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Abstract
A technique for modelling economic agents with bounded and procedural rationality is

presented. In this technique an agent has a population of mental models which evolve. This

evolution is its learning process. This is embedded within an agent architecture which then exhibits

several qualitative characteristics relevant to modelling human-like agents.

Two example models using this technique are presented. The first is of agents attempting to

learn their own utility function in the presence of structural change. The second is an extension of

Brian Arthur’s ‘El Farol Bar’ model where evolutionary learning and communication is added.

1 Introduction
There are many possible ways of modelling economic agents. These traditionally fall

into one of two camps, dating from Simon’s distinction between substantive and procedural
rationality: this is often characterised as those with bounded rationality and those with no such
bounds (although this is not strictly correct [24]). Although the latter type is more analytically
tractable we are interested in the former type.

The purpose of this paper is to report a particular approach to simulating economic
agents with procedural and bounded rational agents such that their behaviour matches some of
the broad qualitative characteristics of people. In particular it aims to capture a
context-dependent, resource-bounded, open-ended, satisficing cognition such as might be
feasible in a real agent1. The approach taken is to introduce these characteristics using
evolutionary techniques.

By using an approach to modelling learning that is close to that used in genetic
programming (GP) [17], we open up a new range of possibilities in the credible modelling of
such agents. Here an agent in the simulation has a population of candidate beliefs (or models)
of its environment which evolve. This evolution is its learning mechanism. As well as differing
from traditional economic models of agency, this also contrasts with agent modelling
approaches that use “crisp” logic-like beliefs, and those approaches that only involve some
inductive learning. In particular multiple and frequently inconsistent beliefs are held as a
resource for future model development. In this way I simultaneously embrace Simon’s
emphasis on the importance of the learning process and reject the sequential symbol
processing picture of cognition he adopted.

1. Thus I have similar aims to [14].



After describing the basic model, I will then describe two examples that use these
techniques: the first is of agents attempting to learn the form of a function in the presence of
structural change and the second is an extension of a model of Brian Arthur’s (the ‘El Farol
Bar’ model) where evolutionary learning and communication has been added.

2 Modelling Boundedly Rational Economic Agents
If you seek to model real economic agents then, unless you make some very sweeping

assumptions, the entities in your software model will also need the broad characteristics of the
real agents. This is in contrast to main-stream economics where, by and large, theagency
nature of the agents is ignored, in favour of trying to capture their behaviouren masse.

The purpose of an agent in such a model is also different from agents that are designed
with a particular purpose in mind or for exploration of the most effective and flexible
algorithm for a set of problems. In such modelling one seeks for as much veracity as is possible
given the usual limitations of time, cost and technique and one does not necessarily look to
design them to be efficient, general, or consistent in their beliefs.

In particular we are interested in agents who:

• do not have perfect information about their environment, in general they will only
acquire information through interaction with the dynamically changing environment;

• do not have a perfect model of their environment;

• have limited computational power, so they can’t work out all the logical consequences
of their knowledge;

• have other resource limitations (e.g. memory);

In addition to these bounds on their rationality, other characteristics are included,
namely:

• the mechanisms of learning dominate the mechanisms of deduction in determining
their action;

• they tend to learn in an incremental, path-dependent [3] (or “exploitative” [26]) way
rather than attempting a global search for the best possible model;

• even though they can’t perform inconsistent actions, they often entertain mutually
inconsistent models.

There are several possible ways of using evolving populations to simulate a community
of economic agents:

1. each member of the evolving population corresponds to one agent;
2. each agent could be modelled by a whole evolving population;
3. the whole population could be modelled by the whole evolving population but

without an individually intended agent <-> gene correspondence.
Method (1) has been used in several models of agents which evolve (e.g. [15, 29]), here

the genetic development has nothing to do with the nature of an agent’s cognitive processes but
helps determine its goals or strategies. Method (3) above is popular in economics (e.g. [2, 4]),
but unless such a model predicts pertinent properties of real populations of agents, it is a bit of
a fudge, and means that the observable behaviour and content of individual entities in the
model do not have a clear referent in what is being modelled. This makes it far less useful if
one wants to use such models to gain a detailed insight into the internal dynamics of
populations. Method (2) actually addresses the cognitive process as the agent corresponds to a



population of mental models. This has been done before in a limited way in [25], but here
agents have a fixed menu of possible models which do not develop.

3 The Agent Architecture
For the above (and other) reasons Scott Moss and I have developed a paradigm of

modelling the learning that such agents engage in, as itself a process of modelling by the
agents. In particular the importance of agents being able to induce the form as well as the
parameterisation of their models. For more on this framework see [21].

Although economic agents primarily develop though a process of incremental learning
they also use some deductive procedures. In real economic agents these processes may be
arbitrarily mixed as well as developed and abstracted over different layers of an organisation.
Here we will only look at a model which effectively separates out learning and deduction with
an essentially unitary agent structure.

The agent works within a givena priori body of knowledge (e.g. accounting rules). The
agent may well make deductions from this in a traditional way and apply these to the current
hypotheses. This body ofa priori knowledge may also determine the syntax of the models the
agent starts with, its principal goals, default actions, fitness functions and the operations to be
applied to its models. Typically much of this a prior knowledge can be made implicit in the
syntax of the agent’s models (which is the approach I have tended to take).

The agent here has many models of its environment. Once started the agent
incrementally develops and propagates these models in parallel according to a fitness function2

which is based on its memory of past data and effects of its actions, as well as the complexity
and specificity of its models. It then selects the best such model according to that measure.
From the best such model and its goals it attempts to determine its action using a search-based,
deductive or quasi-deductive mechanism. It then takes that action and notes the effects in the
environment for future use. The setup is illustrated below in figure 1.

The development of these models (i.e. the learning) is modelled by an evolutionary
process on this population of internal models. Important restrictions on such agents include the
fact that it may have only limited information gained as the result of inter-action with its
environment and that any action costs it so that it can not indulge in an extensive exploratory
search without this being weighed against the benefit being gained (this is especially true given
the course temporal graining of typical economic simulations).

2. A process of tournament selection that avoids having a single fitness function is also possible.



Figure 1: Basic Structure of a Simplified Economic Agent

4 Adapting the GP Paradigm
Among evolutionary techniques, the paradigm of GP [17] is particularly appropriate, due

to the structure of the genome3. In GP the genes are tree-structures, which conform to a
pre-defined syntax but otherwise can be of any shape or size. This makes them appropriate for
representing a very wide range of models including expressions in formal languages and
networks. These techniques, however, can not be blindly applied. For example, the efficiency
of the learning process is only a secondary concern when seeking to model economic agents by
their software cousins, but many of the other features of this approach for modelling learning
in an economic agentare appropriate, namely:

• the population of programs can represent a collection of multiple, competing models
of the world with which it is concerned;

• there is always at least one maximally fit individual model that can be used to react to
events and from which appropriate deductions can be made – so that agents can ‘flip’
between models as appropriate;

• the models are incrementally developed by the learning mechanism;

• the fitness measure can be tailored to include aspects such as cost and complexity as
well as the extent of the agreement with known data;

• the language of representation of the models can be very general and expressive.

In using the evolutionary paradigm in this sort of modelling we tend to:

• represent the agent by a whole evolving population - each gene corresponding to one
of its alternative models;

• populations of agents are thus modelled as populations of evolving populations (i.e.
populations of populations), with an intended agent to evolving population
correspondence (e.g. [24]);

• give the agents only small populations of models, representing limited memory;

• base the fitness function on either its error in modelling known past data or the utility
the agent would have gained in the past if it has used this model but also with other

3. GP researchers tend to call it a chromosome, presumably to indicate its complex nature.
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factors such as the size of model and its predictivity (precision and range of
applicability);

• restrict the variation operators so towards an exploitative learning process, for
example by restricting to such as generalisation, specialisation, averaging, combining
and mutating;

• and give them only a limited inferential ability to use its best model to choose its
action.

This paradigm needs to be integrated with an agent-based approach and adapted to relate
to credible models of economic agents. In particular the cross-over operator is somewhat
arbitrary when simulating the development of models in economic agents (although
undeniably efficient). Also, when applied to large populations this introduces a globality to the
search which is unrealistic.

The fundamental difference between these agents and, say, logic-based agents, is that the
updating of internal belief structures is done in a competitive evolutionary manner using a
continuously variable fitness measure rather than in a “crisp” consistency preserving manner.
This is appropriate in situations of great uncertainty caused by a rationality that is not able to
completely “cope” with its environment but is more restricted in its ability.

In the first example presented below (Section 5.2) we use a process of combining old
models together as branches from a new node and introducing randomly generated small new
models. This produces more realistic results, for example it allows for better fitting by
parameterisation. The second application (Section 5.3) uses a more traditional GP setup using
the cross-over operator, but with a low level of cross-over compared to propagation, applied to
very small populations and with the addition of some new random models each generation.

5 Applications
Two example models are presented which use the techniques described above. Both are

designed as investigations into possible processes between and within agents. The first
example, where an agent is trying to learn a function (its own utility function) where that
function may change (in form as well as parameterisation), is an attempt to capture the
characteristic ‘path-dependent’ learning noticed in humans. The second attempts to capture
some aspects of emergent sociality amongst co-evolving agents.

5.1 Implementation of the Models
These models were both realised in a language called SDML (Strictly Declarative

Modelling Language) - a programming language that has been specifically developed in-house
for this type of modelling. This is a declarative object-oriented language with features that aid
(and are optimized for) the modelling of social, organisational and economic agents. It is
particularly suited for these models because is provides facilities for the easy programming of
multi-layered object-orientated structures (so the programming of populations of genes within
a population of agents is easy) with several levels of time (in this case weeks and days). For
more details on this see [23] orhttp://www.cpm.mmu.ac.uk/sdml.

5.2 Example 1- utility learning agent facing structural change

5.2.1 General Description
A simple application of the above approach is that of an economic agent that seeks to

maximise its utility by dividing its spending of a fixed budget between two goods in each time



period. Unlike classical economic agents, this one does not know its utility function (even its
form) but tries to induce it from past experience. To do this it attempts to model its utility with
a function using the following nodes:+, -, *, % (division unless divisor is zero),max, min,
log, exp, average, ifle1thenelse (a three-argument function which takes the second value if
the first value is less than 1 and the third value thereafter, i.e. it is a graft of two functions at a
point determined by a third - a sort of functional cross-over.), and terminals: a selection of
random constants and variables representing the amounts bought of the two products.

The advantage in this model is that we can introduce a severe structural change in the
agent’s utility function and observe the result (imagine the agent has suddenly developed an
allergy to the combination of the two products concerned).

Initially, each agent is given a population of randomly generated models using the above
nodes and terminals to a given fixed depth.

Each subsequent time period it:
1. carries over its previous functional models;
2. produces some new ones by either combining the previous models with a new

operator or by growing a new random one;
3. it then evaluates all its current models according to the minimum error of past data

against what they would have predicted using past known data on amount it spent and
the utility it gained (considerations such as the depth of the model are also factors in
the fitness function);

4. it then selects the best models in terms of fitness for carrying over in the next period
5. it finds the fittest such model;
6. the action is determined by a limited binary search for the spending pattern that the

model predicts will return the best utility, the cost of action inference is thus
represented by the number of binary search refinements.;

7. finally it takes that action and observes its resulting utility.

5.2.2 Results
Limiting the depth of the models created to 10, We preformed 10 runs over 100 time

periods for each type of agent. The three types were characterised by the memory they were
given and the number of new models they created each time period: respectively 10, 20 and 30.
We call these 10-memory, 20-memory and 30-memory agents, they represent agents with
different bounds on their rationality. The results were then averaged over these 10 runs.

The first graph shows the (RMS) error of the agent’s best model of the utility function
compared with the actual function (figure 2). It shows a great improvement between the
10-memory agent’s and 20-memory agents, but only a marginal improvement between 20 and
30-memory agent’s, suggesting the existence of a sort of minimum capacity for this task.



Figure 2: Error in Agent’s Best Model for Different Memories, Averaged Over 10 Runs

When you look at the utilities achieved by the agents with different memories (figure 3),
you see that a memory capacity (above 10) does not significantly increase the average utility
over time, but itdoes dramatically effect the reliability of the utility it gains. If this were a firm
with the utility being its profits, this reliability would almost as important as its average profit
level.

Figure 3: Utility Ratio Achieved for Agents with Different Memories, Averaged over 10 Runs

The model does show traits found in the real world. For example, one phenomenon that
is observed is that agents sometimes get “locked” into inferior models for a considerable
length of time (as in [3]) - the model implies an inferior course of action, but this course of
action is such that the agent never receives disconformation of its model. Thus this remains its
best model in terms of the limited data it has, so it repeats that action. If, for example, some
consumers find a satisfactory brand at an early stage in the development of their tastes and then
they may never try any others - their (limited) experience will never disconfirm their model of
what would give them most satisfaction, even when they would like other brands better.
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To illustrate the sort of learning processes that can be modelled using this set-up, I
imposed a severe structural break on the environment half way through (date 50). The utility
function of the agent alternates between a traditional convex utility curve (theeasy curve) to a
concave one with two local maxima (thehard curve), see figure 4.

Figure 4: The Two Utility curves (product 2 = 100 - product 1)

I ran the set-up with agents of different memory capacities (5, 10, 20 and 30 models) and
maximum complexity of models (a depth of 5 and 10). I ran the simulation 10 times over 100
dates for each type of agent, averaging the results. I also performed these experiments with the
utility curve switching from thehard curve to theeasy and vice versa.

This is not the place to give the full results of this model but to give a flavour of some of
the results I show the utility gained by agents with a memory of 5 and 20 models respectively
where the utility curve they are learning swaps suddenly from the easy to the hard (figure 5)
and visa versa (figure 6). There are also corresponding graphs for the error in their best models
(figure 7 and figure 8, respectively). Note how the dynamics are not symmetrical; the first
utility curve it encounters conditions the agent for when this changes. The agents had
considerably more success (in terms of utility gained) going from easy to hard rather than vice
versa.

utility

Quantity bought of product 1

easy curve

hard curve



Figure 5: The utility of 20-model and 5-model agents going from easy to hard utility curves

Figure 6: The utility of 20-model and 5-model agents going from hard to easy utility curve
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Figure 7: The RMS Error of the best model of 20-model and 5-model agents going from easy
to hard utility functions

Figure 8: The RMS Error of the best model of 20-model and 5-model agents going from hard
to easy utility functions
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To give a flavour of the sort of models these agents develop, in run 1 of the 30-memory
agent batch the agent achieved the following model by date 75:

[average
[[divide

[[add
[[constant 1.117]
[amountBoughtOf 'product-2']]]

[average
[[amountBoughtOf 'product-2']
[constant 4.773]]]]]

[min
[[amountBoughtOf 'product-2']
[ifle1thenelse

[[average
[[amountBoughtOf 'product-2']
[constant 4.773]]]

[constant 1.044]
[add

[[constant 1.117]
[amountBoughtOf 'product-2']]]]]]]]].

The extent of the fit learnt by the agent is shown in figure 9.

Figure 9: Learnt vs. Actual Utility Functions, Run 1 of 30-memory Agents

The purpose of this simulation is not to be an efficient maximiser of utility, but to model
the learning of economic agents in a more credible way. It will only be vindicated (or
otherwise) when compared to real data about these processes.   This poses a problem: it is
difficult to test for processes as distinct from states – almost any learning algorithm will
eventually (given enough time and tuning) cluster around the optima. consequently testing via
measures of the centrality of the distribution is unlikely to be very revealing. However, in a
dynamic process the spread of behaviours around their average compared to time and
simulation size might well do this (for an example of this see Section 5.3.1 below).

However, the model does show traits found in the real world. I will highlight two.
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Firstly, one phenomenon that is observed is that agents sometimes get “locked” into
inferior models for a considerable length of time - the model implies an inferior course of
action, but this course of action is such that the agent never receives disconformation of its
model. Thus this remains its best model in terms of the limited data it has, so it repeats that
action. If, for example, some consumers find a satisfactory brand at an early stage in the
development of their tastes and then they never try any others - their (limited) experience will
never disconfirm their model of what would give them most satisfaction, even when they
would like other brands better.

Secondly, the biasing effect of prior learning is clearly shown when change occurs.
Agents achieved significantly higher utilities on the easy curve when they learnt this first.
Learning about the hard curve first biased their learning about the easy curve (figure 5 and
figure 6). This does capture some of the context-dependency that are observed with human
agents – past learning does significantly influence future performance. In particular that it is
easier to learn some things if you start with easy examples [11].

5.3 Example 2 - Communication, Learning and the El Farol Bar Problem

5.3.1 The El Farol Bar Model
In 1994, Brian Arthur introduced the ‘El Farol Bar’ problem as a paradigm of complex

economic systems. In this model a population of agents have to decide whether to go to the bar
each thursday night. All agents like to go to the bar unless it is too crowded (i.e. when more
that 60% of the agents go). So in order to optimise its own utility each agent has to try and
predict what everybody else will do. The problem is set up so that any model of the problem
that is shared by most of the agents is self-defeating. For if most agents predict that the bar will
not be too crowded then they will all go and itwill  be too crowded, andvice versa.

Brian Arthur modelled this by randomly giving each agent a fixed menu of potentially
suitable models to predict the number who will go given past data (e.g. the same as two weeks
ago, the average of the last 3 weeks, or 90 minus the number who went last time). Each week
each agent evaluates these models against the past data and chooses the one that was the best
predictor on this data and then uses this to predict the number who will go this time. It will go
if this prediction is less than 60 and not if it is more than 60.

As a result the number who go to the bar oscillates in an apparently random manner
around the critical 60% mark (like figure 13), but this is not due to any single pattern of
behaviour - different groups of agents swap their preferred model of the process all the time.
Although each agent is applying a different model at any one time chosen from a different
menu of models, with varying degrees of success, when viewed globally they seem pretty
indistinguishable, in that they all regularly swap their preferred model and join with different
sets of other agents in going or not. None takes up any particular strategy for any length of time
or adopts any identifiably characteristic role.

Viewed globally the agents in this modelappear to be acting stochastically and
homogeneously, despite the fact that the whole system is completely deterministic4 and each
agent is initialised with a different repetoire of models. Zambrano [31] has interpreted this by
saying that agents in this simulation are acting, en masse,as if they were using the mixed
strategy predicted by game theory as the Nash equilibrium (namelychoose a random number
between 0 and 100 and go if it is 60 or below). That this is not the case can be established by
looking at the variation in the agents behaviour as the simulation size increases – if they were

4. Deterministic once the agents have been ‘dealt’ their models and a random initial history generated.



acting collectively as if they were using such a mixed strategy the standard deviation of their
attendance would decrease markedly as a proportion of the total size as that size increased (the
SD would be , wheren was the simulation size). This is not the case, as the results gained
from runs of Arthur’s Model show. I re-ran the model 24 times over 500 dates for each of the
following sized populations: 10, 18, 31, 56, 100, 180, 310, 560, 1000, 1800, 3100, 5600,
10000, 18000, 31000 and 100000 (with different initial histories and model selections for
agents each time). In figure 10 we clearly see that the spread of levels of attendance is retained
at large populations, suggesting that some sort of globally coupled chaos is occurring and not
(predominately) a stochastic process. See [16] for the identification and exploration of such
systems.

Figure 10: Scaled Spread of Attendances against Population Size5

Also it is noticable that in this model,although the agent population is not significantly
biased in its predictions when averaged, the individual agent’s predictions were not converging
to the ‘truth’ because the trend in the spread of their prediction error’s did not reduce (as a
proportion of the population size) with larger populations (figure 11). Thus in an important
respect these agents werenot acting in aggregateas if they each had the essentially correct
model of their economy. Thus Arthur’s model goes beyond mainline economic models; we
shall see that if we further extend it with evolutionary learning and communication that other
such traits will emerge, such as heterogeneity.

5. The lines either side of the line showing SD of prediction error shows the spread over the 24 runs at each size.
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Figure 11: The Spread of the Agents Predictive Errors vs. Theory

5.3.2 Extending the El Farol Model
I extend Arthur’s model by adding learning using an adapted GP process and by

introducing communication with other agents before making their decision whether to go to
the El Farol Bar. Each of the agents’ models of the environment is composed of apair of
expressions: one to determine the action (whether to go or not) and a second one to determine
their communication with other agents. The action can be dependent upon both the content and
the source of communications received from other agents. Although the beliefs and goals of
other named agents are not explicitly represented by the agent, they emerge implicitly in the
effects of the their’ models.

The two parts of each model are expressions from a two-typed language specified (by the
programmer) at the start6. A simple but real example is shown in figure 12 below. Translated
this example means: that it will say that it will go to the El Farol Bar if the trend predicted over
observed number going over the last two weeks is greater than 5/3 (the total population was 5
in this example); but it will onlyactually go if it said it would go or if barGoer-3 said it will go.

Figure 12: A simple example model

The agent gains utility by going to the El Farol Bar when it is not too crowded. Thus
each agent is competitively developing its models of what the other agents are going to do.

6. Strictly this is a Strongly Typed GP [20].
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5.3.3 Results and A Case Study From the Model
In the output of the model the attendance at the bar fluctuates unevenly about the critical

number of patrons (see the example plot in figure 13).

Figure 13: Number of people going to El Farol’s each week in a typical run

The average fitness of the agents’ models fluctuates wildly at the beginning but as the
simulation progresses they settle down somewhat but not down to zero. The deviance between
different models of the same agent reduces only slightly (figure 14).

Figure 14: The change in variance (in standard deviations) of the Agents’ population of mod-
els over time in (another) typical run

The graph of the utilities gained shows that different agents predominate at different
times during the simulation with no one agent permanently dominating the others (figure 15).
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Figure 15: (smoothed) utility gained by agents over time

What is perhaps more revealing is the detail of what is going on, so I will exhibit here a
case study of the agents at the end of a typical simulation.

Here I have chosen a 5-agent simulation at date 100. In this simulation the agents judge
their internal models by the utility they would have achieved over the previous 5 time periods.
Each agent had 40 mental models of average depth of 5 generated from the language of nodes
and terminal specified in figure 16.

Figure 16: Possible nodes and terminals of the tree-structured genes

The formal languages indicated in figure 16 allow for a great variety of possible models,
including arithmetic projections, stochastic models, models based on an agents own past
actions, or the actions of other agents, logical expressions and simple trend projections.

The utility that agents get is 0.4 if they go when it is too crowded, 0.5 if they stay at
home and 0.6 if they go when it is not too crowded (where too crowded means greater than
60% of the total population).

The best (and hence active) genes of each agent are summarised in figure 17. I have
simplified each so as to indicate its immediatelogical effect only. The actual genes contain
much logically redundant material which may put in an appearance in later populations due to
the activity of cross-over in producing later models. Also it must be remembered that other
alternative models may well be selected in subsequent weeks, so that the behaviour of each
agent may ‘flip’ between different modes (represented by different models) depending on the
context of the other agent’s recent behaviour.
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Figure 17: Simplified talk and action genes for the five agents at date 100

The effect of the genes is tricky to analyse even in its simplified form. For example
agent-1 will tell its friends it will go to El Farol’s if the average attendance over a previous
number of time periods (equal to the number who went last time) is greater than the predicted
number indicated by the trend estimated over the same number of time periods but evaluated
as from the previous week! However its rule for whether it goes is simpler - it goes if it went
last week7.

You can see that for only one agent what it says indicates what it does in a positive way
(agent 4) and one which will do the exactly the opposite of what it says (agent 2). It may seem
that agents 1 and 3 are both static but this is not so because figure 17 only shows the fittest
genes for each agent at the moment in terms of the utility they would have gained in previous
weeks. During the next week another gene may be selected as the best.

The interactions are summarised in figure 18, which shows the five agents as numbered
circles. It has simple arrows to indicate a positive influence (i.e. if agent-2 says she is going
this makes it more likely that agent-4 would go) and crossed arrows for negative influences
(e.g. if agent-2 says she will go this makes itless likely she will go). The circles with an “R”
represent a random input.

Figure 18: Talk to action causation

It is not obvious from the above, but agent-2 has developed its action gene so as to
gradually increase the number of ‘NOT’s. By date 100 it had accumulated 9 such ‘NOT’s (so

7. This is not a trivial action rule, since whether it went last week might have been determined by adifferent
internal model.

talk-1: averageOverLast(numWentLast) > previous(trendOverLast(numWentLast))
action-1: wentLastTime

talk-2: trendOverLast(numWentLast) - 2 * numWentLag(2) > numWentLag(numWentLast)
action-2: NOT Isaid

talk-3: randomNumberUpTo(8) < 8/3
action-3: True

talk-4: averageOverLast(4) / averageOverLast(5) < numWentLag(15)
action-4: (Isaid AND randomDecision) OR (saidBy agent-2)

talk-5: trandOverLast(20) < numWentLag(2) - averageOverLast(numWentLast)
action-5: randomDecision OR (saidBy agent-4)
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that it actually readNOT [NOT [... NOT [Isaid]...]]). In this way it appears that it has been
able to ‘fool’ agent-4 by sometimes lying and sometimes not.

5.3.4 The emergence of heterogeneity
In contrast to Arthur’s model, this model shows the clear development of different

roles8.
By the end of the run described above agent-3 and agent-1 had developed a stand-alone

repetoire of strategies which largely ignored what other agents said. Agent-3 had settled on
what is called a mixed strategy in game theory, namely that it would go about two-thirds of the
time in a randomly determined way, while agent-1 relied on largely deterministic forecasting
strategies.

The other three agents had developed what might be called social strategies. Agent-2
seemed to have come to rely on ‘tricking’ agent-4 into going when it was not, which explains
the gradual accumulation of ‘NOT’s in the example gene described above. Agent-4 has come
to rely (at least somewhat) on what agent-2 says and likewise agent-5 uses what agent-4 says
(although both mix this with other methods including a degree of randomness).

Thus although all agents were indistinguishable at the start of the run in terms of their
resources and computational structure, they evolved not only different models but also very
distinct strategies and roles.

One conclusion to be drawn from this model is that, if only global communication is
allowed, and internal models have limited expressiveness, then it might be preventing the
emergence of heterogeneity. Or, to put it another way, endowing agents with the ability to
make real social distinctions and (implicit or explicit) models of each other enables socially
situated behaviour to emerge. This phenomena does not emerge in Arthur’s original model..

Such a conclusion marries well with other models which enable local and specific
communication between its agents (e.g. [1]) and goes some way to addressing the criticisms in
[13]. For a more philosophical analysis of the nature of the social processes taking place in
this model see [10].

6 Conclusion
An evolutionary model of cognition has been presented which has some of the

qualitative characteristics relevant to economic agents, namely:

• satisficing rather than optimising behaviour;

• flexible learning – it can cope with structural change9, this is facilitated by the
parallelism so that it can ‘flip’ between models;

• path-dependency – the agent’s population of models forms the context for subsequent
learning;

• serendipidous – the learning process has the power to come up with models not
envisioned by the programmer;

• boundedly rational – both the number of models and the inference from them can be
controlled;

8. Some of what I describe is not evident from the short description above because the strategy of an agent is
determined by its whole collection of mental models.

9. For a good example of this see [24].



• realisable – the implicit parallelism of the evolutionary model makes it a credibly fast
model;

• open-ended – the structure of the genome allows for theoretically unlimited
expressiveness of the agent’s models.

It does this using a class of models (evolutionary models) that is being increasingly
studied, formalised and understood. Also it allows the programmer to introduce the following
aspects of behaviour in a natural way:

• the impact of a priori knowledge and the bias of the internal language of
representation – since this is explicitly determined by the programmer;

• the interaction of learning and inference;

• the different types of model evaluation – there are many possible ways of deciding a
model’s fitness, including the accuracy of the models, the utility the models would
have gained, and various aspects of cost and complexity;

• different mixes of genetic operators [9].

At the moment such models only indicate their possible use as relevant models of
cognition in economic agents, but I hope that the examples presented here persuade you of
their potential expressive power.
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