
The Possible Irreducibility of Artificial Software Life

Bruce Edmonds,
Centre for Policy Modelling,

Manchester Metropolitan University.
http://www.cpm.mmu.ac.uk/~bruce

Abstract

I argue that the characterisation of reducibility as computability is too weak to be credible. I propose an
improved version “intentional computability” and show that it is indeed a stronger criteria, in that there may be
specifications for which there exist programs but where there is no systematic way to build such a program from
the specification. This undermines the assumption that just because software life would run on a computer that it
must be reducible to a computer program as the result of an intentional plan. This, in turn, opens the way to the
possibility that an intentionally irreducible program might arise (e.g. by evolution).

1 Introduction
Sometimes it is assumed that simulating (or even producing) life as software on a computer would be
tantamount to reducing it. In fact, it seems that many of the arguments that real artificial life is impossible
seem to be driven by the fear that this would necessarily mean that our life is similarly reducible.

This implicit argument can be summarised like this:

(1) Something is reducible if there exists a Turing machine that can accurately model it.
(2) All software can be computed on a Turing machine.

(3) Life is irreducible.

Therefore

(4) Artificial Software Life would be reducible.

And thus

(5) Artificial Software Life is impossible.

The assumption most frequently objected to is (3). This isnot a question I aim to address here1. I also
leave the truth of (5) open. All I aim to show is thatif artificial software life ever arose then it might beas
irreducible as natural living systems.

The assumption I will argue against is (1). That merelyhaving a program of something is not the same as
reducing it and that it is possible that evolved software life would beas irreducible as its more tactile
cousins.

2 Reducibility as Computability
In the most general terms, the reduction of a theory is a translation of it from an initial descriptive
framework to a “more basic” framework. This translation process can be done in many ways. Sarkar [6]
suggests that the type of reduction you use needs to be related to the task at hand, so this becomes a sort

1. In my view this will remain an open question because the definition of reducibility chosen is inappropriate. For
details of this argument see [1].

of pragmatic decision. It has also turned out to be difficult to formalise actual reductions done by
scientists.

In theoretical biology, debate about reduction has been often been centred around reduction to a Turing
machine, i.e. taking reducibility as computability (especially by opponents of reductionism, e.g.
Rosen [5] or Pattee [4]). Given this, it is a foregone conclusion that (hardware glitches, and interaction
with a real environment apart) that any artificial life would be reducible. Below I argue that this
characterisation of reducibility is too weak for any deliberate reduction.

Using this criteria of reducibility the reductionist and holist positions can be pictured like this (after
Rosen [5]).

Diagrams of some holist and reductionist views

3 Artificial Life
In the opening paragraph of [3], Chris Langton defines artificial life as

“... the study of man-made systems that exhibit behaviours characteristic of natural living
systems.”.

This is fairly uncontroversial, as it makes no claim that such man-made systems could be alive. Also it

includes man-made natural systems as well as software systems2. Several authors who classify systems as
either reducible (mechanistic or formal or computable or...) or “complex” (i.e. not reducible, computable
...), would categorise any system inhabiting the material world as complex and thus not reducible. Thus
the idea of hardware artificial life is not so much of a perceived threat, as this is already allowed to be
irreducible. The sharp disagreement comes when we consider software systems.

Later, in the same article, Chris Langton says:

“Life is a property of form, not matter,...”.

This is more controversial, it implies that software could be alive as it could encode theform of life
separate from its implementation (i.e. matter). There are arguments against this, notably Pattee (e.g. [4]).
It is Artificial Life in this second, non-corporeal form that I will be primarily concerned with.

2. “Software system” here excludes a physical execution system.

Reducible Systems

Life

Software Software

Life

Reducible Systems

a reductionist viewa holist view

4 Systematically Realisable Reducibility
In the discussion below,L(x) is a predicate in a recursively axiomatisable first-order logic with equality.

According to the above characterization “L is reducible” is interpreted as “There is a program p that
computes L”. This is not a constructive definition, it is sufficient that such a programexists, it does not
mean that there would have to be any practical or systematic way of building such a program.

If whenever we could computeL (with a programp), we could also computep from L, then the mere
existence of such a program,p, would be sufficient - as we would also know that we could compute that
program.

If, on the other hand, there were cases where there is a programp that computesL, butthere is no way to
compute that programp from L, then it is clear that it is, at the very least, highly misleading to say that “L
is reducible”. In such a case it may be possible to come across the programp by accident, but then we
would still need to check that it was the correct program. Given the assumption above, this would not be
evensemi-decidable for if it were then we could use this to construct a program to computeL, which
would contradict the assumption thatL was not computable fromp.

Below we show that,given plausible limitations on our programming ability, such cases do exist. Thus
the above characterization of reducibility is too weak. Unless there is some calculating devices more
powerful than a Turing machine, in order forL to reduce it,we (aided by computers etc.) must be able to
find a program to compute it. If this is not to be the result of an unverifiable accident we must be able to
somehowcompute the program that computes L.

We can formalise the situation in the following way.L is a statement in some recursively axiomatized

logic. So the statements in this logic can be effectively enumerated . Similarly enumerate

the possible programs .

We then say, , or atheoretical reduction, if

(1)
and is theoretically reducible, iff

Then define , or is ansystematically realisable reduction if, in addition to

condition (1),

(2)

The program represents the combined algorithm of all our ways of constructing programs from

statements like , in a planned, verifiable way. Of course, this may be different for different people, and

at different times, but fixed for any particular person (or calculating device) at one time.

The question then becomes, given any particular , encoding a systematic method of building a

programs from statements in this language,“Are there pairs that are a theoretical reduction but

L1 L2 …, ,{ }

p1 p2 …, ,{ }

Li pn,() TR∈ Li pn,()

Li x() pn x()↔ 1=
Li

n N Li pn,() TR∈()∈∃

Li pn,() IRm∈ Li pn,()

m∃ N j∃ N Li x() pj x()↔ 1=()∈ Li x() ppm i() x()↔()→[]∈
pm

Li

pm

Li pn,()

not a systematically realisable reduction?”. In other words Is there a difference between the normal
criterion of computability and such “systematically realisable computability”? The answer to this is
“Yes” , as I now show

Theorem

Proof Outline
We consider a series of statements, indexed by the natural numbers,n, representing what I call the
limited halting problem, i.e.“for all (fixed) program halts given input ”. Call this

, in contrast to the full halting predicate (“program halts given input w”). This

is a finite function, hence it is computable in the sense that for eachn there exists3 a program that

decides . Thus for each separaten, is theoretically reducible.

If for all n is a theoretical reduction then this would allow us to also decide

, since by the s-n-m theorem (page 81 of [1]) there is a computable function,q, such that

. Then would be decided by , and thus

 would be computable, which we know is not the case (Turing [7]).

Thus for any there is an , and a programq, but not .

Here, you have to be careful about the indexing. What the above theorem does not say is that there is a
pair that is theoretically reducible but not intentionally reducible givenany program . After all, given

any particular pair one could simply add this as a special case in your plan represented by a program’

that would compute an index for a program to compute the first of the pair from the second. The point is
that there is nosystematic way of doing this short of adding special cases for all such cases (an infinite
number of them). So if you are going to reduceall such theoretically reducible pairs, there must be some
arbitrary or non-computable element. If it is arbitrary or non-computable one can not say that one
intended its results. Thus at least some theoretically reducible statements are not systematically realisable
reducible (as in “reduced as result of a deliberate plan to do so”). This is not very surprising given the
string of uncomputability results this century, starting with Turing [7] and GÖdel [2].

What the above shows is that there is a real difference between was istheoretically reducible and what is
systematically realisable reducible and that defining something as reducible if it is only theoretically
reducible and not intentionally reducible is not sensible as there would beno guarantee that there was a

practicalway of performing this reduction4. Thus just because a programexists does not mean that there
is an systematic way of programming it. In a real sense there are programs that are unreachable using
systematic means.

3. This is not, of course, a constructive definition. One knows thereexists such a program - it could be implemented as
simply a large look-up table - even if one doesnot know how to find the entries. This is the point - the criteria of
computability, as normally applied, is not constructive.

m∀ N f h,∃ N∈() Lf ph,() TR IRm–∈()∈

i n< pi w n<

Hn i w,() H i w,() pi

qn

Hn i w,() Hn i w,()

Hn i w,() ppm i() i w,(),()

H i w,()
q x y z, ,() ppm x() y z,()= H i w,() q i 1+ i w, ,() 1=

H i w,()

m N∈ h N∈ Hh q,() TR∈ Hh q,() IRm∈

pm

pm

5 Non-deterministic Algorithms
The above argument does not affect the possibility of non-deterministic programs. This is precisely the
ideal for evolution-inspired methods such as the use of genetic algorithms, genetic programming or other
implementations of software evolution. Here one could say that theintention of the programmer is to
evolveunintended results (within a certain framework).

Clearly if one allows non-deterministic programs in the definition of “systematically realisable

reduction” above,any theoretical reduction is also a possible systematically realisable reduction. To see

this, just imagine a program that picks an integern with probability . This could “find” the correct
index ofany statement (given enough time!).

Thus it is possible that a non-deterministic algorithm could produce (evolve) an systematically
unreachable program (in the above sense) using a combination of chance and design. In such algorithms a
very low probability corresponds to the absolute of unreachability for the deterministic algorithms
discussed above. Thus certain programs may still bealmost certainly unreachable even by such a
non-deterministic algorithm (we will call this probabilistic unreachability). However, it is by far from
certain that systematic reachability and probabilistic unreachability always coincide. Thus there may be
occasions where the probabilistically reachable will be systematic unreachable (andvice versa). In this
case we mayevolvea program that wecan’t program.

It may be objected that once we have such a program (however achieved) we could then reverse-engineer
it and discover how to program it. This is not the case, since if we had a reliable method for such
de-compilation we could use the following method to get round the systematic unreachability of some
programs, namely: “for each number,m, in turn (1, 2, 3, ...), find the corresponding program, ,

decompile it and find out how to program it”. This would contradict the proof above. Thus such a
reverse-engineering strategy can not be systematised. We could still copy it (or large portions) wholesale,
but this is still not the same as systematically programming it.

Of course, in practice, it is ususal to use a pseudo-random source rather than what might be a true source
of random numbers. In such cases any algorithm (for example a genetic programming algorithm) that
used a source of pseudo-random numbers, would, in principle, be systematically realisable. However this
does not alter the practicalities of the situation - it would still be very difficult to reduce such an algorithm
to an understandable determinisitc system, even if this is possible. Also is presumes that one would have
access to the generating process and initial seed.

4. In fact the above formalisation of intentional reducibility isstill too weak - there might be an algorithmic way to
find a particular program (to reduce the pair) but no systematic way to findthis algorithm (and maybe no systematic
way to find the systematic way to find the algorithm etc.). Thus further constraints could be added to make the
formalisation more credible. We have not needed these here.

pm

2
n–

pm

6 Conclusion
Given this different and more reasonable criteria of reducibility other views are now possible.

Possible world views given the new criteria of reducibility

If, following the above arguments, we do not reject the possibility of irreducible software artificial life
just because it is running on a computer, we can examine some of the functional arguments relating to the
expected reducibility of software artificial life (if it ever arose) on more practical grounds. In particular
the expected reducibility ofevolved software artificial life (given we don’t know how else it might arise).

Acknowledgements
I would like to acknowledge the stimulating discussion on this subject with members of the PRNCYB-L
discussion list (see http://pespmc1.vub.ac.be/MAIL.html for details), especially Don Mikulecky, Francis
Heylighen, and Jeff Prideaux.

References
[1] Cutland, N. J., (1980):Computability. Cambridge University Press, Cambridge.
[2] Edmonds, B., (1996): Pragmatic Holism. CPM report 95-08. Also available electronically at

http://www.fmb.mmu.ac.uk/~bruce/praghol
[3] GÖdel, K., (1931), Uber formal unentscheidbare Satze der Principia Mathematicca und verwandter

System I.Monatschefte Math. Phys., 38, 173-198.
[4] Langton, C. G., (1988): Artificial Life, in Langton C. G. (ed),Artificial Life, Addison-Wesley, MA.

1-48.

Reducible Systems

Life

Software

Software

Life

Reducible Systems

a reductionist view - some software life

a holist view - no software life

Reducible Systems

Life

Software

a holist view - some software life

Software

Life

Reducible Systems

a reductionist view - no software life

[5] Pattee, H. H., (1995): Evolving self-reference: matter, symbols and semantic closure.
Communication and Cognition - Artificial Intelligence. 12, 9-27.

[6] Rosen, R., (1993): Bionics Revisited. In:The Machine as Metaphor and Tool, (Eds: Haken, H.;
Karlquist, A.; Svedin, U.) Springer-Verlag, Berlin, 87-100.

[7] Sarkar, S., (1992): Models of Reduction and Categories of Reductionism.Synthese 91, 167-194.
[8] Turing, A. M., (1936): On Computable Numbers, with an application to the Entscheidungsproblem.

Proc. London Math. Soc., 42, 230-265.

