
Determining the Envelope of Emergent Agent Behaviour
via Architectural Transformation

Oswaldo Terán*†, Bruce Edmonds* and Steve Wallis*

*Centre for Policy Modelling, Manchester Metropolitan University,
Aytoun Building, Aytoun Street, Manchester, M1 3GH, UK.

Tel. +44 161 247 6478 Fax. +44 161 247 6802
{o.teran,b.edmonds,s.wallis}@mmu.ac.uk

†Department of Operation Research and Centre for Simulation
 and Modelling, Universidad de Los Andes. Venezuela

Abstract. In this paper we propose a methodology to help analyse tendencies in
MAS to complement those of simple inspection, Monte Carlo and syntactic proof.
We suggest an architecture that allows an exhaustive model-based search of possible
system trajectories in significant fragments of a MAS using forward inference. The
idea is to identify tendencies, especially emergent tendencies, by automating the
search through possible parameterisations of the model and the choices made by the
agents. Subsequently, a proof of these tendencies could be attempted over all
possible conditions using syntactic proof procedures. Additionally, we propose a
computational procedure to help implement this. The strategy consists of:
unencapsulating the MAS so as to reveal the maximum information about logical
dependencies in the system. This information is maximised by splitting the
transition rules by time intervals and some parameters. An example applying this
procedure is exhibited which ‘compiles’ the rules into this form. In the example the
exploration of possibilities is speeded up by a factor of 14. This makes possible the
complete exploration of model behaviour over a range of parameterisations and
agent choices.

1 Introduction: Understanding MAS

MAS can (and frequently do) exhibit very complex behaviour – in this fact lies their
promise but it also means that they can be difficult to understand and predict. Broadly
there are two means by which we can seek to understand MAS: through design and
through observation. Careful design procedures based on well-understood formal models
of agent behaviour help us to understand the behaviour of individual agents and, in special
cases, larger parts of MAS. However understanding the behaviour of interacting groups of
autonomous agents by formal design methods has its limitations, and even the most
carefully designed MAS can exhibit emergent behaviour unforeseen by its designers. This
is hardly surprising as half the point of autonomous agents is that they should be able to
deal with circumstances unforeseen by their designers.

Thus a second important way in which we can control MAS (after careful design) is by
inspecting and analysing the behaviour of MAS in a post hoc manner, so that this can
inform our future design and control of them. In other words, just like any software

development environment, to effectively deploy MAS one needs both design and
debugging tools. The most common methods of such post hoc analysis are: firstly, by
detailed scenario analysis, where a single MAS trajectory at a time is examined and
analysed and secondly, using a Monte Carlo approach where the MAS is repeatedly run
and statistics collected about general trends over a sample of trajectories.

The scenario analysis provides the richest source of information, typically providing
far more detail than the programmer can possibly cope with. It is also inherently
contingent and it can be difficult to separate out what can be taken as representative
behaviour and what is exceptional. After examining and interacting with several such runs
of the system it is up to programmers to abstract an understanding of the MAS’s
behaviour using their intuition; the scenario analysis only conclusively demonstrates
possibilities.

A Monte Carlo approach can be used to separate out the exceptional from the
representative in some cases, but has a number of drawbacks including: the sort of
behaviour one is investigating may not be satisfactorily summarised using numerical
devices (for example in safety critical systems it may be insufficient to know that a certain
parameter probably stays within an acceptable range, on would want to know it does); and
the use of statistics inevitably involves the use of certain assumptions, which may not
always be appropriate.

In this paper we discuss the use of a constraint-based search of possible models which
can be deployed on significant subspaces of the total space of MAS possibilities. Like the
Monte Carlo approach this can be seen as falling half-way between syntactic proof
procedures and single scenario analyses. Unlike the Monte Carlo approach it produces
definite answers to questions relative to the chosen subspace of possibilities – it can be
seen as model-based proof w.r.t. subsets of the possibilities. It does not magically solve
the problems in understanding all emergent MAS behaviour but is a useful addition to our
menu of tools because it embodies a different trade-off between semantic richness and
computational efficiency.

We will begin in section 2, by outlining the main idea. The implementational concerns
of the technique, i.e. the proposed architecture for doing the constraint-based model
search in a “hunt” of tendencies is described in section 3. Following this (section 4), we
will give an example of applying this architecture. Then in section 5, we will compare this
procedure with a couple of related approaches. In section 6 we briefly position this
approach with respect to single simulation inspection and general theorem proving.
Finally, some conclusions are made.

2 Exploring the envelope of emergent MAS behaviour

We want to be able to establish a more general type of knowledge of emergent behaviour
than can be gained from the inspection of individual runs of a system. In particular we
want to know whether a particular emergent behaviour is a necessary consequence of the
system or merely a contingent one. Thus we propose to translate the system from an
agent formulation into a form whereby the envelope of system possibilities can be
determined, under a wider range of conditions. The target we have chosen is a constraint-
based architecture: the MAS, modulo a range of parameterisations and nondeterministic
agent choices, are translated into a set of positive constraints and the inference engine

then searches for a model (i.e. a representation of a possible simulation in the original
MAS with a particular parameterisation and set of choices) that satisfies these. This
establishes the consistency of the positive constraints1. Postulated formulations of general
emergent behaviour can be tested as to their necessity over the range of parameterisations
and nondeterministic choices by negating them and adding them as a further constraint
followed by getting the system to check that there is now no possible model.

The idea is to do this in a way which makes it possible to translate the MAS into the
constraint-based one in an automatic or near automatic way without changing the meaning
of the rules that make it up. In this way a user can program the system using the agent-
based paradigm with all its advantages, inspect single runs of the system to gain an
intuitive understanding of the system and then check the generality of this understanding
for fragments of the system via this translation into a constraint-based architecture.

3 Implementing a suitable constraint-based architecture

The main goal of the programming strategy to be described is to increase the efficiency in
terms of simulation time, thus making the constraint search possible. The improvements
will be achieved by making the rules and states more context-specific. This enables the
inference engine to exploit more information about the logical dependencies between
rules and thus increase the efficiency. Thus this can be seen as a sort of ‘practical
compilation’ process which undoes the agent encapsulation on an implemented MAS
system in order to allow the more efficient exploration of its behaviour. In particular we
split the transition rules into one per simulation period, and also by the initial parameters.
This necessitates a dynamic way of building rules. This is done via a controller which
generates the rules at the beginning of the simulation.

3.1 Time Discrete Simulation Approach

In synchronous simulations, time is taken as a discrete variable, given here as a set of
positive numbers. In our case, we will call any of these numbers where the state variables
are recalculated, a simulation time instant (STI) and the amplitude of the interval between
two consecutive numbers, a simulation time step (STS). The transition function
determines the state variables for STIs using the known values of the state variables in
previous STIs. It is assumed that the state variables remain constant between two
consecutive time instants.

In this architecture the structure of the simulated system is more than the one usually
described in simulation formalisations (see for example Zeigler, 1976), e.g., it allows
certain forms of structural change. A meta-agent as a controller in a MAS could guide not
only quantitative changes, but also qualitative ones admitting its introduction into an
evolutionary environment in a modular and transparent manner.

1 Relative to the logic of the inference engine and range of parameters and choices allowed

3.2 Overview of the Architecture

We implemented the proposed architecture in three parts, let us call them model, prover
and meta-prover (we happen to have implemented these as agents but that is not
important). The following illustrates this:

3.3 Program dynamics

The system fires the rules in the following order:
1. model: initialising the environment for the proof (setting parameters, etc..)
2. meta-prover: creating and placing the transition rules in prover.
3. prover: carrying on the simulation using the transition rules and backtracking while a

contradiction is found.
The program backtracks from a path once the conditions for the negated theorem are

verified, then a new path with different choices is picked up. The next figure describes a
transition step.

Modules:
- General parameters.
- Initialisation
- Trial Parameters
- Choices.
- Calculations and
decisions.
- Report.

model

 prover
Modules:
- Transition Rules (TR)
- Data-Rules (DR)
- Theorem checking (T)

Meta-prover
Modules for writing rules for:
- State Transition (WTR).
- Calculate auxiliary data for
TR (WDR).
- Checking theorem (WT).

Part given the general
environment of the proof.

Part executing the proof … it is
the instance where the proof is
done

Part responsible for
controlling the proof.

Fig. 1. Illustration of the system parts.

prover prover

transition

STIi STIi+1 TIME

meta-prover

Prover just after the model has
settled the parameters of the
simulation and the initialisations (i =
0), or after certain STI, let’s say STIi.

Meta-prover, writes on Prover the rules for
period 1, if it is the beginning of the
simulation; or for period STIi+1 and using
data from periods 1, 2,… STIi, in other cases.

Fig. 2. State transition from STIi to STIi+1

3.4 Description of System Modules

General Parameters (GP). This will be placed in the model (see figure 1). Its task will be
to set the general parameters of the simulation.

Initialising (I). This creates the entities (e.g. agents) given the static structure of the
simulation and initialises the state variables for the first STI. It will be in model, as it is
responsible for initialising parameters to be instantiated by meta-prover when writing the
transition rules.

Trial Parameters (TP). To be placed in the model. Its task is to set up parameters to
be fixed during one simulation trial. In general these are parameters for which the agents
do not have to take decisions every STI (as for GP). They would be fixed before creating
the transition rules.

Choices (CH). It will place alternatives for the choices the agents have every STI and
the conditions under which each choice could be made. Choices will be mainly
responsible for the splitting of the simulation and the rise of simulation branches.

Data Rules (DR), and Calculations and Decision rules (C&D). The first module
would contain the set of rules responsible for doing calculations required by the transition
rules and which is worthy to keep in the database (they could evolve like the TR). The
second one is a sort of function generating a numerical or a truth value as a result of
consulting the database and usually consists of backward chaining rules.

Theorem (Constraints)(T). These are the conditions for checking the theorem. The
theorem will be examined by a rule written by meta-prover in prover.

Reports (R). The purpose of this module seems to be simple: to give the user outputs
about what is going on in the dynamic of the simulation. This module will allows the user
to know facts about the branch being tested as well as about branches already tested.

Transition Rules (TR). This is the set of rules will be context dependent and will
include explicitly syntactical manipulation to make more straightforward the linking
among them.

3.5 Split of the rules: a source of efficiency

A graphical illustration of the split procedure would be:
In forward chaining simulation the antecedent retrieves instance data from the past in

order to generate data for the present (and maybe the future):
past facts à present and future facts

Traditionally, the set of transition rules are implemented to be general for the whole
simulation. A unique set of transition rules is used at any STI.

As the simulation evolves, the size of the database increases and the antecedents have
to discriminate among a growing amount of data. At STIi, there would be data from (i-1)
alternative days matching the antecedent. As the simulation evolves it becomes slower
because of the discrimination the program has to carry out among this (linearly) growing
amount of data.

 &
parameter: 1 ...j.. m 1 .. .k ..m 1 ...k … m

Original transition rule, let us say to write the variable V.

Split rule for day-i (and parameter p)
the antecedent contains:
explicit reference to data given per transition rules in
this or in previous iterations (1… i);
explicit reference to parameters given in initialisation,
or determined in this or in previous iterations; and
call rules for calculations and decisions.
the consequent gives:
values of the variable V at time period-i.

One rule per each:
time period number: 1 … … i … .. n

Fig. 3. Splitting of rules by time period and a combination of parameters

Using the proposed technique, we would write a transition rule for each simulation
time. The specific data in the antecedent as well as in the consequent could be instanced.
Where possible, a rule for each datum, the original rule will generate, would be written.
This will be better illustrated in the example of the next section.

This technique represents a step forward in improving the efficiency of declarative
programs, one could, in addition, make use of partitions and time levels. Partitions permit
the system to order the rules to fire in an efficient way according to their dependencies.
Time levels let us discriminate among data lasting differently. The splitting of rules lets us
discriminate among the transition rules for different simulation times given a more
specific instancing of data at any STI.

3.6 Measuring the efficiency of the technique

Comparing the two programs, the original and the one where the technique was
implemented, in terms of the amount of data the program has to search into in order to
check if a rule fires, we could have a rough idea about the increase in speed given by the
technique.

While in the efficient program, each rule instances the specific data necessary to
generate each datum at each STI, in the original one it has to discriminate among STIs and
other not explicitly specified entities. For example, if there were three instances of
'producer', and the antecedent of a rule refers to 'producer', the rule has to discriminate
among the three instances. This does not happen when using the technique. So, if there are
N instances of any entities in certain rule, the technique speeds up the simulation in a
factor of N when firing such a rule. Similarly, the technique speeds up the simulation by
discriminating among STIs.

The technique allows a speed by a factor of NM/2. SDML already has facilities for
discriminating among STIs, but their use is not convenient for the sort of simulation we
are doing (exploring scenarios and/or proving) because of the difficulties for accessing
data from any time step at any time. If we had used this facility in the original simulation
model, it would have been speeded up by MN(M-1)/2.

It is clear that the greater the number of entities in the simulation or the number of
STIs, the larger the benefits the technique gives. We must notice that the speeding up of
the simulation is only one aspect of the efficiency given by the technique.

3.7 Translating a traditional MAS architecture into a model-exploration MAS
architecture.

Before splitting the rules the original MAS is reduced in a sort of unencapsulation of the
hierarchy of agents into the architecture shown in figure 1. Additional variables must be
added into predicates and functions in order to keep explicit the reference to the "owner"
agent of any instance of a variable. This will facilitate the check for tendencies, the testing
of the theorem and any other data manipulation. It is as if the agent where replaced by its
rulebase, see figure 4.

In the original architecture, each agent has its own rulebase (RB) and database (DB).
The agent's structure is given by its set <RB, DB> as well as by the structure of any
subagents.

Using the technique, the initialisation of the static structure is accomplished by the
module "Initialising", as explained above. The transition rules (dynamic structure) will be
situated in the module "Transition Rules". There is still a hierarchy, both in the structure
of the model and in the dynamics of the simulation – it is given by the precedence in the
rulebase partition (figure 4).

unencapsulation

partition 1

partition 3

partition 2
partition2.1

partition 2.2

Main Partition

UNIVERSE (or A): <RB, DB>

A1 : <RB1,DB1>

A2: <RB2, DB2>

A3 : <RB3,DB3>

A2.1 : <RB2.1, DB2.1>

A2.2: <RB2.2, DB2.2>

MAS Architecture:
 each square represents an agent (A) with its rulebase (RB) and database (DB)

Logically partitioned: each square represents a partition

Fig. 4: Unencapsulating a MAS architecture

Now we turn to show a way of implementing the technique automatically. After adding
variables to associate data with agents, the task is to write it modularly, as illustrated in
figure 4. One of the key issues is to determine dependencies among rules and then choose
appropriate data structures to allow the meta-prover to build the TR. A procedure to do it
would be:
1. Identify parameters and entities for splitting (agents and/or objects) as well as the

dependencies among rules. Look for a "general" description of the dependencies. E.g.
a Producer's price at STIi depends on Producers' sales and prices at STIi-1.

2. Create a list of references or links to each datum used in dependencies. Taking the
previous example, a list containing the names of the clauses for prices and sales is
created ([Price1, Price2 … , Pricen], [Sale1, Sale2, … , Salen] (Pricei, refers to price at
STIi). This list could be also specified by producer, if necessary.

3. Initialise parameters (GP and TP) and data at STI1. It would be a task of module I (see
above). It creates data used by module WTR at meta-prover and which are input for
TR at STI2.

4. Provide the values for the choices the agents have.
5. Using these data structure and our knowledge about dependencies, we must be able to

write the WTR, WDT, and WT at meta-prover. If TR at STIi depend on data at STIi-1
then the list named in 2. would allow to make such a reference automatically
accessing the appropriate elements in the list.

6. Modules like R, C&D are auxiliary and do not need special attention.
Constraints in the search are applied in different ways, for example when theorem is

adapting (maybe relaxing conditions for a tendency) and as WTR and WDR take into
account the past and present dynamic of the system (for instance, when restricting choices
for the agents or objects, constraining the space of simulation paths).

3.8 The platform used

We implemented the systems described entirely within the SDML programming
language2. Although this was primarily designed for single simulation studies, its
assumption-based backtracking mechanism which automatically detects syntactic logical
dependencies also allows its use as a fairly efficient constraint-based inference system.
SDML also allows the use of “meta-agents”, which can read and write the rules of other
agents. Thus the use of SDML made the procedures described much easier to experiment
with and made it almost trivial to preserve the meaning and effect of rules between
architectures. The use of a tailor-made constraint-satisfaction engine could increase the
effectiveness and range of the techniques described once a suitable translation were done,
but this would make the translation more difficult to perform and verify.

4. An example

A simple system of producers and consumers, which was previously built in SDML and in
the Theorem Prover OTTER, was rebuilt using the proposed modelling strategy. In the
new model the exploration of possibilities is speeded up by a factor of 14.

2 Information about SDML can be found at http://www.cpm.mmu.ac.uk/sdml or (Moss et al., 1998)

Some of the split transition rules were the ones for creating (per each STI) producers’
prices and sales, consumers’ demand and orders, warehouses’ level and factories’
production. Among the rules for auxiliary data split were the ones for calculating: total-
order and total-sales (a sum of the orders for all producers), total-order and total-sales per
producer, and total-order and total-sales per consumer.

4.1 Example of a split rule: Rule for prices

This rule calculates a new price for each producer at each STI (which we called day),
according to its own price and sales, and the price and sales of a chosen producer, at the
immediately previous STI.

The original rule in SDML was like this:
for all (producer)
for all (consumer)
for all (day)
(
price(producer,myPrice,day) and
totalSales(totalSales,day) and
sales(producer,mySales,day) and
choiceAnotherProducer(anotherProducer) and
price(anotherProducer,otherPrice, day) and
calculateNewPrice(mySales,totalSales, otherPrice, myPrice,newPrice)
 implies
price(producer, newPrice, day + 1)
)

The new rule (in the efficient program) will be “broken” making explicit the values of
prices and sales per each day.

In the following, we show the rule per day-i and producer-j:
for all (consumer)
(
price(producer-j, myPrice, day-i) and
totalSales(totalSales, day-i) and
sales(producer, mySales, day-i) and
choiceAnotherProducer(anotherProducer) and
price(anotherProducer, otherPrice, day-i) and
calculateNewPrice(mySales,totalSales,otherPrice,myPrice,newPrice)
 implies
price(producer-j, newPrice, (day-i) + 1)
)

If the name of price is used to make explicit the day, the rule will have the following

form. It is important to observe that only one instance of newPrice in the consequent is
associated with only one transition rule and vice verse:

for all (consumer)
(
price-i(producer-j, myPrice) and
totalSales-i(totalSales) and
sales-i(producer-j, mySales) and
choiceAnotherProducer(anotherProducer) and
price-i(anotherProducer, otherPrice) and
calculateNewPrice(mySales,totalSales, otherPrice, myPrice,newPrice)
 implies
price-(i+1)(producer-j, newPrice)
)

4.2 What the technique enables

In this example, we used the technique to prove that the size of the interval of prices (that
is: biggest price - smaller price, each day) decreased over time during the first six time
intervals over a range of 8 model parameterisations. An exponential decrease of this
interval was observed in all the simulation paths. All the alternatives were tested for each
day - a total of 32768 simulation trajectories. It was not possible to simulate beyond this
number of days because of limitations imposed by computer memory. There was no
restriction because of the simulation time, as the technique makes the simulation program
quite fast – it had finished this search in 24 hours.

This technique is useful not only because of the speeding up of the simulation but also
for its appropriateness when capturing and proving emergence. On one hand, it let us
write the transition rules and the rule for testing the theorem at the beginning of the
simulation in accordance to the tendency we want to prove. And, on the other hand, if the
meta-prover is able to write the rules while the simulation is going on, it could adapt the
original theorem we wanted to prove according to the results of the simulation. For
example, if it is not possible to prove the original theorem then it could relax constraints
and attempt to show that a more general theorem holds. Moreover, the technique could be
implemented so that we have only to give the program hints related to the sort of proof we
are interested in, then the meta-prover could adapt a set of hypotheses over time according
to the simulation results. At best, such a procedure would find a hypothesis it could
demonstrate and, at worst, such output could then be useful to guide subsequent
experimentation.

5 Some Other Approaches

In OTTER (and similar Theorem Provers) the set of simulation rules and facts (atoms) is
divided into two sets (this strategy is called support strategy) (McCune 1995):

One set with “support” and the other without it. The first one is place in a list called
“SOS” and, the second one, in the list “USABLE”. Data in USABLE is “ungrounded” in
the sense that the rules would not fire unless at least one of the antecedents is taken from
the SOS list. Data inferred using the rules in USABLE are placed in SOS when they are
not redundant with the information previously contained in this list, and then used for
generating new inferences. The criteria for efficiency are basically subsumption and
weighting of clauses.

Rules are usually fired in forward chaining but backward chaining rules and numerical
manipulations are allowed in the constructs called “demodulators” (Wos, 1988).

In simulation strategies like event-driven simulation or partition of the space of rules,
in declarative simulation, are used. The criteria for firing rules is well understood, and
procedures like weighting and subsumption usually are not necessary. Additionally,
redundant data could be avoided in MAS with a careful programming.

The advantages given for the weighting procedure in OTTER are yielded in MAS
systems like SDML by procedures such as partitioning, where chaining of the rules
allows firing the rules in an efficient order according to their dependencies.

Among other approaches for the practical proof of MAS properties, the more pertinent
might be the case conducted by people working in DESIRE (Engelfriet et. al., 1998).
They propose the hierarchical verification of MAS properties, and succeeded in doing this
for a system.

However, their aim is limited to verification of the computational program – it is
proved that the program behaves in the intended way. It does not include the more
difficult task, which we try to address, of establishing general facts about the dynamics of
a system when run or comparing them to the behaviour observed in other systems (Axtell
et al., 1996).

6 A sequence of architectures for modelling behaviour and proving
theorems in MAS

The architecture we describe could be used after single simulations have been run to
suggest useful properties to test for. Subsequently one could employ a syntactically
oriented architecture for proving those tendencies outright. Thus the proposed technique
can be seen as falling in between inspecting single runs and syntactic theorem proving.
This is illustrated in figure 5.

The step to theorem proving from model-based exploration would involve a further
translation step. The conditions established by experimenting with model-based
exploration would need to be added to the MAS specification and all this translated into
axioms for the theorem prover to work upon. The main aspects of the three architectures
are summarised in Table 1, which is a comparison of these different approaches.

Single Simulation

Model Based Exploration

Syntactic Theorem Proving

Very rich. Gives all the semantic of the
model

Addition of constrains over parameters of the model, choices of the agents
and the extension of the simulation in terms of time.

Finite constrained. Useful for complete
Scenario Analysis.

More constraints are added. It is assumed the conditions underlying
certain tendencies (theorems) have been identified.

One theorem is tested at a time. The
conditions are fixed for each trial.

Fig. 5. Sequence of modelling architectures

 Architecture:

Aspect:

SCENARIO
ANALYSIS

MODEL-
EXPLORATION

SYNTACTIC
PROOF

Typical
paradigm

Imperative. Constraint Declarative

Typical
deduction

system

(Forward
Chaining)

Forward Chaining
using efficient
backtracking

Backward chaining
or resolution-based

Nature of the
manipulations

Possible Semantic Range of Semantics Syntactic

Limitations Not constrained.
- Very rich. Too
much information
could mislead

- Finite constrained.
Still quite rich.
- Suitable for
Scenario Analysis.

-Constrained.
- Valuable for
proving specific
tendencies.

Search style. Attempts to
explore all
simulation paths.

Limits the search by
constraining the
range of parameters
and agent choices

Can be efficient in
suitably constrained
cases, typically
impractical

Table 1. A Comparison of Architectures

7 Conclusion

The proposed methodology is as follows: firstly, identify candidate emergent tendencies
by inspection of single runs; secondly, explore and check these using the techniques of
constraint-based model-search in significant fragments of the MAS; and finally, attempt to
prove theorems of these tendencies using syntactic proof procedures. This methodology
is oriented towards identifying interesting tendencies and emergence in MAS an area little
explored but of considerable importance.

In addition, we have proposed a framework for improving the efficiency of MAS to
enable the second of these. It has been implemented in an ideal example, resulting in a
significant increase in the speed of the program. However, the notions are valid
independently of the example and could be implemented in many different systems. In
summary, the strategy consists of: unencapsulating the MAS system to allow the
maximum amount of dependency information to be exploited; partitioning of the space of
rules and splitting of transition rules by STI and some parameters, using the appropriate
modularity of the simulation program, and specially initialising parameters and choices.

The technique perhaps presages a time when programmers routinely translate their
systems between different architectures for different purposes, just as a procedural
programmer may work with a semi-interpreted program for debugging and a compiled
and optimised form for distribution. In the case of agent technology we have identified
three architectures which offer different trade-offs and facilities, being able to

automatically or semi-automatically translate between these would bring substantial
benefits.

Acknowledgements. SDML has been developed in VisualWorks 2.5.2, the Smalltalk-80
environment produced by ObjectShare. Free distribution of SDML for use in academic
research is made possible by the sponsorship of ObjectShare (UK) Ltd. The research
reported here was funded by CONICIT (the Venezuelan Governmental Organisation for
promoting Science), by the University of Los Andes, and by the Faculty of Management
and Business, Manchester Metropolitan University.

References

Axtell, R., R. Axelrod, J. M. Epstein, and M. D. Cohen (1996), “Aligning Simulation Models: A
Case of Study and Results”, Computational Mathematical Organization Theory, 1(2), pp. 123-
141.

Engelfriet, J., C. Jonker and J. Treur (1998) “Compositional Verification of Multi-Agent
Systems in Temporal Multi-Epistemic Logic”, Artificial Intelligence Group, Vrije Universiteit
Amsterdam, The Netherlands.

McCune, W. (1995), OTTER 3.0 Reference Manual Guide, Argonne National Laboratory,
Argonne, Illinois.

Moss, S., H. Gaylard, S. Wallis, B. Edmonds (1998), “SDML: A Multi-Agent Language for
Organizational Modelling”, Computational Mathematical Organization Theory, 4(1), 43-69.

Wos, L. (1988), Automated Reasoning: 33 Basic Research Problems, Prentice Hall, New Jersey,
USA.

Zeigler, B. (1976), Theory of Modelling and Simulation, Robert E. Krieger Publishing Company,
Malabar, Fl, USA.

