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ABSTRACT 
Both formal analysis in the sense of proving theorems about 
the properties of agent and mechanism design and the use of 
formalisms as representation languages have been central 
elements in the foundation of multi agent systems research.  
The choice and frequently the development of formalisms for 
the specification and description of multi agent systems has 
been guided by intuition regarding the importance and nature 
of such concepts as belief and intention. An alternative to this 
foundational approach is a representational approach 
developed by modellers of observed social systems who 
design agents and mechanisms to capture observed behaviour 
and modes of social interaction.  While the foundational 
approach has had an important influence on the research 
agenda of agent based social simulation, the representational 
techniques of agent based social simulation modellers have 
had no discernable influence on formalistic approaches to 
software engineering for multi agent systems.  The purpose of 
this paper is to define a means of making available the lessons 
of real social systems to adopting formal approaches to MAS 
design.  The means employed turns on the development of a 
canonical model capturing features of an observed social 
system in a way that relates explicitly to concepts such as 
belief, desire, intention, commitment, norms, obligation and 
responsibility.  As a result, it is possible to define these 
concepts with minimal ambiguity either as an alternative to 
the use of formalisms as representation languages or as a 
bridge to such formalisms. 

Categories and Subject Descriptors 
I.2.11 [Distributed Artificial Intelligence]: coherehnce and 
coordination; multi agent systems 

General Terms 
Management, Design, Theory, Verification. 

Keywords 
Validation, Agent Based Social Simulation. 

1. INTRODUCTION 
The standard approach to agent and mechanism design for 
multi agent systems is heavily influenced by issues of 
verification or quasi-verification and hardly at all by 
validation. 

By quasi-verification I mean the common practice of 
describing design in terms of a mathematical or logical 
formalism when the design itself is too rich to allow for 
formal proofs of its properties.  This is the consequence of a 
tension between validation issues – the intention to 
demonstrate that software with the stated design 

characteristics will do something useful – and verification 
issues.  The virtue of quasi-verification is that the design 
aspects are stated unambiguously even if there are no proofs 
of the properties of the design.  The downside is that, by 
restricting the design features so that they can be expressed in 
relation to a particular formalism, the scalability and scope of 
software systems with the specified design characteristics may 
be severely restricted. 

Wooldridge [27], for example, argues with regard to the use 
of formal logics for agent design that “giving anything like a 
complete account of the relationships between an agent’s 
mental states is extremely difficult….  In attempting to 
develop formal theories of such notions [as beliefs, desires 
and the like], we are forced to rely very much on our 
intuitions about them.  As a consequence, such theories are 
hard to validate (or invalidate) in the way that good scientific 
theories should be.  Fortunately , we have powerful tools 
available to help in our investigation.  Mathematical logic 
allows us to represent our theories in a transparent, readable 
form….”   He goes on to state that formal proofs generate 
predictions of the theory so that we can “see whether or not 
their consequences make sense.”  However, in the final 
chapter of the book from which the above quotations are 
taken, Wooldridge summarises the difficulties of verification 
either axiomatically or semantically.  In the particular case of 
BDI models, “there is no clear relation between the BDI logic 
and the concrete computational models used to implement 
agents [and] it is not clear how such a model could be 
derived.” 

Because no formalism has any sort of objective precedence 
over any other, the choice of formalism for purposes of 
verification is chosen on the basis of a pre-theoretic belief that 
a formalism with particular properties is appropriate to the 
type of program to be verified.  The development of BDI 
logics from Bratman’s [4] argument that beliefs, desires and 
intentions should be formally consistent to the inclusion of 
commitment by Cohen and Levesque [6] to the Rao-Georgeff 
[23] specification of the BDI architecture all rely on formal 
specifications of intuitive claims about the nature of goals and 
planning by humans.  Further issues such as norms, trust, 
interests, commitment, obligation and responsibility are 
frequently expressed in terms of BDI and similar (e.g., 
deontic) formalisms. [9] 

The verification problem is by no means restricted to the use 
of BDI or other formal logics.  For example, Jennings, et al 
[11], in reviewing the literature on automated negotiation by 
agents note that formal properties of game theory are proved 
only for highly specialised strategies and require costless or 
no computation to find solutions acceptable to all negotiators 
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(Nash equilibria).  Heuristic approaches are, of course, just 
that – they have no formal basis. Argument based approaches 
using formal logics to resolve contradictory statements suffer 
the same limitations as those identified by Wooldridge. 

It would, of course, be completely misleading to suggest that 
verification never happens.  In the planning literature, for 
example, Pollack’s [22] classic 1990 paper on plans as mental 
models uses Allen’s [1] interval based temporal logic only as 
a representation language. But just a few years later, we get 
to Grosz’s and Kraus’ papers on SharedPlans, e.g. [10], report 
proofs of relevant theorems relating belief to capability.  Even 
these impressive results and demonstrations of progress are 
applied to relatively simple problems.  In the cited Grosz-
Kraus paper, for example, the test problem concerns two 
individuals planning a dinner party with 14 tasks.  In seeking 
to address larger scale problems with many more agents and 
tasks – 60 agents and 50 tasks – these authors [24] turned to 
simulation modelling with no apparent formalism as 
representation language. 

In general, full verification is applicable only to multi agent 
systems that are highly restricted in terms of the complexity of 
their agent and mechanism designs.  Quasi-verification – the 
use of formalisms as representation or specification languages 
–  is naturally less restrictive than axiomatic or semantic 
verification but clearly has not supported implementations of 
large scale multi agent systems.  Simulation models are in 
effect larger (though by no means very large) implementations 
of multi agent systems but these lack the clarity and precision 
of the verified and quasi-verified systems. 

An important question facing the agents research community 
turns on the respective roles of formal and simulation 
analysis.  There is already a substantial gulf between the tidy 
multi agent systems amenable to verification and quasi-
verification on the one hand and, on the other, the messy multi 
agent systems used for simulation-based analysis of agent and 
mechanism design.  

The purpose of this paper is to investigate whether and how 
simulation analysis can complement the use of formalisms by 
providing a clear target and replacing intuition with a more 
objective and perhaps effective means of formulating agent 
and mechanism designs than intuition as described by 
Wooldridge. 

2. OBSERVATION AND INTUITION 
The intuition driving formalist specification of agent theory 
must, at some level, be guided by observation and experience.  
To rely on an entirely pretheoretic intuition to determine the 
concerns of the theory – beliefs, desires, intensions, trust, and 
so on – but, at the same time, to insist on as much rigour as 
possible in the agent design is curious.  Presumably, the 
reason for relying on these and other aspects of mental states 
in designing agents is that they support an analogy with 
successful human behaviour.  Indeed, examples from the 
MAS planning literature [10, 22] clearly take human 
capabilities as appropriate analogies for essential agent 
capabilities.  If individual human characteristics are thought to 
be a good guide to agent design, then the characteristics and 
adaptability of social interaction should be thought to be an 
effective guide to mechanism design.  And, rather than to rely 
on introspection and armchair theorising, agent and 
mechanism design might better be based on sound observation 
of human behaviour and social interaction in environments 
that are known to capture important aspects of agents’ 
societies. 

The description of social observation by means of multi agent 
systems is one of the roles of agent based social simulation 
(ABSS).  ABSS encompasses two separate approaches: the 
foundational and the representational.  Foundational ABSS is 
exemplified by the work of Castelfranchi and Conte, e.g. [7] 
who employ quasi-verification to explore possible foundations 
for a new social theory that would inform both agent and 
mechanism design and the analysis of real social systems.  
Representational ABSS is the use of multi agent systems to 
describe observed social systems or aspects thereof and to 
capture the sometimes conflicting perceptions of the social 
system by stakeholders and other domain experts.  While 
foundational ABSS is a well established and respected area of 
work within the computer science end of the MAS research 
community, representational ABSS has had less influence.  In 
a sense, this paper is a manifesto for the greater recognition of 
the role of representational ABSS in software design since 
representational ABSS can inform, systematise and strengthen 
the intuition that is anyway required to formulate the theories 
expressed as logical or mathematical (e.g., game theoretic) 
formalisms in agent and mechanism design. 

The process by means of which representational ABSS can be 
used to inform agent and mechanism design will have to be 
based on well validated social models.  Clearly, the more 
ways in which such models are validated, the more confidence 
we can have that they are accurate representations of the 
individual behaviour and social processes that will inform our 
intuition as software designers.  One form of validation can 
involve the comparison of statistical signatures of the software 
system and the target social system.  Some early work on the 
use of statistical signatures to distinguish between the 
goodness of representation of different models was due to 
economists at the Santa Fe Institute who developed an 
artificial stock market to identify key features of actual 
behaviour that lead to observed clustering of price and volume 
volatility.  A recent example of this work is [14].  A further 
development in the validation of representative ABSS systems 
is being explored in relation to policy analysis for the 
consequences of climate change and sustainable resource 
(particularly water) management.  By involving stakeholders 
actively in the modelling process, the agent designs are 
validated as good descriptions of specific target social entities 
– individuals or (say) organisations.  Similarly, the 
mechanism design is validated on the basis of its accuracy as 
description of social interactions among stakeholders. 

From the point of view of the software engineer, 
representational social simulation models of an individual 
social process can certainly inform intuition or suggest new 
approaches to agent and mechanism design.  However, it is 
difficult in any detailed case to distinguish between properties 
of the system that have some special function in making that 
particular system effective and robust and properties that 
would support effective action and interaction more generally.  
Indeed, it might be useful to identify what it is that makes 
some special arrangements useful and, to inform the 
development of truly adaptive systems, how those special 
arrangements emerged in their particular social context. 

To this end, it has been found useful in the social simulation 
literature to devise “canonical models” that capture relatively 
abstract representations of features of real social systems.  
Sometimes the models are used to identify phenomena that 
have not been captured in more verbal and intuitive analyses 
of the target social system [8].  In other cases, the models are 
used to identify subsumption relationships among apparently 
quite different models.[19] Both of these roles of canonical 
models usefully inform intuition in the design of agents, their 
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modes of interaction and the norms that constrain both.  An 
important feature of both uses of canonical models is that they 
support the analysis of the conditions in which the social 
simulation models are applicable.  By analogy, the use of such 
canonical models will support the analysis of the conditions in 
which different agent and mechanism designs are 
appropriately incorporated into multi agent software systems. 

3. Canonical models: an example 
Negotiation is a classic and difficult problem in multi agent 
system research.  Some negotiations can take place via 
mediators [26] but others are both multilateral and direct.  In 
fact, most negotiations are direct with only auctions and some 
unique and difficult negotiations taking place through 
intermediaries.  In the case of the unique and difficult 
negotiations – the Middle Eastern and Northern Ireland peace 
processes, for example – the essential infrastructure for the 
mediation is difficult to establish.  In cases where difficult 
negotiations are undertaken repeatedly, as in labour contract 
negotiations between stable unions and managements, there is 
in many countries some recourse available to independent 
mediators with a corresponding infrastructure to provide the 
mediation.  But such mediation infrastructure – apart from 
auctions – is by no means the norm.  For this reason, the 
example to be developed here will concern only direct 
negotiation. 

In some negotiating environments, the actions eventually 
taken by one party will have no effect on the state of the 
environment or therefore on the actions or abilities to satisfy 
the goals of the other parties to the negotiation.  Datamining 
by agents is an obvious example since the acquisition of 
information by one agent does not ipso facto reduce the ability 
of other agents to acquire the same information.  It is less 
clear that, for example, supply chain negotiations share this 
property.  The sale of inputs to the manufacturer by one 
supplier will surely influence the ability of another agent to 
supply the same inputs.  Changes in the production targets of 
one agent in the supply chain will also influence the goals and 
scope for action of other agents both upstream and 
downstream.  The example developed here concerns 
negotiations in which actions and goals cannot be 
independent. 

The environment for this model is based on a detailed 
qualitative and hydrological study of the stakeholders 
concerned with water supply, use and management in the 
Limberg basin of the River Meuse.  Considered as a social 
feature, water is pure conflict.  It is used for a wide variety of 
purposes and, without incurring substantial costs and 
maintaining substantial infrastructures, water cannot be 
reused.  The water management issues in the Limberg basin 
relate not only to the usual water quality and quantity of 
supply issues, but also to river navigation, flood control, 
environmental protection, ground water extraction for 
agricultural use and other issues.  Flood control can take 
several forms: dykes to contain the water (until it gets further 
downstream) and the use of floodplains.  Floodplains prevent, 
or require the evacuation from, housing and they also support 
a different type of flora and fauna.  Agriculture can exist in 
the floodplains but bear the risk of occasional losses from 
flooding.  One scheme for the river is to deepen it to support a 
larger volume of shipping.  The river is deepened by 
extracting gravel from the riverbed and the sale of the gravel 
reimburses the gravel extractors.  The stakeholders are several 
ministries of the national government of the Netherlands, the 
Limberg provincial government, citizens’ groups, farmers’ 

groups, NGOs including a range of “greens”, the gravel 
extraction companies and navigation companies. 

The goals of these stakeholders are not fixed and constant.  
The private gravel extraction and navigation companies are of 
course interested in profits and returns on their investments.  
The provincial government favours the establishment of 
floodplains over dykes because of concerns that a dyke failure 
is calamitous in terms of loss of life and property while 
floodplains involve much less risk.  On the other hand, the 
capital cost of dykes is very much less than the cost of 
establishing floodplains and does not involve the relocation of 
existing communities.  The provincial government favours 
floodplains and the central government favours dykes.  
However, after each of two major floods in the 1990s, the 
importance of flood control was heightened for all 
stakeholders though the concerns became less intense with the 
passage of time.  At least in the Limberg region, there is 
evidence from stakeholders that the relative importance of 
different goals is determined for each stakeholder to some 
extent by recent experience. 

The different stakeholders in the Limberg region do not share 
the same beliefs regarding either the current state of their 
environment or the actions available to them or the 
consequences of those actions.  Frequently, they do not 
consider the same issues which makes it difficult in 
negotiation for each stakeholder to understand the interests 
determining the positions of the other stakeholders. 

All of this takes place in the context of an environment in 
which there are unpredictable clusters of extreme events – 
principally peak discharges of water down the Meuse from the 
Rhine as well as its own catchment. 

The above account of the issues in the Limberg basin has been 
derived from domain experts in the FIRMA project: 
Freshwater Integrated Resource Management with Agents.1  
The purpose of that project is to develop tools for policy 
analysis using agent based social simulation modelling.  One 
aspect of this work involves capturing the perceptions of 
individual stakeholders regarding the behaviour of themselves 
and other stakeholders as well as their perceptions of the 
integrated physical/social system and the ways in which the 
stakeholders do and can interact and the consequences of 
different modes of interaction. 

Of interest to the multi agent systems community more 
generally will be the complementary involvement of both 
representational and foundational ABSS.  The 
representational modelling in this project is intended to 
incorporate and assess the role and importance of concepts 
generally considered by means of the more formalistic 
approaches described by Woodridge: beliefs, desire, 
intensions, interests, norms, and so on.  In effect, observation 
and representational ABSS is being used not only to inform 
but also to evaluate the intuition on which fundationalists rely 
to develop formal theories of these concepts. 

4. IMPLEMENTATION ISSUES 
In order to achieve coherence between the formalism based 
concepts and the representational models, the choice of 
abstraction must capture the essential features of shifting 
goals, the conflict inherent in the consequences of actions by 
different individuals and the devices developed and used by 
                                                             
1 I am grateful for this account to our colleagues in the 

International Centre for Integrated Studies in the University 
of Maastricht, especially Jan Rotmans, Anne van der Veen 
and Jeorg  Krywkow. 
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socially situated individuals to reconcile goal conflict with the 
need to pursue essential activities in the face of considerable 
uncertainty.  The research plan is to engage in an interplay 
between concrete representation models and abstract 
canonical models.  In the this section, the canonical model is 
described, followed in the next section by some simulation 
results obtained with that model and an exploration of the 
means by which that model and extensions of it can be used to 
integrate observation and intuition and, therefore, validation 
and verification or quasi-verification. 

The canonical environment model is a variant of the sandpile 
model used in statistical mechanics to generate self organised 
critical processes.[3]  Such processes yield clusters of extreme 
events of unpredictable magnitude and at unpredictable time 
intervals.  Both the time pattern and cross-sectional data 
generated by simulations of self organised critical processes 
carry the same statistical signature as do many natural and 
social phenomena such as earthquakes, avalanches, sunspots, 
river bifurcations, species extinctions, traffic jams, financial 
market prices and volumes, sales values and volumes in fast 
moving consumer goods markets, personal income 
distributions, city sizes and many more such phenomena.  [3, 
15-17, 20] 

Although there are hardly any analytical results on self 
organised critical systems and processes, simulation results 
are extensive and consistent.[12]  Unpredictable clusters of 
extreme events and leptokurtic frequency distributions of 
event magnitude occur when there is a system of densely 
interacting agents or other types of component, where the 
behaviour of those components is metastable (stable below 
some threshold stimulus), where the system is dissipative (in 
agent terms, the agents are influenced by, but do not imitate, 
other agents) and the system is not dominated by exogenous 
inputs. 

Most self organised critical systems are simulated on a grid 
with “sand grains” being dropped into random cells of the 
grid.  When the number of grains in a cell reaches some 
critical level, the sand “topples”, a phenomenon represented 
by the reallocation of some of the grains in the cell to other 
cells.  As more and more of these cells approach their critical 
values, it becomes increasingly likely that a toppling from one 
cell will cause other cells to reach their critical values and 
topple as well.  The number of these topplings at each time 
step is what has the same statistical signature as the natural 
and social phenomena mentioned above. 

The difference between the usual sand pile model and the 
representation of the environment in the model reported here, 
is that in the present model the sand is dropped onto a network 
that can be anything from a ring lattice to a small world 
network to a random network with any chosen degree of 
connectivity.  Watt’s [25]� -graph algorithm is used to 
generate the instantiations of this environment.  The vertices 
of the environment correspond to the cells of the more 
conventional sandpile models.   When the contents of a vertex 
topple, the “sand grains” are distributed individually and at 
random to neighbouring vertices.  Depending on the 
parameters of the network generating algorithm, there can be 
clusters of neighbours with sparse links between the clusters 
or a uniform distribution of random links among the vertices. 

The addition of grains of sand to the vertices represents the 
actions of the agents in the model.  Consequently, the actions 
of the agents can generate changes in the values of the 
vertices in the same way that the actions of speculators in the 
financial and organised commodity markets can generate 

waves of activity and unpredictable clusters of movements in 
prices and volumes. 

7KH�YLUWXH�RI�:DWW¶V� -graph algorithm in this context is that it 
permits us to experiment with the structure of the underlying 
relations.  In the Limberg region, for example, there appear to 
be distinct clusters of goals, actions and the effects of actions 
on various aspects of the physical and social environment.  
Though evidence is required, a plausible hypothesis is that 
agents engaged in competitive activity in cyberspace will find 
that there are spheres of influence that are loosely linked to 
other such spheres. 

The relevant parameters in the graph generating algorithm are 
the number of vertices (n), the number of edges from each 
vertex (k) and the rewiring probability (p).  The initial 
position is a ring lattice in which every vertex is positioned on 
a ring with edges connected to the k/2 vertices to either side.  
For each vertex, each edge is then replaced with probability p 
with an edge to some other vertex chosen at random.  If p=1, 
then every vertex has k edges to k randomly chosen vertices.  
If k is positive but close to 0, then there will be 
neighbourhoods of vertices in which, for any vertex in the 
neighbourhood, any pair of vertices to which it is connected 
by an edge will themselves be connected by an edge.  But the 
occasional rewiring of edges will mean that there are short 
cuts to other neighbourhoods of vertices.  Effectively, the 
lower the value of p, the more structure there is to this 
environment. 

As indicated, agents’ actions are represented as additions by 
the agents to the values at each vertex.  Each vertex has a 
critical value so that when, at any time step, the values added 
at any vertex by all agents collectively exceeds that critical 
value, the excess over the critical value is redistributed at 
random to neighbouring vertices and the value at the original 
vertex reverts to zero. 

The agents are assumed to be able to observe the vertex 
values but have no knowledge of the edges.  This knowledge 
limitation is encoded by generating a randomly ordered list of 
vertices at the beginning of each simulation and then 
generating at each time step a list of the values of the vertices 
in the same order as in the list of vertices themselves.  Each 
agent can then instantiate the clause (positionValue <index> 
<value>) where <index> is a position on the list of vertex 
values and <value>is the value at that position. 

The consequence of these assumptions is that, by modelling 
the agents as acting synchronously but in parallel (so that no 
agent can take into account the other agents’ simultaneous 
actions), the changes in the values at any vertex of concern to 
more than one agent  will  be what neither of them expected.  
Moreover, because the agents know the vertex values but have 
no knowledge of the network structure, they will not be able 
to distinguish between the effects of several agents acting on a 
single vertex and the consequence of a toppling from other 
vertices as a result of actions by agents on any number of 
other vertices.  The inability to distinguish will be particularly 
acute when the whole system is close to a critical state. 

In keeping with the multi agent systems planning literature, 
each agent is assumed to know a set of recipes.  The recipes 
state that adding any value x to an existing vertex value X will 
result in a new  value x + X if that sum is less than the critical 
value and zero otherwise.  These recipes are encoded as a set 
of mental model templates. The general form of these 
templates is: 

(modelTemplate <identifier> 
  [[(positionValue <index1> <init_value1>) … 
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   (positionValue <index-n> <init_value-
n>)] 

[(addedAtPosition <index1> <action1>) … 
   [(addedAtPosition <index-n> <action-
n>)] 
  [(positionValue <index1> <end_value1>) … 
   (positionValue < end -n> < end _value-
n>)]] 

The first set of clauses is a set of current values at specified 
positions of the list of vertex values, the second is a set of 
actions on the values at specified positions and the third is the 
clauses giving the values at specified positions after the 
actions have been taken in the specified initial conditions.  A 
plan in the usual way is a sequence of these model templates 
or recipes.  The initial set of recipes given to the agents are of 
the form 

(modelTemplate <identifier> 
  [[(positionValue ?index 2)] 

[(addedAtPosition ?index  3)] 
  [(positionValue ?index 5)]]) 

It is up to the agents to determine the reliability of these 
templates and to specialise the templates to conditions where 
they are reliable.  This might take the form of uniquifying the 
indices or uniquified values at other indices.  The point here is 
that agents can be designed to specialise and combine the 
initial set of templates to produce a more elaborate set of 
recipes that are then combined as appropriate into plans 

In addition to the initial knowledge of these basic 
recipe/templates, the agents are allocated goals defined as 
values at specified positions in the list of vertex values.  They 
have the ability to formulate plans by stringing together the 
elementary recipes backward from the goal value of a vertex 
to its current value.  However, in the model as implemented 
so far the agents are not able to anticipate and do not value 
parsimony.  That is, the agents are as willing to string together 
a set of recipes taking them from the current value to their 
goal value in unit increments as in the minimal one or (if the 
goal value is less than the current value) two steps. 

The agents are able to observe the activities of other agents.  
This is in keeping with the real system properties to be 
captured by the canonical model.  When a plan step fails to 
yield the expected result, the planning agent looks to see 
whether any other agents have acted on the same vertex.  If 
any have, the agents involved require to engage in a 
negotiation if any or all are to achieve their goals. 

Agent cognition is represented by a problem space 
architecture as developed for Soar [13] and ACT-R [2].  The 
architecture assumed to characterise all agents is depicted in 
Figure 1. 

Whenever the agent found that the current value of a vertex 
differed from its goal value, the agent would enter the plan 
execution problem space in order to resolve that difference.  
The first step was to identify or at need to create an 
appropriate set of templates or recipes.  In so doing, two 
further problem spaces would have to be entered.  The first, 
called endorsing, entails the attachment of mnemonic tokens 
to models – instantiated templates – that were utilised during 
the previous time step to determine an action.  If the action  
had yielded the result predicted  by the mental model, then 
that model was endorsed as having succeeded at that time 
step.  If the predicted result had not been realised, the model 
was endorsed as having failed at that time step.  Such 
endorsements were also attached to the template with an 

annotation of the particular model that succeeded or failed and 
when it was invoked. 

 

Template 
development 

Endorsing Communicate 

Model 
building 

Plan execution 

 
Figure 1. Agents’ problem space architecture 

If any model failed in the predictions of the outcomes from an 
action, the agent would look to see if any other agents had 
acted on the same vertex during the previous time step.  If any 
agent had, a conversation was begun in which the agents 
could negotiate a reconciliation of any differences between 
them either with regard to their individual goals or their 
respective plans of action.  Conversations among agents take 
place over a course of communication cycles within each 
main time step.  Though synchronous, the agents act in 
parallel.  In this case, the parallel synchrony implies that 
messages passed from one agent to another cannot be read 
until the following communication cycle.  Consequently, it is 
not uncommon for messages to “pass in the post” so that two 
agents recognise the effects of each other’s actions on a vertex 
value and simultaneously send messages to on another 
initiating a negotiation. 

These negotiations – whether successful or not – then 
influence the choice of existing recipes or result in new 
recipes or model templates used to construct new plans.  
These new plans are built on instantiations of the best 
endorsed templates.  Among the endorsements are tokens 
representing the fact of any agreement with other agents 
regarding an action or set of actions.  This feature clearly 
gives the endorsements a particularly important role in 
determining the behaviour of the agents. 

The endorsements mechanism used in these models is derived 
from Cohen’s [5] conflict resolution scheme.  Although the 
model reported here was implemented in a strictly declarative 
language (SDML [21]) so that there is no conflict resolution 
with regard to rule firing, there is still conflict among 
alternative courses of action by agents and these conflicts are 
resolved by using endorsements.  In effect, each endorsement 
is placed in a category of endorsements of a given value and 
these categories are either of positive or of negative 
endorsements (e.g., modelSucceeded or modelFailed, 
respectively).  The categories are ranked according to 
importance and the weight differences given to these ranks are 
allocated randomly to agents.  Both the order of the 
importance of different endorsements and the weighting given 
to endorsements of different ranks are allocated randomly to 
agents.  So one agent might consider a history of model 
reliability to be more important in selecting plan components 
while another might consider it to more important that it had 
agreed with another agent to engage in the action implied by a 
particular model.  Where an endorsement has a rank one 
higher than another for two agents – say that model reliability 
has rank 3 while the existence of an agreement about an 
action has rank 2, model reliability might be three times as 
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important to one agent but only 1.1 times as important to the 
other. 

One result of this difference is that some agents will be more 
reliable in carrying out agreed actions and so, will come to be 
seen by other agents as more trustworthy.2  

The overall structure of the  model and basic agent and 
mechanism design place no meaningful limits on the 
particular strategies employed by agents.  In some cases there 
will be directly conflicting goals.  In other cases agents either 
share goals but have devised different plans for achieving 
them or their goals do not relate to values at the same vertices 
but the actions required to achieve their separate goals 
interfere with the plans of other agents.  In the latter case, this 
will be a result of the vertices of interest to each agent 
themselves being in the same cluster or there being a wider 
“avalanche” as a result of the activities of all agents bringing 
the environment network into a highly critical state. 

An important feature of this system is that it is not in general 
possible for all agents to impose their own goal values on all 
vertices of concern to them.  This is obviously the case if they 
have conflicting goal values at the same vertices.  Even where 
all goals relate to different purposes or they have the same 
goal values at some vertices, the interactions among 
neighbouring vertex values prevents the agents from reaching 
their own or their common goals.  Consequently, for the 
system to reach anything like a Nash equilibrium, the agents 
will have to reconcile differences regarding both goals and 
plans. 

5. NORMS, INTUITION AND A 
REFERENCE STRATEGY 

The modelling framework described in the previous section 
supports descriptions of beliefs, desires, intentions, norms, 
interests and trust.  Beliefs are represented by the model 
templates or recipes, intentions are represented as plans, 
desires are the goal values of specific vertices, interests relate 
to the values of vertices neighbouring an agent’s goal vertices 
since changes in neighbouring values will affect the agent’s 
ability to achieve its own goal values.  Norms, which will be 
the main subject of this section, are encompassed by the set of 
acceptable negotiation strategies and consequent actions by 
agents. 

Instead of representing behaviour in relation to a reference 
formalism – whether BDI or deontic logic or some 
mathematical formalism such as game theory – the chosen 
reference concept is a particular social norm.  This norm 
defines a reference strategy which is a convenient starting 
point from which other strategies can be represented. 

The particular reference strategy reported here is one that has 
not, in a score of simulation experiments, failed to direct the 
system into a state that no agent seeks to change.  The number 
of time steps required to reach that state varies in an entirely 
unsurprising way with the characteristics of the environment 
network.  In particular, the number of time steps to the steady 
state increases as the rewiring parameter is set closer to 1, the 
number of edges per vertex is increased and the number of 
goal vertices per agent is higher.  In all cases, the longer path 
to the steady state is a result of increased interaction among 
vertices.  The scope for independent action by any agent is 
reduced. 

The reference strategy for all agents is the following: 

                                                             
2 For a more extended description of this endorsements 

mechanism, see  [18] 

• Whenever any agent know of other agents operating 
on the same vertices, it informs all of those agents 
of its interest in that vertex including the agent’s 
goal value. 

• Every agent sharing an interest in the value of a 
vertex  realises a uniform random number over the 
unit interval and the agent with the largest such 
realisation becomes the only agent to act on that 
vertex. 

• Every agent sharing an interest in the value of a 
vertex realises a uniform random number over the 
unit interval and all such agents adopt the goal value 
of the agent with the largest realisation. 

In this way the agents build coalitions centred on vertices of 
common interest.  Since the agents have several vertices of 
interest, there will be coalitions based on every vertex in 
which more than one agent has an interest.  These coalitions 
will obviously be overlapping whenever there are three or 
more agents with enough vertex value goals to ensure that at 
least some refer to the same vertices as the goals of other 
agents. 

Even this simple strategy offers a range of issues to be 
resolved.  When a coalition is expanded because some agents 
perceive a common vertex interest with an existing coalition, 
does the value agreed by the existing coalition predominate or 
is there a chance that the coalition will adopt the goal value of 
an entrant to the coalition?  In the reference strategy reported 
here, a new of random number will be realised by each agent 
and the winning agent’s original goal value will become the 
goal value of the whole, expanded coalition.  Other options 
are possible including, for example, the selection of the 
original goal held by a plurality of the members of the 
coalition or, if there is more than one such goal value, the 
random selection of one of them. 

There are a number of such design choices to be made and 
there seems no reason to argue that any one of them is 
particularly appropriate since none is in any sense intended to 
be realistic.  The purpose of this completely cooperative 
strategy is to define an initial norm and then to experiment 
with alternatives.  The alternatives are to be taken from actual 
negotiating environments.  As pointed out, the environment 
network defined here was designed to reflect the reality of a 
real negotiating and planning environment relating to 
common pool resource management.  The actual set of 
negotiating strategies and realised actions by stakeholders that 
are deemed to be acceptable to all of them constitute the 
relevant social norms.  The goals of the different stakeholders 
determine their interests analogously to the representation of 
interests in the canonical model reported here.  In the 
canonical model, each agent has an interest in determining not 
only the actions on the particular vertices in which it has an 
interest but also on neighbouring vertices and, in a highly 
critical state of the environment on the neighbours of 
neighbours and, from time to time, higher degrees of 
separation. 

6. Simulation results 
The simulation results reported here are suggestive rather than 
exhaustive.  They are intended to give a flavour of the value 
of the canonical model approach. 
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 Figure 2. Differences between goal and actual values 

One notable result is that all differences in the values of the 
most highly interconnected vertices were resolved at an early 
stage.  This is seen from Figures 2 and 3 which are taken from 
the results of a simulation run with two agents, 100 verticesan 
edge factor (k) of 10 and a rewiring probability of 1.  The goal 
distances in Figure 2 are those of an agent with 42 goals.  The 
other agent had 32 goals. There were 12 vertices of common 
interest to the two agents with 10 goals values were 
conflicting. 

In Figure 3,   only those vertices are represented that are 
directly connected to at least 6 (of a maximum of 10) other 
vertices of interest to at least one of the two agents.  None 
were connected in this run to more than 7 other such vertices.  
The reason for this early resolution of conflict among the most 
apparently intractable goals was that the failure of agents’ 
plans focused their attention on vertices that were in fact most 
persistently deviating from their goal values because of the 
interactions among them.  The less connected vertices of 
interest were never out of their goal states for more than one 
or two consecutive time steps.  However, the vertices out of 
their goal states over the longest unbroken sequence of time 
steps (the vertices at positions 24, 26 and 51) were among the 
most closely connected with other vertices.  Of these 
recalcitrant vertices, the vertices at positions 24 and 26 were 
direct neighbours while the shortest path from the vertex at 
position 51 to either of the other two was of length 2 (to the 
vertex at position 24).  Evidently, direct connections among 
goals can cause more difficulty than conflicting values of the 
same goals under the social norms assumed here.  This is not 
surprising since the impact of the goal conflict is that all 
parties seek and reach a resolution of the conflict. 

An example of how plans evolve and are buffeted by fortune 
is the experience of the one agent interested in the vertex at 
position 51.  At the time step 0, the value at the vertex was 5 
and the goal was 6.  Consequently the agent formulated the 
one-step plan [[(positionValue 51 5)] [(addAtPosition 51 1)] 
[(positionValue 51 6)].  However, at time step 1, the value at 

the vertex was 7 as a result of a some criticality at some other 
vertex and a direct or indirect redistribution of the vertex of 
interest.  Now the agent had to reduce the value at the vertex 
which could only be achieved by passing through 0 to the 
lower values.  The next plan had three steps 

 [[[(positionValue 51 7)] 

  [(addAtPosition 51 3)] [(positionValue 51 0)]] 

 [[(positionValue 51 0)] 

  [(addAtPosition 51 2)][(positionValue 51 2)]] 

 [[(positionValue 51 2)] 

  [(addAtPosition 51 4)] [(positionValue 51 6)]]] 

The first step of this plan was successful but, in re-evaluating 
the various plan steps open to it, the agent found a shorter, 
successful template that took it directly to the goal value at 
time step 2.  There were no further disturbances to the value at 
vertex 51. 
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Figure 3. Most connected vertices: goals not achieved 

 

7. Implications for future research 
The intuition leading to the model reported here was informed 
by the situation in the Limberg basin of the River Meuse.  The 
problem is canonical in the sense that it captures in an abstract 
form a common problem of goal and action of a sort that is 
found in practice in traditional markets and that designers of 
agents and mechanisms should keep in mind for applications 
to competitive environments or environments where agents’ 
actions are likely for technological reasons to affect the 
outcomes of other agents’ actions. 

The extreme cooperation imposed as a social norm is wholly 
unrealistic and certainly not to be found in the Limberg basin.  
However, the basic technology for capturing actual social 
norms in the sense of acceptable actions, modes of interaction 
and commitments among agents to one another is established 
in this model.  By implementing those norms in this model, 
their representation will be sufficiently abstract and general as 
to provide pointers for the design of agents and mechanisms 
and, perhaps more importantly, the identification of social 
norms that, if imposed on whole systems, will determine the 
emergent properties of those systems.  This approach is, of 
course, contrary to the more natural bottom-up approach 
encouraged by the reliance on formalisms for agent 
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architectures.  Whether it is a better or more feasible approach 
is a research question that has not yet been addressed.  That 
there is such a research question suggests that finding means 
of informing intuition by observation is likely to extend the 
multi agent systems research agenda.  The model reported 
here is intended to demonstrate that agent based social 
simulation is an effective means of capturing observation in a 
form that will support the informing of intuition in the design 
of multi agent systems. 
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