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Introduction 
This is a technical report to DEFRA and the EA as part of a deliverable by the CC:DEW 
project, coordinated by Tom Downing of the Stockholm Environment Institute.  The other 
technical reports that form the substantial part of this deliverable are concerned with 
forecasting the likely change in demand for water given certain changes in the climate.  This 
report is not to forecast but is to report on a more exploratory approach which has the 
potential to provide some of the possible deviations from the likely futures. 

This reports starts with an introduction as to the nature of agent-based modelling and, in 
particular, what it is (and is not) suited to doing.  It outlines the structure of the model and 
briefly describes the results and finally states tentative conclusions.  Firm conclusions come in 
the form of what future work needs to be done.  There are four appendices with:  the graphs 
of the outcomes in terms of aggregate demand; detailed model specification; data sources 
and references. 

The nature and use of agent-based modelling 
Other parts of the CC:DEW project have been concerned with the expected change in the 
demand for water given certain levels of climate change.  These are based on a series of 
"surprise-free" predictions, extrapolating from current understanding of demand and its 
constraints.  They provide base lines on which to build future plans.  What they will not do is to 
capture new "non-linear" developments.  For example, that an increase in average 
temperature facilitates a fashion for automatically watered lawns.  However, climate change 
and its effect on demand are unpredictable, especially where it interacts with social processes 
(which are themselves unpredictable).   

When trying to plan for a situation that is known to be unpredictable it is sensible to be 
prepared for this fact.  One cannot predict the unpredictable, but what one can do is to try to 
consider some of the possibilities before hand.  Such preparation can enable the faster and 
more effective response should these occur.  For example, if one of the possibilities had rapid 
and extreme consequences it might be sensible to put into place monitoring processes to 
detect it, should it occur.   

Clearly, the usefulness of such an exercise depends upon the appropriate identification of 
what might happen.  Indicating essentially only one possibility by focusing only on what is 
reliably known means that one might not be prepared for qualitatively different outcomes.  
Indicating too many possibilities by tracing out even wild and unlikely futures is also not likely 
to be helpful.   

The agent-based modelling work aims to indicate a few of the possibilities that are not merely 
deviations from the expected, but represent qualitatively different outcomes.  It aims to do this 
by using finer-grained models, with many different parts in the computer model (called 
"agents") separately representing different individuals and institutions.  Instead of the 
averaging of the outcomes being built into the model from the start (as in statistical 
models) any averaging to produce global summaries of outcomes occurs after the model has 
finished.  In other words, novel and qualitatively different outcomes are allowed to emerge 
from the interactions between the agents inside the model.  The hope is that these 
qualitatively different outcomes may pre-figure some of the real possibilities. 

The aim of this kind of agent-based modelling is not to predict what outcomes will occur, and 
certainly not to capture all the real possibilities.  What it might be able to do is: (1) pre-figure 
some of the possibilities so that if something similar does occur we can be prepared for them 
(if only mentally) (2) to improve our understanding of the possible processes so that we are 



 

 

less often mislead and (3) to suggest important questions and further research to be 
investigate. 

The technique has its disadvantages.  Producing credible future outcomes composed of 
believable interactions requires a lot of good information (both qualitative and quantitative) 
about the kind of interactions that actually occur.  Such models are inevitably complex and 
require a lot of checking in as many different ways as possible.  These models have a great 
many adjustable parameters and possible outcomes, so that a comprehensive set of runs 
covering all the possibilities is not usually feasible.  Finally there is the danger that the results 
(i.e. the indicated possibilities) might be over interpreted as if they were a prediction of might 
happen or a complete representation of what is happening.   

At this stage the agent-based models need a lot more development based on much richer 
information about the behaviour of the individuals and institutions concerned before the 
possibilities it indicates can be used in planning.  However, it does indicate some of the 
possibilities that might be sensible to check out with small field studies.  What it certainly does 
do is reveal the paucity of our knowledge of the decisions concerning water use that people 
make and how they make those decisions and that such differences in how decisions are 
made can result in very different outcomes given only very small changes in the environment. 

The model set-up 
This model focuses upon the behaviour of households, in particular how the household-to-
household imitation of behavioural patterns may affect the aggregate demand for water.  Thus 
the heart of the model is a network of agents each of which represents a single household.  
These are distributed randomly on a 2-D grid.  These ‘households’ can only interact with those 
with a certain distance of them.  The totality of households and their potential interactions can 
be considered to represent a community or cluster.   

The external environment for each household consists of: the temperature and precipitation; 
the exhortations of the water company; and, critically, the neighbouring households.  Each 
household has a number of different water-using devices such as: showers, washing 
machines, hoses etc.   The distribution and properties of these devices among households is 
done such that this matches a real distribution.  The output is the amount of water the 
households use. 

The time is divided into months.  Each month, each household adjusts its water-using habits, 
in terms of the amount it uses each device, and whether it acquires new devices (such as 
power showers).  It does this adjustment based on the following: what devices it has; its 
existing habits; what its neighbours do (except for private devices such as toilets); and what 
the ‘policy agent’ (which is either the government or the water company) may be suggesting 
(in times of drought).  The weighting that each household uses for each of these is different 
and is set by the modeller.  In many of the runs it was set such that about 55% of the 
households were biased towards imitating a neighbour; 15% were predisposed to listen to the 
water company and the rest were largely immune to outside suggestion.  Obviously it is not 
known what proportions might be more realistic in terms of real communities, but anecdotal 
accounts suggest it varies greatly between communities.   

The “policy agent” represents the body responsible for issuing guidance to consumers as to 
water use in times of water shortage (currently this is the individual water companies in each 
area).  In the model there is a calculation of the level of ground water derived from the 
climatologically data, and the policy agent starts issuing suggestions during the second month 
where the ground is dry.  In subsequent dry month its suggestions are to use increasingly less 
water. 

The model structure is illustrated below in Figure 1. 
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Figure 1: The General Structure of the Agent-based model 

In this model there two new devices become available to the households: new washing 
machines (which use much less water than the older ones) and power showers (which use 
much more water than traditional UK showers).  These devices may be acquired by a 
household at any time after their becoming available, and in particular, when their existing 
device needs replacing.  The replacement rate of devices is estimated according using a 
Weibull distribution parameterised according to the type of device and an average life of 5 
years. 

What the Model Does Not Attempt to Cover 
The model does not attempt to capture all the influences upon water consumption.  In 
particular it does not include any direct influence of the weather upon micro-component usage 
nor does it include any inherent biased towards increased usage due to background social 
norms such as increased cleanliness.  The behaviour of the policy agent is not sophisticated 
since it is the reaction of the households that is important here. 

We had hoped to use some fine-grained data from Anglia Water which would have allowed us 
to specify any direct influence of micro-component data by the weather and any overall 
discernable trends in water consumption, however access to this data was not finalised at the 
time of writing.  It is hoped that this can be included in future developments. 

Model Runs 
Several sets of runs were done, in order to make three basic comparisons, namely to 
compare the runs with the UKCIP02 medium high emissions climate scenario for the mid-
Thames region for 2050; the runs with different dates for the introduction of the new 
technologies; and the runs with different percentages of Neighbour biased households (i.e. 
those with a bias towards imitating their neighbours.   

The base case is with unmodified climate data for 1970-1997, with realistic dates for the 
introduction of power showers (4/90) and water saving washing machines (10/92), and with 
55% of the population being biased towards imitating neighbours. 

The first comparison is with a set of runs with the climate data modified so that it is consistent 
with the UKCIP02 medium-high emissions for the mid-Thames region for 2050 (see appendix 
4 for details). 

The second comparison is with a set of runs with different dates for the introduction of power 
showers (10/92) and water-saving washing machines (2/88). 

The third and fourth sets of comparisons are with different proportions of neighbour-biased 
households, namely 30% and 80%.  Each of these comparisons was done with the 
unmodified and modified climate data. 



 

 

Interpreting the results 
When looking at the results, it should be recalled that the purpose of the model is to highlight 
qualitative differences that may arise.  The model is not designed to make accurate numerical 
predictions as to the likely outcome, but provide indications as to some of the possibilities.  In 
many ways exhibiting any graphs of the results is misleading, but they are included so that 
modellers and other experts can see the results.  They are displayed in appendix 2. 

The simulations were done using data from 1970-1997, however many of the runs exhibited 
transient instability over the first year before they settled down into a definite pattern.  This 
behaviour is typical of this type of model, it occurs because of the lack of a long social history 
at the start of the simulation means that there are no social norms to constrain the model 
possibilities.  Given that there is great uncertainty about what kinds of socially grounded 
behaviour resulted in the past aggregate demand and that (in reality) there is a long social 
history to constrain the possibilities, we have discarded the first two years worth of resultant 
aggregate demand and scaled the resultant outcomes.  This is consistent with the fact that we 
are looking at qualitatively different outcomes rather than accurate levels.  We did the scaling 
in two ways: by scaling all the model outcomes so that the level at 1973 was 100 and by 
scaling each line so that its average level from 1973-1997 was 100. The former has the effect 
of lining up the outcomes at the start and the second has the effect of lining up the outcomes 
over the majority of its course. 

Summary of the results 
Although many of the outcome demand patterns were similar, there are a minority of runs 
which resulted in substantially different patterns.  In general, the higher the proportion of 
households that were biased towards imitating their neighbours, the more stable were the 
demand patterns, the more independent they were to suggestion and the greater affect the 
introduction of new innovations had.  In general, periods of drought (and hence exhortation by 
the policy agent to use less water) had a temporary effect, however in some runs this resulted 
in a permanent drop in demand.  This permanent drop in demand occurred more in the runs 
with the medium high emissions scenario.  In general the demands were less stable in the 
runs with using the medium high emission time series, i.e. they showed greater variety. 

What the model indicates 
The model does not tell us what people or communities will do, or even what they are likely to 
do.  Indeed in runs of the model we got a large variety of qualitatively different outcomes (in 
terms of the shape and size of aggregate domestic water demand), given a very simple range 
of simulated behaviours and exactly the same environmental conditions.  In the simulations 
certain behaviours can become established and then be robust against subsequent outside 
influence. This is because behaviours are imitated from simulated household to simulated 
household and so can become entrenched though mutual reinforcement.  Once this occurs, if 
the social reinforcement process is strong enough, the behavioural pattern can last for many 
years.  

In the model runs periods of drought usually resulted in a slight and drop in demand, but this 
quickly reverted to previous levels.  In a very few runs the drought seemed to cause a 
significant and permanent drop in demand.  This suggests that it is possible that droughts 
might only have a long-term effect on household behaviour if the social conditions are right. 

In general, differences in climate (such as might result from climate change in the medium 
term) did not usually cause a significant change in demand in this model, but in a few more 
runs there was a permanent drop in demand.  This does not suggest that climate won’t effect 
household behaviour but it does suggests that it is possible that the social effects within 
clusters of households may be a significant factor in determining the level of household 
demand, and so should not be ignored when considering climate effects. 

In the runs the availability of new devices (such as new water-saving washing machines and 
power-showers) sometimes had a significant, but not completely predictable, impact on 
demand.  This suggests that it is possible that the availability of new products that are 
developed in response to climate change may have as profound an impact upon household 
water consumption as exhortation or direct climatologically effects on behaviour. 



 

 

In the simulations the particulars of how the households were clustered and (socially) 
connected, and where the households looked to inform their behaviour substantially effected 
the outcomes in terms of demand.  Unfortunately, there is not much information concerning 
how people do behave in this regard, so as to inform the modelling of these aspects.  Thus 
the agent-based model points out the importance and potential of investigating such 
behaviour.  What would be required is a longitudinal study of household behaviour in small 
(100) clusters of households concerned with the purchase and use of water-consumptive 
appliances, in particular where consumers look to for suggestions in this regard.  This 
information might be extremely useful when trying to plan and direct public exhortation in 
situations of water shortage.   Whilst there has been considerable advance in the 
development of techniques to measure changes in the environment and water demand, there 
has been relatively little effort towards detecting social changes that may effect water demand.  
The results from the agent-based model indicate that it is possible that social changes could 
be significant in their effect on domestic demand patterns. 

Progressing the work further 
Clearly there are several ways in which the model can be made more realistic.  To do this 
requires more and higher quality information about how households behave.  We had hoped 
to have access to Anglia Water’s SOPCON date, which gives a 15 minute reading of what 
devices were used for a sample of 100 “golden households”.  However it was not possible to 
gain access to this data in time for these results.  This sort of detailed longitudinal data is 
essential if good agent-based models of household behaviour are to be built.  Another aspect 
of which little is known is the topology of imitation networks in real neighbourhoods – a few 
detailed field studies of this would give us a handle on what real imitation processes might be 
occurring. 

Acknowledgements 
The original model was designed and implemented by Scott Moss with advice from Juliette 
Rouchier (now at GREQAM-CNRS).  It was then developed by Olivier Barthelemy, supervised 
by Scott Moss and Bruce Edmonds.  Bruce Edmonds made some minor modifications and did 
most of the runs reported here, he also wrote this report with help and contributions from 
Olivier Barthelemy.  The development of the model was supported, in part by the CC:DEW 
project which is funded by DEFRA and the EA.  CC:DEW is coordinated by Tom Downing, 
director of the Oxford branch of the Stockholm Environment Institute.  Both Tom Downing 
(SEI) and Cindy Warwick (ECI unit at Oxford) have given considerable assistance and advice.  
We also acknowledge the support of the Manchester Metropolitan University Business School.  
SDML was developed by Steve Wallis as part of an EPSRC/DTI ISIP project.  It was based 
upon a prototype written by Scott Moss.  It is written in Smalltalk/Visualworks and is freely 
distributable for academic and research use thanks to permission from Cincom who licences 
and distributes it. 



 

 

Appendix 1 – Graphs of Aggregate Demand 
Table 1 summarises the settings and the sets of runs done, each run takes between 6 and 18 
hours to run with 40 households over the dates 1970-1997. 

% Neighbour 
biased 

Climate 
Scenario 

Introduction 
date of power 
showers 

Introduction 
date of new 
washing 
machines 

Number of 
runs 

30 Current 4/90 10/92 16 

 Medium High 4/90 10/92 14 

55 Current 4/90 10/92 12 

 Medium High 4/90 10/92 10 

80 Current 4/90 10/92 13 

 Medium High 4/90 10/92 9 

55 Current 10/92 2/88 24 

Table 1. Table of runs done 

For each of these sets of runs we show two graphs of the resulting scaled aggregate 
demands.  The first of these is where the demands are scaled so that January 1973 is 100 
units – this makes plain the deviations of the demands in the separate runs over the 
subsequent years.  In these graphs the broad line is the average of these.  The second graph 
is where each line is scaled so that the average of each resulting demand time series is 100 – 
this has the effect of ‘lining up’ the lines in the central region to facilitate their comparison. 

For ease of reference the dates that innovations (i.e. power showers and water saving 
washing machines) are marked on the graphs as solid vertical lines and the most severe 
droughts shown as broken vertical lines.  In the historical climate scenarios these occur during 
the years of 1976 and 1990.  Under the medium high emissions scenario they occur during 
1976, 1989, 1990, 1995 and 1996.



 

 

 

 

Figure 2.  30% Neighbour biased, historical scenario, historical innovation dates

Aggregate demand series scaled so each run average=100
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Figure 3.  30% Neighbour biased, medium-high scenario, historical innovation dates

Aggregate demand series scaled so each run average=100
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Figure 4.  55% Neighbour biased, historical scenario, historical innovation dates

Aggregate demand series scaled so 1973=100
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Figure 5.  55% Neighbour biased, medium-high scenario, historical innovation dates

Aggregate demand series scaled so each run average=100
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Figure 6.  80% Neighbour biased, historical scenario, historical innovation dates

Aggregate demand series scaled so 1973=100
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Figure 7.  80% Neighbour biased, medium high scenario,  historical innovation dates

Aggregate demand series scaled so each run average=100
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Figure 8.  55% Neighbour biased, historical scenario, changed innovation dates 

Aggregate demand series scaled so each run average=100
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Appendix 2 – Detailed Model Specification 

Static Structure 
The model container is iterated each month and each year for the designated time periods (in 
this case 1970-1997).  In this container the following sequence occurs: the ground module; 
the policy agent and the household cluster.  Preceding and following this sequence the model 
container does some administrative calculations such as reading the relevant climate data and 
calculating the resultant aggregate demand each month.  The container and sequence 
structure is shown in Figure 11. 
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Ground 
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Policy 
Agent 

Household Cluster 

Household-1 
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Figure 9. The agent and time structure of the model 

The 40 households are executed in parallel, having access to others’ actions in previous but 
not current actions.  The households are randomly distributed about a 60×60 2D grid.  Each 
household can ‘observe’ the public actions of households within 4 squares of themselves 
horizontally and vertically.  An example such distribution is shown in 
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Figure 10 (in this example a 16 by 16 grid with 100 housholds were used). 
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Figure 10. An example distribution of households (arrows show those households that 
are most influential to another) 

Each household has a memory of possible actions and their endorsements, these include: the 
observable actions of its neighbours, the observable actions of the neighbour most like itself, 
the recommendations of the policy agent, its own past actions, its own recent past actions, 
and those for new applicances (with a low endorsement to introduce it). 

Algorithms 
This section outlines the model dynamics. The simulation time is composed of years and 
months.  For the purposes of this report we have restricted ourselves to recent history, 1973-
1997.  Each month the following sequence is determined: Ground Water; Policy Agents; 
Household Decisions; and finally Aggregate Demand.  There are described below. 

Ground Water 
Each month, the ground water module calculates the moisture content of the ground using the 
modified Thornthwaite algorithm, using mean temperature, precipitation and sunshine time 
series. 

The modified Thornthwaite algorithm is used to compute the soil moisture through potential 
evapotranspiration (PET) from temperature and hours of daylight per day (as in Food and 
Agriculture Organisation 1986). 

The value of the unadjusted PET at temperatures above freezing is calculated as: 

PET Temperature (T) range 

- 415,8547 + 32.2441T – 0.4325T2 26.5 ��T  

16.5 (9 T / H) a 0 ��T < 26.5 

0 T < 0 



 

 

where H is heat defined as  
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and the exponent a is 

6.75×10-7 H3 - 7.71×10-5 H2 + 0.01792H + 0.49239 

The day lengths are calculated from the day relative to the winter solstice and the latitude. The 
monthly PET values are adjusted to reflect the difference in water use between a grass 
surface and a mixed landscape of grass, trees and shrubs.  The monthly correction factors 
are: 

Nov – Dec - Jan –  
Feb – March 

April May June – July - Aug Sept Oct 

0.8 0.9  1  1.1 1.05  0.85  

 

Policy Agent 
The Policy agent monitors the groundwater content calculated by the Ground Water module.  
On a second consecutive month with less than 85% moisture content it starts to recommend 
the reduced use of water to the households.   The longer the dry period continues (i.e. as long 
as there is no month with 85% or more moisture content), the lower are the usages it 
recommends to the households.  The months of dryness characterised in this way is shown in 
Figure 11. 

Figure 11.  Number of consecutive dry months in historical scenario 

Household Decision Making 
Each month each household updates its consumption patterns concerning the use of each 
micro-component.  It does this by considering its own actions, those of its neighbours, those of 
the neighbour that it considers is most similar to itself, the suggestions of the policy maker, 
and (in particular circumstances) possible new patterns with new appliances.  In the current 
model the consumption is not directly affected by the weather. 

To decide among these the household uses an “endorsement” mechanism (Cohen, 1985), 
that is it remembers different suggestions as to the use of each micro-component along with 
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its endorsement in the form of a label representing the source of the suggestion.  When it 
comes to making a decision it weighs up these suggestions using its own system of 
endorsement weights.  The set of base weights is randomly allocated to each household at 
the start of the simulation according to a distribution specified.  This distribution is specified by 
the expected percentage of households that are more biased towards imitating from 
neighbours, those that are more biased towards adopting suggestions by the policy agent, and 
those who tended to ignore either.  These biases do not determine behaviour rigidly, for 
example if it is not too biased towards listening to a policy agent if it has many neighbours 
which are suggesting a particular behaviour then this may “outweigh” the policy agent’s 
suggestion. 

The approached used here, is to define a number base b and evaluate each endorsed object 
according to the formula 
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where ei is a (usually integer) value associated with the ith endorsement token. Negative 
values of endorsement tokens indicate naturally enough that they are undesirable. The higher 
the value associated with an endorsement token, the higher the class of tokens containing 
that particular token.  The value of b is the importance of an endorsement token relative to the 
value of a token in the class below. If the base is 2, then an endorsement of class three 
contributes 8 to the endorsement value of an object while an endorsement of class two 
contributes only 4.  For values of b larger than the number of tokens in any class used to 
endorse any object, the results from this evaluation scheme are the same as from Cohen’s 
evaluation scheme. For smaller values of b it is possible for a large number of lesser 
endorsements to outweigh a small number of endorsements of greater value. 

Aggregation 
The model adds together all the water use for all the households to produce the aggregate 
demand for that month. 

Key Settings and Parameters 
The most important settings are (setting options used in brackets): 

• The size of the 2D grid (10); 

• The number of households (40); 

• The years over which the simulation is run (1970-1997); 

• The range over which households can see each other (4 squares); 

• The monthly average temperature and total precipitation time series (actual from 
Thames region; modified to be consistent with UKCIP02 medium high emissions 
scenario for 2050); 

• The latitude (51°); 

• The critical triggers for water use advice from the policy agent (85% moisture, 2nd 
consecutive dry month); 

• The available micro-components and their distribution among the households (from 3 
Valleys data 1997/98); 

• The dates for the introduction of new devices (4/90 power showers, 10/92 water 
saving washing machines or 10/92 power showers, 2/88 water saving washing 
machines); 

• The proportion of households biased towards imitating from neighbours (30%, 55%, 
80%); 

• The proportion of households biased towards listing to suggestions from policy agent 
(15%); 



 

 

Initialisation 
The households are initially randomly distributed about the 2D grid.  They are initialised with 
water-consuming devices according to the given OVF distribution.  They are provided with a 
random set of weights (or biases) so that the population of households is divided up to match 
the parameters given.  They are given a minimal random set of behaviours that are minimally 
endorsed to start with. 

Emergent Model Dynamics 
An example of the how the endorsements affect the selection of a particular action from the 
first month of its adoption until it was replaced 6 months later, is shown in Table 2.  It shows 
how an action was reinforced by a combination of the endorsements: recent, neighbour 
sourced and self sourced (remembered, but not necessarily recent), until action-8472 
eventually overtakes it by being neighbour sourced four times including being endorsed by the 
‘most alike neighbour’.  How many neighbour sourced endorsements are necessary to 
‘overcome’ endorsements such as ‘self sourced’ and ‘recent’ depends upon the weightings the 
agent is given during the model initialisation. 

Month 1 used, endorsed as self sourced 

Month 2 endorsed as recent (from personal use) and neighbour sourced (used by 
agent 27) and self sourced (remembered) 

Month 3 endorsed as recent (from personal use) and neighbour sourced (agent 27 
in month 2). 

Month 4 endorsed as neighbour sourced twice, used by agents 26 and 27 in month 
3, also recent 

Month 5 endorsed as neighbour sourced (agent 26 in month 4), also recent 

Month 6 endorsed as neighbour sourced (agent 26 in month 5 

Month 7 replaced by action 8472 (appeared in month 5 as neighbour sourced, now 
endorsed 4 times, including by the most alike neighbour – agent 50) 

Table 2. An example of how endorsements may affect action choice 

As a result of the learning and decision making by households, a self-reinforcing household-
to-household imitation pattern can occur.  If the households are (on-the-whole) sufficiently 
biased towards imitating from neighbours then each household in a cluster may copy a 
substantial part of its behaviour from these neighbours who have copied the behaviour from 
their neighbours etc.  If the households are sufficiently clustered then patterns of behaviour 
may be copied back and forth, thus reinforcing itself.  Thus there is a sort of competition 
between different patterns of behaviour and the ‘locking-in’ of winning behaviour can result. 



 

 

Appendix 3 – Data Sources 

Climate time series 
Monthly average temperature and total precipitation time series for Central England for 1970-
1997 were used as inputs to the ground module, also a value for the latitude of 51° from which 
the hours of daylight are calculated. 

Modifications to the climate time series to reflect the UKCIP02 medium-
high emissions 2050 scenario 
In order included a comparison of the outcomes under the UKCIP02 medium-high emissions 
2050 scenario and current conditions the above time series were modified to reflect this 
UKCIP02 forecast for the upper Thames region.  This involved modifying the temperature and 
precipitation data as follows: 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

+12.5% +10.0% 0% -5.0% -10.0% -20.0% -30.0% -20.0% -15.0% -7.5% +0% +10.0% 

Table 3. Monthly modification to precipitation time series 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

+1.0% +1.0% +1.0% +1.5% +1.5% +1.5% +2.0% +2.0% +2.0% +1.5% +1.5% +1.5% 

Table 4. Monthly modification to temperature time series 

Activity, Frequency, Use micro-component settings 
The OVF data came from EA Strategies - Provincial Enterprise Scenario, Three Valley’s 
Water - Resource Zone 2 for years 1997/98 and 2000/01. 

Weibull parameterisations for micro-component replacement rates 
The beta parameter, which determines the shape of the distribution, was taken from typical 
values given in (Bloch and Geitner, 1994).  The eta parameter is a scale parameter and was 
set so that the life expectancy of a device was 5 years. 
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