
social embeddedness, it is hard to identify common features in the design and 
implementation of the two models.  The natural conclusion is that, on the basis of 
such experience, cognitive representations yielding metastable agent behaviour and 
social embeddedness of agents drive processes yielding leptokurtic distributions with 
clustered episodes of volatility. 

It would be wrong to expect such social simulation models to replicate observed 
time series from their target systems.  What is being sought in these model 
specifications is a shared statistical signature in the sense that the time series of both 
model and target systems are marked by unpredictable clustered volatility and 
therefore leptokurtosis.  If volatility is unpredictable in both systems, we can hardly 
expect to be able to engineer the model system to replicate the time pattern of 
volatility of the target system since, to do so, would render the volatility of the target 
system predictable! 

It is nonetheless possible to validate the goodness of the representation of the 
target system by the model system.  The validation must be more direct and 
expressive than statistical validation techniques.  The basis of the validation technique 
is the implementation of agents to represent specific observable social entities.  Such 
entities could be individual persons or collections of persons as constituent 
components (departments, sections, or the like) of organisations, whole organisations, 
government agencies or any other recognisable entity.  Validation must be undertaken 
in collaboration with (or actually by) domain experts who know the behaviour of the 
target entities and the they interact with other social entities.  The key question here is 
whether such behaviour is plausible to the domain experts who may themselves  be 
the target entities or members of them.  In this case, the domain experts are 
participating stakeholders. 

Because every model is sensitive to the values of some parameters, an essential 
element of model validation is that either the model behaviour is not sensitive to 
parameter values without unobservable target statistics or the model endogenously 
drives key values into the range that supports the replication of the behaviour of the 
target system. 

4.2 An example system 
In addition to the finding reported above that sales volumes and values by brand 

have the indicated statistical signature, Moss [18] has reported that market shares by 
retail outlet are power law distributed when the markets are competitive.  The data for 
three branches of the retail trades is reproduced in Figure 4.  The suggestion that 
market shares might not be found for the less competitive trades is due to the 
deviation of the market shares from the power law distribution for multiple UK 
grocers but not (or at least much less markedly) for all grocers.  In light of this data, 
we would expect a model of a competitive market with intermediaries to yield power 
law distributed market shares. 
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Figure 2: Market share distribution of UK retail outlets [19] 

This proposition is tested with a model of a market was implemented in which 
there are adaptive agents representing customers and adaptive agents representing 
intermediaries.  There are also product sources that are not given any representation of 
cognition.  The social network in this model is represented by a grid with periodic 
boundaries in which agents can “see” a limited number of cells in each of the four 
cardinal directions. 

Cognitive agents in the model buy and/or sell items represented by the values of 
digits in an ordered list – a digit string.  The values of the digits in the string can be to 
any arbitrary base.  At each trading cycle, an digit string generator produces a digit 
string.  The length of the string is constant over each simulation run.   

There is a user-determined number of product sources distributed at random on 
the grid.  Each source holds the current values of digits at specified positions in the 
digit string.  These values change as the system digit string changes. 

The intermediaries acquire the values of digits from sources.  These values can 
be acquired only as packets of all items held by a source.  However, the intermediaries 
can sell items individually or in any combinations available to them, selling on to 
other agents only those items the other agents demand, Moreover, intermediaries can 
combine the items acquired from several sources.  There is a flow of intermediaries 
chosen at random from the [1, B] interval where B is the maximum number of 
intermediaries, set by the model operator, that can enter the market at each trading 
cycle.  Each intermediary begins builds asset reserves from profits and leaves the 
market when its asset reserves are exhausted.   

Each intermediary is initially allocated to an empty cell but can choose to move 
to some other cell if it is unoccupied and no other agent is seeking to move at the 
same time to the same cell.  The motivation to change cells is the knowledge that 
there is a profitable intermediary in the neighbourhood of the destination cell. 

Customers either acquire packets of items from sources in the same way as do 
the intermediaries or they buy just the items they want from the intermediaries.  The 
customer agents each inhabit a cell during the whole of the simulation run.  Although 
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the number of customer agents is determined at the start of each run by the model 
operator, their locations are determined at random. 

At the start of each simulation run, customer agents are allocated demands for 
the values of digits at specified positions in the system digit string.  The number of 
items demanded is determined at random in an interval set by the model operator at 
the start of the simulation run.  Intermediaries demand only items for which they have 
previously received enquiries from customers or other intermediaries. 

Intermediaries and customers are synchronous, parallel agents.  To enable them 
to communicate with one another, a series of communication cycles is nested within 
each trading cycle.   

In all of the simulation runs, the system digit string contained 40 digits; there 
were 15 sources and 100 customers. Each customer could demand up to 12 items and 
each source could hold up to 15 items.  The maximum number of broker agents that 
could enter the market in any trading cycle was 15.   Agents could identify the 
existence of sources or other agents within eight cells of their own position in the 
cardinal directions (up, down, right and left).  The only parameter setting that was 
changed for the different simulation runs was the size of the grid.  Three grid sizes 
were used: 50×50 (2500 cells), 30×30 (900 cells) and 25×25 (625 cells).  A larger grid 
size implies a lower density of agents.   

Experimentation confirmed that agent density is a critical factor in the viability 
of agent trading, that a high proportion of demands are satisfied only when virtually 
all trading is intermediated and market shares are leptokurtic.  

A natural measure of the effectiveness of markets is the proportion of total 
customer demands that are satisfied through transactions.  The time series of these 
proportions for three scales of grids are shown in Figure 3.  The population density of 
customers and sources increases from panel (a) down to panel (c) with the 
corresponding proportion of satisfied demands rising from 3.2 to 14.6 to well over 90 
per cent. 

Demand satisfaction in all of the modelled markets was a result of intermediated 
transactions.  In Figure 3, the lower line in each case represents acquisitions of items 
by customers directly from sources. Evidently, in all cases direct acquisition from 
sources was negligible. 

The statistical signature identified for real intermediated markets is replicated by 
the simulation model.  Figure 4 shows that the power law holds for cumulative sales 
volume against the rank of the broker (from lowest to highest sales) at the 50th  trading 
cycle of the simulation of the 625-cell market. Although the power law distribution 
prevailed consistently during all trading cycles,  the parameters of that distribution 
were changing over time.  The frequency distribution in Figure 5 demonstrates that 
leptokurtosis of each intermediary’s sales volume changes mirrors that of brand data 
as reported in above.    
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c) 25×25 grid (625 cells)  

Figure 3: Sales volumes and demands at different agent densities 
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Figure 5: Frequency distribution of simulated 
 sales volume changes – actual and normal 

5 Adaptive agent models and the process of policy analysis 
The model reported above has been validated to the extent that its statistical 

signature shares leptokurtosis, clustered episodes of volatility and power law 
distributed market shares with high frequency data captured from supermarket and 
other retail sales outlets.  This result coheres with the longstanding results on high 
frequency price and volume data from organised financial markets.  The differences in 
the uses to which items traded in these markets are put suggests that the common 
factor among these markets considered as data generating mechanisms is that they are 
competitive and transactions take place through intermediaries – brokers, 
supermarkets, newsagents, etc.  The need for competitiveness is consistent with the 
implication from the simulation experiments that some critical density of agents is 
required for exchange to be conducted efficiently. 

While this result supports a general presumption about the requirements for 
efficient trading in intermediated markets, it would be rash to build any policy 
prescriptions thereupon.  And one implication of the validation process reported here 
is that the models cannot in principle be used for purposes of the prediction of events 
defined by the time of their occurrence and their magnitude – including the prediction 
of specific outcomes from any policy actions.  Indeed, if SOC models support 
accurate descriptions of social systems as data generating mechanisms, then the sort 
of prediction sought by physical scientists are in principle impossible to achieve in 
those social systems.  Consequently, the use of adaptive agent models where the 
agents are metastable and their behaviour is influenced by the behaviour of other 
agents is strictly incompatible with the positivist approaches that justify current social 
theory. 

In general terms, the approach of positivist social scientists is to start from a 
social theory, derive a specific model from that theory (usually a regression model) 
and then to apply that model to the data.  The approach taken in this paper has been to 
identify the statistical signature of the data and then to consider alternative means of 
capturing that data.  The advantage of the adaptive agent models is that they can (and 
the TVP models cannot) be used to describe components of the data generating 
mechanism in arbitrary detail.  Consequently, these models can be treated as tools for 
describing the data generating mechanism.  The validation of these models takes the 
form of assessing the accuracy of the descriptions they entail. 

The result of this process is a model that captures the leptokurtosis and clustered 
volatility of the relevant empirical data and captures the behaviour and interactions of 
the relevant social actors.  This leave two questions: (i) what does it mean to 
“capture” individual behaviour and interactions? and (ii) how can the models 
validated in this way be used for policy analysis? 



Moss: Policy Analysis from First Principles  Page 14 

 14

Policy analysis by its nature targets existing social systems.  Consequently, 
there must be stakeholders who are sources of expert information concerning the 
particular social domains of concern to the policy analysts.  Stakeholders and 
independent domain experts can provide descriptions of  the goals and actions of the 
relevant actors as well as the patterns and modes of interaction among them.  They 
can also evaluate the plausibility of the models designed to incorporate those 
descriptions in the software code that constitutes each agent.  A good agent based 
model for these purposes will provide information about the agents’ goals and 
behaviour in a form that will enable stakeholders and independent domain experts to 
evaluate that behaviour as descriptions of actual social entities.  The “capture” of 
individual behaviour and interaction is the design of agents and interaction 
mechanisms that define software systems (models) that generate system data with the 
appropriate statistical signatures and produce data about the agents and mechanisms 
that are validated as accurate or plausible by domain experts. 

Stakeholder participation entails not only validation by domain experts but also 
a more organic process of development of the models in which the stakeholders both 
explicate and refine their understanding of the target systems and use the models to 
investigate alternative policy or other strategic options.  In the latter case, the models 
are being used in the same sense as flight simulators to develop responses and abilities 
to identify the emergence of critical events and a relatively early stage.  There is of 
course an important difference from flight simulators.  Flight simulators are based on 
systems that are well understood and based on clear principals of good physical 
science and engineering practice that support clear predictions of the outcomes of 
actions affecting the system. We have seen that systems well described by SOC 
models are not well understood in this sense.  Consequently, stakeholder participation 
in the modelling process requires that be models are based on good science where that 
is useful but that stakeholder perceptions take precedence in model design over any 
conceptual frameworks or system representations developed by independent (e.g. 
academic) observers. 

An important prospect here, currently being explored in the EU funded project 
on Freshwater Integrated Resource Management with Agents (FIRMA) is the 
development of models by different stakeholders for use in, as one example, 
negotiation regarding measures for flood safety, water quality, environmental 
preservation and development, navigation and economic exploitation of the Limberg 
basin of the River Meuse in the Netherlands.  The stakeholders include a ministry of 
central government, the provincial government of Limberg, NGOs concerned with 
environmental issues, farmers, community groups, commercial companies and an 
organisation established to coordinate these various, conflicting interests.  The process 
of participatory agent based social simulation modelling is used to identify conflicts in 
goals and in perceptions of existing conditions and the consequences of alternative 
courses of action.  It is intended to graft segments of models developed with one set of 
stakeholders on models representing the understanding of other stakeholders in order 
to clarify differences and to provide each stakeholder with a greater understanding of 
the interests and concerns of the other stakeholders. 

This sort of process is very different from conventional investigation in the 
social sciences.  Instead of developing a particular model based on some more general 
construct (theory), the models are devised on the basis of observation and developed 
by means of a process of empirical validation.  Particularly for models incorporating 
SOC, no hypothesis testing procedures from classical statistics are appropriate and no 
predictions of particular events are supported.  It may be that model development with 
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stakeholder participation will lead to some more general propositions that can inform 
social or physical or biological theory.  However, the usefulness of agent based social 
simulation models developed with stakeholder participation is that they support the 
development of a social process of policy and strategic analysis when forecasting and 
prediction is infeasible with respect to the relevant natural and social systems. 
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