
Learning Appropriate Contexts

Bruce Edmonds

Centre for Policy Modelling,
Manchester Metropolitan University,

Aytoun Building, Autoun Street, Manchester, M1 3GH, UK.
b.edmonds@mmu.ac.uk http://www.cpm.mmu.ac.uk/~bruce

Abstract. Genetic Programming is extended so that the solutions being evolved
do so in the context of local domains within the total problem domain. This
produces a situation where different “species” of solution develop to exploit
different “niches” of the problem – indicating exploitable solutions. It is argued
that for context to be fully learnable a further step of abstraction is necessary.
Such contexts abstracted from clusters of solution/model domains make sense
of the problem of how to identify when it is the content of a model is wrong and
when it is the context. Some principles of learning to identify useful contexts
are proposed. Keywords: learning, conditions of application, context,
evolutionary computing, error

1. Introduction

In AI there have now been many applications of context and context-like notions with
a view to improving the robustness and generality of inference. In the field of
machine learning applications of context-related notions have been much rarer and,
when they do occur, less fundamental. Inductive learning, evolutionary computing
and reinforcement techniques do not seem to have much use for the notion. There
have been some attempts to apply context detection methods to neural networks, so
that a network can more efficiently learn more than one kind of pattern but these have
been limited in conception to fixes for existing algorithms.

Of course, if one knows in advance that there will be several relevant contexts, the
human designer (who is naturally adept at distinguishing the appropriate context) can
‘hard-wire’ some mechanism so that the learning algorithm can detect and make the
sudden change necessary (for example simply switching to a new neural network) to
adjust to a new context. But if one does not have such prior knowledge then this is
not possible – the appropriate contexts have to be learnt at the same time as the
content of the models. In such cases the question is “why does one need separate
parts of the model for context and content, why not just combine them into a unitary
model?”. If one does not combine them one always has the problem of determining
whether any shortcoming in the model is due to a misidentification of context or
simply erroneous content – a problem that is impossible to solve just by looking at the
context & content of a model on its own. Rather the tendency has often been, in the

absence of a good reason to do otherwise, to simplify things by combining the
conditions of application of a model explicitly into the model content.

This paper seeks to make some practical proposals as to how notions of conditions
of applicability and then contexts themselves can be introduced into evolutionary
computing. Such a foray includes suggestions for principles for learning and
identifying the appropriate contexts without prior knowledge.

2. Adding conditions of applicability to evolving models

2.1 Standard Evolutionary Computing Algorithms

Almost all evolutionary computing algorithms have the following basic structure:
• There is a target problem;
• There is a population of candidate models/solutions (initially random);
• Each iteration some/all of the models are evaluated against the problem (either

competitively against each others or by being given a fitness score);
• The algorithm is such that the models which perform better at the problem are

preferentially selected for, so the worse models tend to be discarded;
• There is some operator which introduces variation into the population;
• At any particular time the model which currently performs best is the “result” of

the computation (usually taken at the end).
There are various different approaches within this, for example, genetic

programming (GP) (Koza, 1992). With GP the population of models can have a tree
structure of any shape with the nodes and terminals taken from a fixed vocabulary.
The models are interpreted as a function or program to solve the given problem, and
usually given a numeric measure of their success at this – their “fitness”. The models
are propagated into the next generation with a probability correlated to this fitness.
The variation is provided by “crossing” the tree structures– as shown in figure 1).

Parent 1 Parent 2

Child 1 Child 2

Fig. 1. The action of crossover in GP

For example, the problem may be that of finding a functional expression, e.g.
232 x− , to most closely “fit” a given set of data pairs. In this case the set of models

will be trees with terminals being either x or a set of constants, the nodes might be
the simple arithmetic operators, and the measure of success the inverse of the error of
the resulting function with respect to the data.

Data points

Graph of candidate
model

Fig. 2. An illustration of a candidate functional “fit” for some data

One of the key features of such algorithms is that each candidate model in the
population has the same scope – that of the problem. In the long run, a model can
only be selected if it is successful (at least on average relative to other models) over
the whole domain. Essentially the algorithm results in a single answer – the model
that generally did best. There is no possibility that (in the long run) a model can be
selected by doing well at only a small part of the whole problem. The technique is
essentially context-free – the only context involved is that implied by the scope of the
problem and that is selected manually by the designer.

2.2 Adding Conditions of Application

Thus the first step is to allow each candidate model to specialise in different parts of
the problem domain. For this to be possible, success at solving the target problem
must be evaluated locally, without the model being (unduly) penalised for not being
global successful. In evolutionary terms, we allow the problem domain to be the
environment and allow different models to co-exist in different “niches”
corresponding to particular sub-spaces. This is illustrated in fig. 3 below.

Domain of model 1
Domain of model 2

Fig. 3. Two models specialising in different parts of the problem.

It is well know that allowing “demes”, that is separate areas of evolution, acts to
preserve the variety in the population. Allowing the problem space itself to structure
the evolutionary should allow for clustering and competition according to what makes
sense for that problem.

To do this each model in the population needs to indicate its conditions of
application as well as its content, and both need to evolve in response to the problem
presented within the problem domain. There are many different ways of doing this –
perhaps the easiest is to simply position each model in the space and allow replication
to other positions nearby.

One algorithm for this is:

Randomly generate candidate models and place them
randomly about the domain, D
for each generation
 repeat
 randomly pick a point in D, P
 pick n models, C, biased towards those near P
 evaluate all in C over a neighbourhood of P
 pick random number x from [0,1)
 if x < (1 – crossover probability)
 then propagate the fittest in C to new
 generation
 else cross two fittest in C, put result into
 new generation
 until new population is complete
next generation

The idea is that models will propagate into the areas of the problem domain where
they are relatively successful in (until a model that does even better locally appears).

The main parameters for this algorithm are:
• Number of generations;
• Size of population;
• Initial maximum depth of model;

• Number of models picked each tournament;
• The extent of the bias towards the point, P, picked;
• The size of the neighbourhood that the models are evaluated over;
• Probability of crossover.

Also, more importantly, the following need to be specified:
• The problem;
• The language of the models in terms of their interpretation w.r.t. the

problem (usually done in terms of nodes, and terminals if this is an
untyped model);

• The space over which the models will propagate (usually a subspace of
the domain of the problem).

A disadvantage of this technique is that once the algorithm has finished is does not
provide you with a single best answer, but rather a whole collection of models, each
with different domains of application. If you want a complete solution you have to
analyse the results of the computation and piece together a compound model out of
several models which work in different domains – this will not be a simple model
with a neat closed form. Also there may be tough areas of the problem where ones
does not find any acceptable models at all.

Of course, these “cons” are relative – if one had used a standard universal
algorithm (that is all models having the same domain as the problem and evaluated
over that domain), then the resulting “best” model might well not perform well over
the whole domain and its form might be correspondingly more complex as it had to
deal with the whole problem at once.

2.3 An Example Application

The example implementation I will describe is that of applying the above algorithm to
predicting the number of sunspots (shown in fig 4 below). The fitness function is the
inverse of the root mean squared error of the prediction of the model as compared to
the actual data. The models are constructed with the nodes: PLUS, MINUS, TIMES,
SAFEDIVIDE, SIN and COS, and the terminals: x, x1, x2, x4, x8, x16 (which
stand for the current time period and then the number of sunspots with lags 1, 2, 4, 8,
and 16 time periods respectively) the along with a random selection of numeric
constants.

Fig. 4. The problem function – the number of sunspots

The fixed parameters were as follows:
• Number of generations: 50;
• Size of population: 723;
• Initial maximum depth of model: 5;
• Number of models picked each tournament: 6;
• Locality bias: 10;
• Size of the neighbourhood: from 1 to 7 in steps of 2;
• Probability of crossover: 0.1.

There were four runs, in each the neighbourhood over which the models were
tested was 1, 3, 5, and 7 respectively. The first graph (Fig. 5) shows the average
fitness of the models for these runs.

Fig. 5. The Average Fitness of Models in the four runs

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0

T im e P e r i o d s

N
um

be
r

of
 S

un
sp

ot
s

0

0.005

0.01

0.015

0.02

0.025

0.03

0 10 20 30 40 50

Time Periods

A
ve

ra
ge

 M
od

el
 F

it
ne

ss

Run 1
Run 2
Run 3
Run 4

The smaller the domain the greater the average model fitness. This is because it is
much easier to “fit” an expression to a single point than “fit” longer sections of the
graph, with fitting the whole graph being the most difficult. Of course, there is little
point in fitting single points with expressions if there is not any generalisation across
the graph. After all we already have an completely accurate set of expressions point-
by-point: the original data set itself. On the other hand, if there are distinct regions of
the problem space where different solutions make sense, being able to identify these
regions and appropriate models for them would be very useful. If the context of the
whole problem domain is sufficiently restricted (which is likely for most of the “test”
or “toy” problems these techniques are tried upon).

Figure 6, below, shows the maximum coverage of the models for the four runs. In
each case early on a few models take over from the others in terms of the amount of
problem space they occupy. Then as they produce descendants with variations, these
descendants compete with them for problem space and the coverage of any particular
model equals out.

Fig 6. Maximum coverage (in terms of number of positions) of models over the four runs

One individual propagates itself for a while before new models (often its own
offspring) start to compete with it. This is illustrated in Fig. 7. Which shows the
coverage of the dominant model at each stage of run four, where the different
individual models are identified.

0

10

20

30

40

50

60

70

0 10 20 30 40 50

Time Periods

M
ax

im
um

 C
ov

er
ag

e

Run 1
Run 2
Run 3
Run 4

Fig 7. Maximum coverage of individual models in fun 4 (the same individual is indicated by
the same symbol and are connected)

Thus you get a short-term domination by individual models by propagation and a
longer-term effect composed of the domination of closely related but different
individuals – what might be called “species”. The end of run 4 is analysed below
using a very rough division into such species. Those models that start with the same
25 characters are arbitrarily classed as the same species. The 10 most dominant
species at the end of run 4 are shown below in Table 1.

Species Start of model Size of Domain

1 [MINUS [SAFEDIVIDE [PLUS … 260
2 [PLUS [PLUS [SIN [TIMES … 187
3 [PLUS [SAFEDIVIDE [PLUS … 31
4 [MINUS [MINUS [x1] [TIME ... 24
5 [PLUS [x1] [SIN [PLUS [T … 22
6 [PLUS [MINUS [x1] [0.641 ... 19
7 [PLUS [MINUS [x1] [0.868 … 17
8 [SAFEDIVIDE [PLUS [x1] [… 13
9 [MINUS [MINUS [x1] [0.57 … 12

10 [PLUS [PLUS [SIN [0.5712 … 9
Table 1. The 10 “species” with the largest domain

As you can see two quite different such “species” dominate. The figure below

(Fig. 8.) Indicates the domains of these species.

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40 45 50

Time Period

S
iz

e
G

re
at

es
t D

om
ai

n

Fig. 8. The domains of the ten most common species (most dominant in the top line) of models
at the end of run 4

Simply by inspection, some of these species do seem to have identifiable parts of
the problem space in which they apply. This effect could be accentuated by adding a
period of “consolidation” at the tail end of the algorithm. During this period there
would be no crossover and the locality of the operation of the propagation process
kept to a minimum. This would allow individual models to have a chance to
“dominate” contiguous sub-spaces of the whole domain. Such a consolidation period
has obvious parallels with the technique of “simulated annealing”, and I guess a
similar technique of slowly lowering the “temperature” (the distance models can jump
around) of the algorithm towards the end might have similar effects.

3. The move to really learning and using contexts

Given the picture of “context” as an abstraction of the background inputs to a model,
implicit in the transfer of knowledge from learning to application (that I argued for in
Edmonds, 1999). There is still a step to take in order for it to be truly “context” that is
being utilised – a collection of conditions of application become a context if it is
sensible to abstract them as a coherent unit. Now it may be possible for a human to
analyse the results of the evolutionary algorithms just described and identify context –
these would correspond to niches in the problem domain that a set of models
competes to exploit – but the above algorithm itself does not do this.

Rather the identification of context in a problem reveals something about the
problem itself – it indicates that there are recognisable and distinct sub-cases where
different sets of models/rules/solutions apply. In other words that there is a sufficient
clustering or grouping of the conditions of applications of relevant models that it
makes sense to abstract from this set of domains to a context. This is what a biologist

does when identifying the “niche” of an organism (or group of organisms) – this is not
highly detailed list of where this organism happened to live, but a relevant abstraction
from this taking into account the way the organism survives. This idea of abstracting
a context from clusters of model domains is illustrated in Fig. 9. below.

Model 3
Model 2

Model 1

Model 6
Model 5

Model 4

Model Contents:
 Model Contents:

Conditions of
Application:

Contexts:

Fig. 9. Contexts abstracted from models with different, but clustered, domains of application

Of course, it is not necessarily the case that the model domains will be clustered so
that it is at all sensible to abstract them into explicit contexts. Rather this is a
contingent property of the problem and the strategy, resources and limitations of the
learner. The existence of meaningful contexts arises out of the fact that there happen
to be heuristics that can do this clustering, otherwise even if all the relevant models
are not universal in scope context, as such, might not arise.

Such an abstraction requires a further level of learning not present in the above
algorithm. Extra levels of learning require resources and so must be justified – so
why would one need to cluster and identify contexts rather than directly manipulate
the model domains themselves? In the natural world organisms do not usually bother
to explicitly identify where they live. A simple answer is that an abstracted context is
a far more compact and elegant representation of the conditions under which a whole
collection of models might hold, but this is not a complete answer because the
overhead in retaining the detail of the source models domains may not be an
advantage compared to the advantage of knowing exactly when a model applies. A
partial answer to this question will be offered in the next section.

4. Knowing whether it is the context or the content that is wrong

There is a fundamental difficulty is in attributing the source of error displayed by a
model. Perhaps this, more than anything else, characterises different strategies for
learning. Given that a model displays an unacceptable level of error in a situation,
what are the options? They include:
1. Changing the model content (either by a minor elaboration or parameter

adjustment or by a more radical restructuring);
2. Adjusting the conditions of application so as to exclude the domain where the

model did not work;
3. Making the predictions of the model less precise so as to allow for the error;
4. Finally, and most radically it may be necessary to change the language/basis of

the model formulation itself.
The problem is to determine which is appropriate in each case. In this paper I am

particularly focusing of the decision between (1) and (2) above (for a wider discussion
see Moss and Edmonds 1998).

The point is that in isolation there is no principled way of telling whether it is the
model content or context that is wrong. However, given that the problem or
circumstances is such that there are meaningful clusterings of the domains of models
into contexts there is a way, namely: to check the predictions of other models with the
same context. If other models associated with the same context are also in error, then
it is probably the context that is wrong; if the other models associated with the same
context are correct then it is most likely the original model content that is in error.
This collective view of model building suggests the following principles of context
identification:

1. (Formation) A cluster of models with similar or closely related domains
suggests these domains can be meaningfully abstracted to a context.

2. (Abstraction) If two (or more) contexts share a lot of models with the same
domain, they may be abstracted (with those shared models) to another context.
In other words, by dropping a few models from each allows the creation of a
super-context with a wider domain of application.

3. (Specialisation) If making the domain of a context much more specific allows
the inclusion of many more models (and hence useful inferences) create a sub-
context.

4. (Content Correction) If one (or only a few) models in the same context are in
error whilst the others are still correct, then these models should either be
removed from this context or their contents altered so that they give correct
outputs (dependent on the extent of modifications needed to “correct” them)

5. (Content Addition) If a model has the same domain as an existing context, then
add it to that context.

6. (Context Restriction) If all (or most) the models in a context seem to be
simultaneously in error, then the context needs to be restricted to exclude the
conditions under which the errors occurred.

7. (Context Expansion) If all (or most) of the models in a context seem to work
under some new conditions, then expands the context to include these
conditions.

8. (Context Removal) If a context has only a few models left (due to principle 2)
or its domain is null (i.e. it is not applicable) forget that context.

These conditions are somewhat circular – context are guessed at from clusterings
of model domains, and model contents are changed in models who disagree with a
majority of models in the same context. However, I do think that these principles
should allow the “bootstrapping” of meaningful contexts. A starting point for this
process can be the assumption that models learnt in similar circumstances (situations)
share the same context – that the relevant contexts are defined by the similarity of
experience. Later these assumption based contexts can be abstracted, refined and
corrected using the above. Any bootstrapping learning process depends upon the
possibility of starting with simple models and situations and working upwards
(compare Elman 1993).

5. Related Work

5.1 Evolutionary Computation

The obvious technique from evolutionary computation which employs ideas of model
domains are Holland’s “Classifier” (Holland 1992) and descendent techniques. Here
each model is explicitly divided into the conditions and action of a model. Such
models are not designed to evolve in parallel as in the above algorithm, but to form
computational chains.

Eric Baum has developed this idea by applying more rigorous property rules to
govern the chaining of models and the apportionment of reward. Thus in his model
each model has an implicit domain, in that it is only applies when it out-bids other
models in order to be applied (Baum and Durdanovic, 2000b). In the most recent
version of his algorithm (called Hayek 4) he also introduces explicit conditions of
application as each model is a Post production rule (Baum and Durdanovic, 2000a).

5.2 Machine Learning

There has been more attention to context-related ideas in the effort to improve
inductive and neural network learning techniques. Some techniques require the
explicit identification of what the contextual factors will be and then augment the
existing machine learning strategy with a meta-level algorithm utilising this
information (e.g. Turney 1993 or Widmer 1997). Others look to augment strategies
using implicit information about the context to adjust features of the learning such as
the weightings (Aha 1989), or normalisation (Turney and Halasz 1993). These
usually utilise a clustering algorithm and thus are closest to the evolutionary
technique I have described (e.g. Aha 1989).

Peter Turney surveys the various heuristics tried to mitigate the effects of context
on machine learning techniques in (Turney 1996). He keeps an extensive bibliography
on context-sensitive learning at URL:

http://extractor.iit.nrc.ca/bibliographies/context -sensitive.html

6. Conclusion

If one abandons the myopic view of focusing on single model solutions and models,
and looks at their group dynamics instead, then further learning heuristics become
available. These allow one to distinguish when it is the identification of the content
or the context that is at error. Indeed it is only by considering groups of models that
contexts themselves make any sense.

7. References

Aha, D. W. (1989). Incremental, instance-based learning of independent and graded concept
descriptions. In Proc. of the 6th Int. Workshop on Machine Learning, 387-391. CA: Morgan
Kaufmann.

Baum, E. and Durdanovic, I. (2000a). An Evolutionary Post-Production System.
http://www.neci.nj.nec.com/homepages/eric/ptech.ps

Baum, E. and Durdanovic, I. (2000b). Evolution of Co-operative Problem Solving.
http://www.neci.nj.nec.com/homepages/eric/hayek32000.ps

Edmonds, B. (1990). The Pragmatic Roots of Context. CONTEXT'99, Trento, Italy, September
1999. Lecture Notes in Artificial Intelligence, 1688:119-132.

Elman, J. L. (1993). Learning and Development in Neural Networks - The Importance of
Starting Small. Cognition, 48:71-99.

Gigerenzer, G and Goldstein, D. G. (1996). Reasoning the fast and frugal way: Models of
bounded rationality. Psychological Review, 104:650-669.

Harries, M. B., Sammut, C. and Horn, K. (1998). Extracting Hidden Contexts. Machine
Learning, 32:101-126.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems, 2nd Ed., MIT Press,
Cambridge, MA.

Koza, J. R. 1992. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. Cambridge, MA: MIT Press.

Moss, S. and Edmonds, B. (1998). Modelling Economic Learning as Modelling. Cybernetics
and Systems, 29:215-248.

Turney, P. D. (1993). Exploiting context when learning to classify. In Proceedings of the
European Conference on Machine Learning, ECML-93. 402-407. Vienna: Springer-Verlag.

Turney, P. D. (1996). The management of context-sensitive features: A review of strategies.
Proceedings of the ICML-96 Workshop on Learning in Context-Sensitive Domains, Bari,
Italy, July 3, 60-66.

Turney, P. D. and Halasz, M. (1993). Contextual normalisation applied to aircraft gas turbine
engine diagnosis. Journal of Applied Intelligence, 3:109-129.

Widmer, G. (1997). Tracking Context Changes through Meta-Learning. Machine Learning,
27:259-286.

