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Abstract. In this paper we propose a methodology to help analyse tendencies in 
MAS to complement those of simple inspection, Monte Carlo and syntactic proof. 
We suggest an architecture that allows an exhaustive model-based search of possible 
system trajectories in significant fragments of a MAS using forward inference. The 
idea is to identify tendencies, especially emergent tendencies, by automating the 
search through possible parameterisations of the model and the choices made by the 
agents. Subsequently, a proof of these tendencies could be attempted over all 
possible conditions using syntactic proof procedures. Additionally, we propose a 
computational procedure to help implement this. The strategy consists of: 
unencapsulating the MAS so as to reveal the maximum information about logical 
dependencies in the system. This information is maximised by splitting the 
transition rules by time intervals and some parameters. An example applying this 
procedure is exhibited which ‘compiles’ the rules into this form. In the example the 
exploration of possibilities is speeded up by a factor of 14.  This makes possible the 
complete exploration of model behaviour over a range of parameterisations and 
agent choices. 

1  Introduction: Understanding MAS 

MAS can (and frequently do) exhibit very complex behaviour – in this fact lies their 
promise but it also means that they can be difficult to understand and predict. Broadly 
there are two means by which we can seek to understand MAS: through design and 
through observation. Careful design procedures based on well-understood formal models 
of agent behaviour help us to understand the behaviour of individual agents and, in special 
cases, larger parts of MAS. However understanding the behaviour of interacting groups of 
autonomous agents by formal design methods has its limitations, and even the most 
carefully designed MAS can exhibit emergent behaviour unforeseen by its designers. This 
is hardly surprising as half the point of autonomous agents is that they should be able to 
deal with circumstances unforeseen by their designers. 

Thus a second important way in which we can control MAS (after careful design) is by 
inspecting and analysing the behaviour of MAS in a post hoc manner, so that this can 
inform our future design and control of them. In other words, just like any software 



development environment, to effectively deploy MAS one needs both design and 
debugging tools. The most common methods of such post hoc analysis are: firstly, by 
detailed scenario analysis, where a single MAS trajectory at a time is examined and 
analysed and secondly, using a Monte Carlo approach where the MAS is repeatedly run 
and statistics collected about general trends over a sample of trajectories.  

The scenario analysis provides the richest source of information, typically providing 
far more detail than the programmer can possibly cope with. It is also inherently 
contingent and it can be difficult to separate out what can be taken as representative 
behaviour and what is exceptional. After examining and interacting with several such runs 
of the system it is up to programmers to abstract an understanding of the MAS’s 
behaviour using their intuition; the scenario analysis only conclusively demonstrates 
possibilities. 

A Monte Carlo approach can be used to separate out the exceptional from the 
representative in some cases, but has a number of drawbacks including: the sort of 
behaviour one is investigating may not be satisfactorily summarised using numerical 
devices (for example in safety critical systems it may be insufficient to know that a certain 
parameter probably stays within an acceptable range, on would want to know it does); and   
the use of statistics inevitably involves the use of certain assumptions, which may not 
always be appropriate. 

In this paper we discuss the use of a constraint-based search of possible models which 
can be deployed on significant subspaces of the total space of MAS possibilities. Like the 
Monte Carlo approach this can be seen as falling half-way between syntactic proof 
procedures and single scenario analyses. Unlike the Monte Carlo approach it produces 
definite answers to questions relative to the chosen subspace of possibilities – it can be 
seen as model-based proof w.r.t. subsets of the possibilities. It does not magically solve 
the problems in understanding all emergent MAS behaviour but is a useful addition to our 
menu of tools because it embodies a different trade-off between semantic richness and 
computational efficiency. 

We will begin in section 2, by outlining the main idea.  The implementational concerns 
of the technique, i.e. the proposed architecture for doing the constraint-based model 
search in a “hunt” of tendencies is described in section 3. Following this (section 4), we 
will give an example of applying this architecture. Then in section 5, we will compare this 
procedure with a couple of related approaches. In section 6 we briefly position this 
approach with respect to single simulation inspection and general theorem proving. 
Finally, some conclusions are made. 

2 Exploring the envelope of emergent MAS behaviour 

We want  to be able to establish a more general type of knowledge of emergent behaviour 
than can be gained from the inspection of individual runs of a system.  In particular we 
want to know whether a particular emergent behaviour is a necessary consequence of the 
system or merely a contingent one.  Thus we propose to translate the system from an 
agent formulation into a form whereby the envelope of system possibilities can be 
determined, under a wider range of conditions. The target we have chosen is a constraint-
based architecture: the MAS, modulo a range of parameterisations and nondeterministic 
agent choices, are translated into a set of positive constraints and the inference engine 



then searches for a model (i.e. a representation of a possible simulation in the original 
MAS with a particular parameterisation and set of choices) that satisfies these.  This 
establishes the consistency of the positive constraints1. Postulated formulations of general 
emergent behaviour can be tested as to their necessity over the range of parameterisations 
and nondeterministic choices by negating them and adding them as a further constraint 
followed by getting the system to check that there is now no possible model. 

The idea is to do this in a way which makes it possible to translate the MAS into the 
constraint-based one in an automatic or near automatic way without changing the meaning 
of the rules that make it up.  In this way a user can program the system using the agent-
based paradigm with all its advantages, inspect single runs of the system to gain an 
intuitive understanding of the system and then check the generality of this understanding 
for fragments of the system via this translation into a constraint-based architecture. 

3 Implementing a suitable constraint-based architecture 

The main goal of the programming strategy to be described is to increase the efficiency in 
terms of simulation time, thus making the constraint search possible. The improvements 
will be achieved by making the rules and states more context-specific. This enables the 
inference engine to exploit more information about the logical dependencies between 
rules and thus increase the efficiency. Thus this can be seen as  a sort of ‘practical 
compilation’ process which undoes the agent encapsulation on an implemented MAS 
system in order to allow the more efficient exploration of its behaviour. In particular we 
split the transition rules into one per simulation period, and also by the initial parameters. 
This necessitates a dynamic way of building rules. This is done via a controller which 
generates the rules at the beginning of the simulation. 

3.1   Time Discrete Simulation Approach 

In synchronous simulations, time is taken as a discrete variable, given here as a set of 
positive numbers. In our case, we will call any of these numbers where the state variables 
are recalculated, a simulation time instant (STI) and the amplitude of the interval between 
two consecutive numbers, a simulation time step (STS). The transition function 
determines the state variables for STIs using the known values of the state variables in 
previous STIs. It is assumed that the state variables remain constant between two 
consecutive time instants. 

In this architecture the structure of the simulated system is more than the one usually 
described in simulation formalisations (see for example Zeigler, 1976), e.g., it allows 
certain forms of structural change. A meta-agent as a controller in a MAS could guide not 
only quantitative changes, but also qualitative ones admitting its introduction into an 
evolutionary environment in a modular and transparent manner. 

                                                        
1 Relative to the logic of the inference engine and range of parameters and choices allowed 



3.2    Overview of the Architecture 

We implemented the proposed architecture in three parts, let us call them model, prover 
and meta-prover (we happen to have implemented these as agents but that is not 
important). The following illustrates this: 

3.3  Program dynamics 

The system fires the rules in the following order: 
1. model: initialising the environment for the proof (setting parameters, etc..) 
2. meta-prover: creating and placing the transition rules in prover. 
3. prover: carrying on the simulation using the transition rules and backtracking while a 

contradiction is found. 
The program backtracks from a path once the conditions for the negated theorem are 

verified, then a new path with different choices is picked up. The next figure describes a 
transition step.  

 
 
 
 
 
 
 
 

Modules: 
- General parameters. 
- Initialisation 
- Trial Parameters 
- Choices. 
- Calculations and  
decisions. 
- Report. 
 

model 

          prover 
Modules:  
- Transition Rules (TR) 
- Data-Rules (DR) 
- Theorem checking (T) 

Meta-prover 
Modules for writing rules for: 
- State Transition (WTR). 
- Calculate auxiliary data for 
TR (WDR). 
- Checking theorem (WT). 

Part given the general 
environment of the proof.
  

Part executing the proof …   it is 
the instance where the proof is 
done 

Part responsible for 
controlling the proof. 

Fig. 1. Illustration of the system parts. 

prover prover 

transition 

STIi               STIi+1             TIME 

meta-prover 

Prover just after the model has 
settled the parameters of the 
simulation and the initialisations (i = 
0), or after certain STI, let’s say STIi. 

Meta-prover, writes on Prover the rules for 
period 1, if it is the beginning of the 
simulation; or for period STIi+1 and using 
data from periods 1, 2,…  STIi, in other cases.

 

Fig. 2. State transition from STIi to STIi+1 



3.4 Description of System Modules 

General Parameters (GP). This will be placed in the model (see figure 1). Its task will be 
to set the general parameters of the simulation. 

Initialising (I). This creates the entities (e.g. agents) given the static structure of the 
simulation and initialises the state variables for the first STI. It will be in model, as it is 
responsible for initialising parameters to be instantiated by meta-prover when writing the 
transition rules. 

Trial Parameters (TP). To be placed in the model. Its task is to set up parameters to 
be fixed during one simulation trial. In general these are parameters for which the agents 
do not have to take decisions every STI (as for GP). They would be fixed before creating 
the transition rules. 

Choices (CH). It will place alternatives for the choices the agents have every STI and 
the conditions under which each choice could be made. Choices will be mainly 
responsible for the splitting of the simulation and the rise of simulation branches. 

Data Rules (DR), and Calculations and Decision rules (C&D).  The first module 
would contain the set of rules responsible for doing calculations required by the transition 
rules and which is worthy to keep in the database (they could evolve like the TR). The 
second one is a sort of function generating a numerical or a truth value as a result of 
consulting the database and usually consists of backward chaining rules. 

Theorem (Constraints)(T). These are the conditions for checking the theorem. The 
theorem will be examined by a rule written by meta-prover in prover. 

Reports (R). The purpose of this module seems to be simple: to give the user outputs 
about what is going on in the dynamic of the simulation. This module will allows the user 
to know facts about the branch being tested as well as about branches already tested. 

Transition Rules (TR). This is the set of rules will be context dependent and will 
include explicitly syntactical manipulation to make more straightforward the linking 
among them. 

3.5 Split of the rules: a source of efficiency 

A graphical illustration of the split procedure would be: 
In forward chaining simulation the antecedent retrieves instance data from the past in 

order to generate data for the present (and maybe the future): 
past facts à  present and future facts 

Traditionally, the set of transition rules are implemented to be general for the whole 
simulation. A unique set of transition rules is used at any STI. 

As the simulation evolves, the size of the database increases and the antecedents have 
to discriminate among a growing amount of data. At STIi, there would be data from (i-1) 
alternative days matching the antecedent. As the simulation evolves it becomes slower 
because of the discrimination the program has to carry out among this (linearly) growing 
amount of data. 



           
       & 
parameter:       1 ...j.. m                1   .. .k  ..m                  1   ...k   …  m 

Original transition rule, let us say to write the variable V. 

Split rule for day-i (and parameter p) 
the antecedent contains: 
explicit reference to data given per transition rules in 
this or in previous iterations (1… i); 
explicit reference to parameters given in initialisation, 
or determined in this or in previous iterations; and 
call rules for calculations and decisions. 
the consequent gives: 
values of the variable V at time period-i. 

 

One rule per each: 
time period number:              1  … …       i     … ..        n 

Fig. 3. Splitting of rules by time period and a combination of parameters 

Using the proposed technique, we would write a transition rule for each simulation 
time. The specific data in the antecedent as well as in the consequent could be instanced. 
Where possible, a rule for each datum, the original rule will generate, would be written. 
This will be better illustrated in the example of the next section. 

This technique represents a step forward in improving the efficiency of declarative 
programs, one could, in addition, make use of partitions and time levels. Partitions permit 
the system to order the rules to fire in an efficient way according to their dependencies. 
Time levels let us discriminate among data lasting differently. The splitting of rules lets us 
discriminate among the transition rules for different simulation times given a more 
specific instancing of data at any STI. 

3.6 Measuring the efficiency of the technique 

Comparing the two programs, the original and the one where the technique was 
implemented, in terms of the amount of data the program has to search into in order to 
check if a rule fires, we could have a rough idea about the increase in speed given by the 
technique. 

While in the efficient program, each rule instances the specific data necessary to 
generate each datum at each STI, in the original one it has to discriminate among STIs and 
other not explicitly specified entities.  For example, if there were three instances of 
'producer', and the antecedent of a rule refers to 'producer', the rule has to discriminate 
among the three instances. This does not happen when using the technique. So, if there are 
N instances of any entities in certain rule, the technique speeds up the simulation in a 
factor of N when firing such a rule. Similarly, the technique speeds up the simulation by 
discriminating among STIs. 



The technique allows a speed by a factor of NM/2. SDML already has facilities for 
discriminating among STIs, but their use is not convenient for the sort of simulation we 
are doing (exploring scenarios and/or proving) because of the difficulties for accessing 
data from any time step at any time. If we had used this facility in the original simulation 
model, it would have been speeded up by MN(M-1)/2.  

It is clear that the greater the number of entities in the simulation or the number of 
STIs, the larger the benefits the technique gives. We must notice that the speeding up of 
the simulation is only one aspect of the efficiency given by the technique. 

3.7   Translating a traditional MAS architecture into a model-exploration MAS 
architecture. 

Before splitting the rules the original MAS is reduced in a sort of unencapsulation of the 
hierarchy of agents into the architecture shown in figure 1. Additional variables must be 
added into predicates and functions in order to keep explicit the reference to the "owner" 
agent of any instance of a variable. This will facilitate the check for tendencies, the testing 
of the theorem and any other data manipulation. It is as if the agent where replaced by its 
rulebase, see figure 4. 

In the original architecture, each agent has its own rulebase (RB) and database (DB). 
The agent's structure is given by its set <RB, DB> as well as by the structure of any 
subagents.  

Using the technique, the initialisation of the static structure is accomplished by the 
module "Initialising", as explained above. The transition rules (dynamic structure) will be 
situated in the module "Transition Rules".  There is still a hierarchy, both in the structure 
of the model and in the dynamics of the simulation – it is given by the precedence in the 
rulebase partition (figure 4). 

unencapsulation 

 

partition 1 

partition 3 

partition 2 
partition2.1 

partition 2.2 

 
Main Partition 

UNIVERSE  (or A):  <RB, DB>    

A1 :  <RB1,DB1> 

A2: <RB2, DB2> 

A3  :  <RB3,DB3> 

A2.1   :  <RB2.1, DB2.1> 
 

A2.2: <RB2.2, DB2.2> 

MAS Architecture: 
 each square represents an agent (A) with its rulebase (RB) and database (DB)

Logically partitioned: each square represents a partition 

Fig. 4: Unencapsulating a MAS architecture 



Now we turn to show a way of implementing the technique automatically. After adding 
variables to associate data with agents, the task is to write it modularly, as illustrated in 
figure 4. One of the key issues is to determine dependencies among rules and then choose 
appropriate data structures to allow the meta-prover to build the TR. A procedure to do it 
would be: 
1. Identify parameters and entities for splitting (agents and/or objects) as well as the 

dependencies among rules. Look for a "general" description of the dependencies. E.g. 
a Producer's price at STIi depends on Producers' sales and prices at STIi-1. 

2. Create a list of references or links to each datum used in dependencies. Taking the 
previous example, a list containing the names of the clauses for prices and sales is 
created ([Price1, Price2 … , Pricen], [Sale1, Sale2, … , Salen] (Pricei, refers to price at 
STIi). This list could be also specified by producer, if necessary.  

3. Initialise parameters (GP and TP) and data at STI1. It would be a task of module I (see 
above). It creates data used by module WTR at meta-prover and which are input for 
TR at STI2. 

4. Provide the values for the choices the agents have. 
5. Using these data structure and our knowledge about dependencies, we must be able to 

write the WTR, WDT, and WT at meta-prover. If TR at STIi depend on data at STIi-1 
then the list named in 2. would allow to make such a reference automatically 
accessing the appropriate elements in the list.  

6. Modules like R, C&D are auxiliary and do not need special attention. 
Constraints in the search are applied in different ways, for example when theorem is 

adapting (maybe relaxing conditions for a tendency) and as WTR and WDR take into 
account the past and present dynamic of the system (for instance, when restricting choices 
for the agents or objects, constraining the space of simulation paths). 

3.8  The platform used 

We implemented the systems described entirely within the SDML programming 
language2.  Although this was primarily designed for single simulation studies, its 
assumption-based backtracking mechanism which automatically detects syntactic logical 
dependencies also allows its use as a fairly efficient constraint-based inference system.  
SDML also allows the use of “meta-agents”, which can read and write the rules of other 
agents.  Thus the use of SDML made the procedures described much easier to experiment 
with and made it almost trivial to preserve the meaning and effect of rules between 
architectures. The use of a tailor-made constraint-satisfaction engine could increase the 
effectiveness and range of the techniques described once a suitable translation were done, 
but this would make the translation more difficult to perform and verify. 

4. An example 

A simple system of producers and consumers, which was previously built in SDML and in 
the Theorem Prover OTTER, was rebuilt using the proposed modelling strategy. In the 
new model the exploration of possibilities is speeded up by a factor of 14.  
                                                        
2 Information about SDML can be found at http://www.cpm.mmu.ac.uk/sdml or (Moss et al., 1998) 



Some of the split transition rules were the ones for creating (per each STI) producers’ 
prices and sales, consumers’ demand and orders, warehouses’ level and factories’ 
production. Among the rules for auxiliary data split were the ones for calculating: total-
order and total-sales (a sum of the orders for all producers), total-order and total-sales per 
producer, and total-order and total-sales per consumer.  

4.1 Example of a split rule: Rule for prices 

This rule calculates a new price for each producer at each STI (which we called day), 
according to its own price and sales, and the price and sales of a chosen producer, at the 
immediately previous STI. 

The original rule in SDML was like this: 
for all (producer) 
for all (consumer) 
for all (day) 
( 
price(producer,myPrice,day)      and 
totalSales(totalSales,day)      and 
sales(producer,mySales,day)     and 
choiceAnotherProducer(anotherProducer)     and 
price(anotherProducer,otherPrice, day)    and 
calculateNewPrice(mySales,totalSales, otherPrice, myPrice,newPrice) 
   implies 
price(producer, newPrice, day + 1)  
) 
 

The new rule (in the efficient program) will be “broken” making explicit the values of 
prices and sales per each day.  

In the following, we show the rule per day-i and producer-j: 
for all (consumer) 
( 
price(producer-j, myPrice, day-i)   and 
totalSales(totalSales, day-i)      and 
sales(producer, mySales, day-i)    and 
choiceAnotherProducer(anotherProducer)   and 
price(anotherProducer, otherPrice, day-i)   and 
calculateNewPrice(mySales,totalSales,otherPrice,myPrice,newPrice) 
   implies 
price(producer-j, newPrice, (day-i) + 1)  
) 

 
If the name of price is used to make explicit the day, the rule will have the following 

form. It is important to observe that only one instance of newPrice in the consequent is 
associated with only one transition rule and vice verse: 



for all (consumer) 
( 
price-i(producer-j, myPrice)    and 
totalSales-i(totalSales)     and 
sales-i(producer-j, mySales)    and 
choiceAnotherProducer(anotherProducer)  and 
price-i(anotherProducer, otherPrice)   and 
calculateNewPrice(mySales,totalSales, otherPrice, myPrice,newPrice) 
   implies 
price-(i+1)(producer-j, newPrice) 
) 

4.2 What the technique enables 

In this example, we used the technique to prove that the size of the interval of prices (that 
is: biggest price - smaller price, each day) decreased over time during the first six time 
intervals over a range of 8 model parameterisations. An exponential decrease of this 
interval was observed in all the simulation paths. All the alternatives were tested for each 
day - a total of 32768 simulation trajectories. It was not possible to simulate beyond this 
number of days because of limitations imposed by computer memory. There was no 
restriction because of the simulation time, as the technique makes the simulation program 
quite fast – it had finished this search in 24 hours.  

This technique is useful not only because of the speeding up of the simulation but also 
for its appropriateness when capturing and proving emergence. On one hand, it let us 
write the transition rules and the rule for testing the theorem at the beginning of the 
simulation in accordance to the tendency we want to prove. And, on the other hand, if the 
meta-prover is able to write the rules while the simulation is going on, it could adapt the 
original theorem we wanted to prove according to the results of the simulation. For 
example, if it is not possible to prove the original theorem then it could relax constraints 
and attempt to show that a more general theorem holds. Moreover, the technique could be 
implemented so that we have only to give the program hints related to the sort of proof we 
are interested in, then the meta-prover could adapt a set of hypotheses over time according 
to the simulation results. At best, such a procedure would find a hypothesis it could 
demonstrate and, at worst, such output could then be useful to guide subsequent 
experimentation.  

5 Some Other Approaches 

In OTTER (and similar Theorem Provers) the set of simulation rules and facts (atoms) is 
divided into two sets (this strategy is called support strategy) (McCune 1995): 

One set with “support” and the other without it. The first one is place in a list called 
“SOS” and, the second one, in the list “USABLE”. Data in USABLE is “ungrounded” in 
the sense that the rules would not fire unless at least one of the antecedents is taken from 
the SOS list. Data inferred using the rules in USABLE are placed in SOS when they are 
not redundant with the information previously contained in this list, and then used for 
generating new inferences. The criteria for efficiency are basically subsumption and 
weighting of clauses.  



Rules are usually fired in forward chaining but backward chaining rules and numerical 
manipulations are allowed in the constructs called “demodulators” (Wos, 1988). 

In simulation strategies like event-driven simulation or partition of the space of rules, 
in declarative simulation, are used. The criteria for firing rules is well understood, and 
procedures like weighting and subsumption usually are not necessary. Additionally, 
redundant data could be avoided in MAS with a careful programming. 

The advantages given for the weighting procedure in OTTER are yielded in MAS 
systems like SDML by procedures such as partitioning, where chaining of the rules 
allows firing the rules in an efficient order according to their dependencies. 

Among other approaches for the practical proof of MAS properties, the more pertinent 
might be the case conducted by people working in DESIRE (Engelfriet et. al., 1998). 
They propose the hierarchical verification of MAS properties, and succeeded in doing this 
for a system. 

However, their aim is limited to verification of the computational program – it is 
proved that the program behaves in the intended way. It does not include the more 
difficult task, which we try to address, of establishing general facts about the dynamics of 
a system when run or  comparing them to the behaviour observed in other systems (Axtell 
et al., 1996).  

6 A sequence of architectures for modelling behaviour and proving 
theorems in MAS 

The architecture we describe could be used after single simulations have been run to 
suggest useful properties to test for. Subsequently one could employ a syntactically 
oriented architecture for proving those tendencies outright.  Thus the proposed technique 
can be seen as falling in between inspecting single runs and syntactic theorem proving. 
This is illustrated in figure 5.  

The step to theorem proving from model-based exploration would involve a further 
translation step. The conditions established by experimenting with model-based 
exploration would need to be added to the MAS specification and all this translated into 
axioms for the theorem prover to work upon. The main aspects of the three architectures 
are summarised in Table 1, which is a comparison of these different approaches. 

Single Simulation 

Model Based Exploration 

Syntactic Theorem Proving 

Very rich. Gives all the semantic of the 
model 

Addition of constrains over parameters of the model, choices of the agents 
and the extension of the simulation in terms of time. 

Finite constrained. Useful for complete 
Scenario Analysis.  

More constraints are added. It is assumed the conditions underlying 
certain tendencies (theorems) have been identified. 

One theorem is tested at a time. The 
conditions are fixed for each trial. 

Fig. 5. Sequence of modelling architectures 



  Architecture: 

Aspect: 

SCENARIO 
ANALYSIS 

MODEL-
EXPLORATION  

SYNTACTIC 
PROOF  

Typical 
paradigm 

Imperative. Constraint Declarative 

Typical 
deduction 

system 

(Forward 
Chaining) 

Forward Chaining 
using efficient 
backtracking 

Backward chaining 
or resolution-based 

Nature of the 
manipulations 

Possible Semantic Range of Semantics Syntactic 

Limitations Not constrained.  
- Very rich. Too 
much information 
could mislead 

- Finite constrained. 
Still quite rich.  
- Suitable for 
Scenario Analysis. 

-Constrained.  
- Valuable for 
proving specific 
tendencies. 

Search style. Attempts to 
explore all 
simulation paths. 

Limits the search by 
constraining the 
range of parameters 
and agent choices 

Can be efficient in 
suitably constrained 
cases, typically 
impractical 

Table 1. A Comparison of Architectures 

7  Conclusion 

The proposed methodology is as follows: firstly, identify candidate emergent tendencies 
by inspection of single runs; secondly, explore and check these using the techniques of 
constraint-based model-search in significant fragments of the MAS; and finally, attempt to 
prove theorems of these tendencies using syntactic proof procedures.  This methodology 
is oriented towards identifying interesting tendencies and emergence in MAS an area little 
explored but of considerable importance. 

In addition, we have proposed a framework for improving the efficiency of MAS to 
enable the second of these. It has been implemented in an ideal example, resulting in a 
significant increase in the speed of the program. However, the notions are valid 
independently of the example and could be implemented in many different systems. In 
summary, the strategy consists of: unencapsulating the MAS system to allow the 
maximum amount of dependency information to be exploited; partitioning of the space of 
rules and splitting of transition rules by STI and some parameters, using the appropriate 
modularity of the simulation program, and specially initialising parameters and choices. 

The technique perhaps presages a time when programmers routinely translate their 
systems between different architectures for different purposes, just as a procedural 
programmer may work with a semi-interpreted program for debugging and a compiled 
and optimised form for distribution.  In the case of agent technology we have identified 
three architectures which offer different trade-offs and facilities, being able to 



automatically or semi-automatically translate between these would bring substantial 
benefits. 
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