
The Constructability of Artificial Intelligence
(as defined by the Turing Test)

Bruce Edmonds

Centre for Policy Modelling,
Manchester Metropolitan University
http://www.cpm.mmu.ac.uk/~bruce

Contents

Abstract
The Turing Test, as originally specified, centres on the ability to perform a social role. The TT can seen as

a test of an ability to enter into normal human social dynamics. In this light it seems unlikely that such an
entity can be wholey designed in an ‘off-line’ mode, but rather a considerable period of trainingin situ would
be required. The argument that sincewe can pass the TT and our cognitive processes might be implemented
as a TM that, in theory, an TM that could pass the TT could be built is attacked on the grounds that not all
TMs are constructable in a planned way. This observation points towards the importance of developmental
processes that include random elements (e.g. evolution), but in these cases it becomes problematic to call the
result artificial.

Keywords: Turing Test, Artificial Intelligence, Constructability, Evolution, Society, Culture,
Computability, Symbol Grounding

1. Dynamic aspects of the Turing Test

The elegance of the Turing Test comes from the fact that it is not a requirement upon the
mechanisms needed to implement intelligence but on the ability to fulfil a role. In the laguage
of biology, Turing specified the niche that intelligence must be able to occupy rather than the
anatomy of the organism. The role that Turing chose was a social role – whether humans could
relate to it in a way that was sufficiently similar to a human intelligence that they could mistake
the two.

What is unclear from Turing’s 1950 paper, is the length of time that was to be given to the
test. It is clearly easier to fool people if you only have to interact with them in a single period
of interaction. For example it might be possible to trick someone into thinking one was an
expert on chess if one only met them once at a party, but far harder to maintain the pretence if
one has to interact with the same person day after day. It is something in the longer-term
development of the interaction between people that indicates their mental capabilities in a
more reliable way than a single period of interaction. The deeper testing of that abilities comes
from the development of the interaction resulting from the new questions that arise from
testing the previous responses against ones interaction with the rest of the world. The longer
the period of interaction lasts and the greater the variety of contexts it can be judged against,
the harder the test. To continue the party analogy, having talked about chess, one’s attention
might well be triggered by a chess article in next day’s newspaper which, in turn, might lead to
more questioning of one’s acquantance.

The ability of entities to participate in a cognitive ‘arms-race’, where two or more entities
try to ‘out-think’ each other seems to be an important part of intelligence. If we set a trap for a
certain animal in exactly the same place and in the same manner day after day and that animal
keeps getting trapped in it, then this can be taken as evidence of a lack of intelligence. On the

other hand if one has to keep innovating one’s trap and trapping techniques in order to catch
the animal, then one would usually attribute to it some intelligence (e.g. a low cunning).

For the above reasons I will adopt a reading of the Turing Test, such that a candidate must
pass muster over a reasonable period of time, punctuated by interaction with the rest of the
world. To make this interpretation clear I will call this the “long-term Turing Test” (LTTT).
The reason for doing this is merely to emphasise the interactive and developmentalsocial
aspects that are present in the test. I am emphasising the fact that the TT, as presented in
Turing’s paper is not merely a task that is widely accepted as requiring intelligence, so that a
successful performance by an entity can cut short philosophical debate as to its adequacy.
Rather that it requires the candidate entity to participate in the reflective and developmental
aspects ofhuman social intelligence, so that an imputation of its intelligence mirrors our
imputation of each other’s intelligence.

That the LTTT is a very difficult task to pass is obvious (we might ourselves fail it during
periods of illness or distraction), but the source of its difficulty is not so obvious. In addition to
the difficulty of implementing problem-solving, inductive, deductive and linguistic abilities,
one also has to impart to a candidate a lot of background and contextual information about
being human including: a credible past history, social conventions, a believable culture and
even commonality in the architecture of the self. A lot of this information is not deducible from
general principles but is specific to our species and our societies.

I wish to argue that it is far from certain that anartificial intelligence (at least as validated
by the LTTT) could be deliberately constructed by us as a result of an intended plan. There are
two main arguments against this position that I wish to deal with.Firstly, there is the
contention that a strong interpretation of the Church-Turing Hypothesis (CTH) to physical
processes would imply that it is theoretically possible that we could be implemented as a
Turing Machine (TM), and hence could be imitated sufficiently to pass the TT. I will deal with
this in section 2.Secondly, that we could implement a TM with basic learning processes and let
it learn all the rest of the required knowledge and abilities. I will argue that such an entity
would not longer be artificial in the section after (section 3). I will then conclude with a plea to
reconsider the social roots of intelligence in section 4.

2. The Constructability of TMs

Many others have argued against the validity of the CTH when interpreted onto physical
processes. I will not do this – my position is that there are reasons to suppose that any attempt
to disprove the physical CTT are doomed (Edmonds, 1996). What I will do is argue against the
inevitability of being able to construct arbitrary TMs in adeliberate manner. To be precise
what I claim is that, whatever our procedure of TM construction is, there will be some TMs
that we can’t constructor, alternatively, that any effective procedure for TM construction will
be incomplete.

The argument to show this is quite simple, it derives from the fact that the definition of a
TM is not constructive – it is enough that a TM could exist, there is no requirement that it be
constructable.

This can be demonstrated by considering a version of Turing’s ‘halting problem’ (Turing,
1936). In this new version the general problem is parameterised by a number,n, to make the

limited halting problem. This is the problem of deciding whether a TM of length1 less thann,
and input of length less thann will terminate (call this TM(n)). The definition of the limited

1. This ‘length’ is the base 2 logarithm of the TM index in a suitable enumeration of machines.

halting problem ensures that for any particularn it is fully decidable (since it is a finite function
 which could be implemented as a simple look-up table).

However there is not a general and effective method of finding the TM(n) that corresponds
to a givenn. Thus what ever method (even with clever recursion, meta-level processing,
thousands of special cases, combinations of different techniques etc.) we have for constructing
TMs from specifications there will be ann for which we can notconstruct TM(n), even though
TM(n) is itself computable. If this were not the case we would be able to use this method to
solve the full halting problem by taking the maximum of the TM and input’s length finding the
corresponding TM(n), and then running it for the answer. A more complete formal proof may
be found in the appendix.

What this shows is that any deterministic method of program construction will have some
limitations. What it does not rule out is that some method in combination with input from a
random ‘oracle’ might succeed where the deterministic method failed. The above arguments
now no longer hold, one can easily construct a program which randomly chooses a TM out of
all the possibilities with a probability inversely proportional to the power of its length (using
some suitable encoding into, say, binary) and this program could pickany TM. What one has
lost in this transition is, of course, the assurance that the resulting TMis according to one’s
desire (WYGIWYS – what you get is what you specified). When one introduce’s random
elements in the construction process one has (almost always) to check that the results conform
to one’s specification.

However, the TT (even the LTTT) is well suited to this purpose, because it is apost-hoc test.
It specifies nothing about the construction process. One can therefore imagine fixing some of
the structure of an entity by design but developing the restin situ as the result of learning or
evolutionary processes with feedback in terms of the level of success at the test. Such a
methodology points more towards the constructivist approaches of (Drescher, 1991, Riegler,
1992 and Vaario, 1994) rather than more traditional ‘foundationalist’ approaches in AI.

3. Artificiality and the Grounding of Knowledge

At the end of the previous section, I raised the possibility that an entity that embodied a
mixture of designed elements and learning in situ (using a source of randomness), might be
employed to produce an entity which could pass the LTTT. One can imagine the device
undergoing a training in the ways of humans using the immersion method, i.e. left to learn and
interact in the culture it has to master.

However, such a strategy, brings into question theartificiality of the entity that results.
Although we can say we constructed the entity before it was put into training, this may be far
less true of the entityafter training. To make this clearer, imagine if we constructed
‘molecule-by-molecule’ a human embryo and implanted it into a woman’s womb so that it
developed, was born and grew up in a fashion normal to humans. The result of this process (the
adult human) would certainly pass the LTTT, and we would call it intelligent, but to what
extent would it beartificial? We know that a significant proportion of human intelligence can
be attributed to the environment anyway (Neisser et al., 1996) and we also know that a human
that is not exposed to language at suitable age would almost certainlynot pass the LTTT (Lane,
1976). Therefore the developmental process is at least critical to the resulting manifestation of
human intelligence. In this case, we could not say that we had succeeded in creating a purely
artificial intelligence (we would be on even weaker ground if we had not determined the
construction of the original feotus but merely copied it from other cells).

1…n{ } 1…n{ }× 0 1,{ }→

The fact is, that if we evolved an entity to fit a niche (including that defined by the TT or
LTTT), then is a real sense that entity’s intelligence would be grounded in that niche and not as
a result of our design. It is not only trivial aspects that would be need to be acquired in situ.
Many crucial aspects of the entity’s intelligence would have to be derived from its situation if
it was to have a chance of passing the LTTT. For example: the meaning of its symbols (Harnad,
1990), its social reality (Berger, 1966) and maybe even its ‘self’ (Burns and Engdahl, 1998)
would need to have resulted from such a social and environmental grounding. Given the
flexibility of the processes and its necessary ability to alter its own learning abilities, it is not
clear that any of the original structure would survive. After all, we do not call our artifacts
natural just becuase they were initiated in a natural process (i.e. our brains), so whyvice versa?

4. The Social Nature of Intelligence

All this points to a deeper consequence of the adoption of the TT as the criterion for
intelligence. The TT, as specified, is far more than a way to short-cut philosophical quibbling,
for it implicates the social roots of the phenomena of intelligence. This is perhaps not very
surprising given that common usage of the term ‘intelligence’ typically occurs in a social
context, indicating the likely properties of certain interactions (as in the animal trapping
example above).

This is some distance from the usual conception of intelligence that prevails in the field of
Artificial Intelligence, which seems overly influenced by the analogy of the machine
(particularly the Turing Machine). This is a much abstracted version of the original social
concept and, I would claim, a much impoverished one. Recent work has started to indicate that
the social situation might be as important to the exhibition of intelligent behaviour as the
physical situation (Edmonds and Dautenhahn, 1998).

This interpretation of intelligence is in contrast to others (e.g. French, 1989) who criticise
the TT on the grounds that it isonly a test for human intelligence. I am arguing that this
humanity is an important aspect of a test for meaningful intelligence, because this intelligence
is an aspect of and arises out of a social ability and the society that concerns us in a human one.
Thus my position is similar to Dennett’s ‘intentional stance’ (Dennett, 1987) in that I am
characterising ‘intelligence’ as a characteristic that it is useful to impute onto entities because
it helps us predict and understand their behaviour. My analysis of the TT goes some way to
suppport this. It is for those who wish to drastically abstract from this to explain whatthey
mean by intelligence – in what way their conception is useful and what domain their definition
relates to (typically more abstract versions of intelligence are grounded in ‘toy’ problem
domains).

It is nice to think that Turing’s 1950 paper may come to influence academics back to
considering the social roots of intelligence, and thus counter one effect of his other famous
paper fouteen years earlier.

Appendix

To make the aargument about the inconstructability of some TMs more formal, one has to
specify what one is intending to construct themfrom. I will take the specification to be an
expression in a suitable logic, or to be more precise the index of the expression in a suitable
effective enumeration of expressions. The question translates as give one’s method for
programming, if there is an implementation of this expression (indicated by the index of the
TM is a suitable enumeration of them) can it always be obtained using this method.

In the below,L(x) is a predicate in a recursively axiomatisable first-order logic with
equality.

If whenever we could compute the truth ofL(x), for any givenx (with a programp), we
could also compute the programp from the expression ofL in the logic, then if we wanted to
know whetherL was implementable, the mere existence of such a program,p, would be
sufficient - as we would also know that we could compute that program.

If, on the other hand, there were cases where there is a programp that computesL, butthere
is no way to compute that programp from L, then it is clear that it is, at the very least, highly
misleading to say that “L is implementable”. In such a case it may be possible to come across
the programp by accident, but then we would still need to check that it was the correct
program.

Below we show that,given plausible limitations on our programming ability, such cases do
exist. Thus the normal characterization of computability is too weak for the purposes of the
arguments in this paper. Unless there is some calculating devices more powerful than a Turing
machine, in order to programL, we (aided by computers etc.) must be able to find a TM to
compute it. If this is not to be the result of an unverifiable accident we must be able to
somehoweffectively construct the TM that computes L.

We can formalise the situation in the following way.L is a statement in some recursively

axiomatized logic. So the statements in this logic can be effectively enumerated .

Similarly enumerate the possible TMs .

We then say, , or animplementation, if

(1)

and is realisable implementation, iff

(2)

Then define , or is aneffectively realisable implementationif, in

addition to condition (2),

(3)

The program represents the combined algorithm of all our ways of constructing

programs from statements like , in a planned, verifiable way. Of course, this may be

different for different people, and at different times, but fixed for any particular person (or
calculating device) at one time.

The question then becomes, given any particular , encoding a systematic method of

building a programs from statements in this language,“Are there pairs that are a

realisable implementation but not a effectively realisable implementation?”. In other words Is
there a difference between the normal criterion of computability and such “systematically
realisable computability”? The answer to this is“Yes” , as I now show

L1 L2 …, ,{ }

p1 p2 …, ,{ }

Li pn,() I∈ Li pn,()

Li x() pn x()↔ 1=

Li

n N Li pn,() RI∈()∈∃

Li pn,() EIRm∈ Li pn,()

m∃ N j∃ N Li x() pj x()↔ 1=()∈ Li x() ppm i() x()↔()→[]∈

pm

Li

pm

Li pn,()

Theorem

Proof Outline

We consider a series of statements, indexed by the natural numbers,n, representing what I
call thelimited halting problem, i.e.“for all (fixed) program halts given input ”.

Call this , in contrast to the full halting predicate (“program halts given

input w”). This is a finite function, hence it is computable in the sense that for eachn there

exists1 a program that decides . Thus for each separaten, is theoretically

reducible.

If for all n is a theoretical reduction then this would allow us to also

decide , since by the ‘s-n-m theorem’ (e.g. Cutland, 1980: 81) there is a computable

function, q, such that . Then would be decided by

, and thus would be computable, which we know is not the case
(Turing 1936).

Thus for any there is an , and a programq, but not

.

Here, you have to be careful about the indexing. What the above theorem does not say is
that there is a pair that is a theoretically implementation but not an effective implementation
given any program . After all, given any particular pair one could simply add this as a

special case in your plan represented by a program’ that would compute an index for a

program to compute the first of the pair from the second. The point is that there is no
systematic way of doing this short of adding special cases for all such cases (an infinite number
of them). So if you are going to implementall such theoretically realisable implementations,
there must be some arbitrary or non-computable element. If it is arbitrary or non-computable
one can not say that it is effective. Thus at least some theoretically implementations are not
systematically realisable (as in “implemented as result of a deliberate plan to do so”).

Glossary of Acronyms

CTH – Chruch-Turing Hypothesis (any text on computability, e.g. Cutland, 1980)

LTTT – Long-Term Turing Test (defined in section 1)

TM – Turing Machine (Turing, 1936)

TT – Turing Test (Turing, 1950)

References
Berger, 1966

Berger, P. L., 1966,The Social Construction of Reality, Garden City, NY: Doubleday.

1. This is not, of course, a constructive definition. One knows thereexists such a program - it could be
implemented as a simple look-up table - even if one doesnot know how to find the entries. This is the point -
the criteria of computability, as normally applied, is not constructive.

m∀ N f h,∃ N∈() Lf ph,() RI EIRm–∈()∈

i n< pi w n<

Hn i w,() H i w,() pi

qn Hn i w,() Hn i w,()

Hn i w,() ppm i() i w,(),()

H i w,()
q x y z, ,() ppm x() y z,()= H i w,()

q i 1+ i w, ,() 1= H i w,()

m N∈ h N∈ Hh q,() TR∈

Hh q,() IRm∈

pm

pm

Burns and Engdahl, 1998

Burns, T. R., and Engdahl, E. E., 1998, The Social Construction of Consiousness, Part 2:
Individual Selves, Self-awareness and Reflectivity,Journal of Consciousness Studies,
5:166-184.
Cutland, 1980

Cutland, 1980,Computability. Cambridge: CUP.
Dennett, 1987

Dennett, D. C., 1987,The Intentional Stance, Cambridge, MA: MIT Press.
Drescher, 1991

Drescher, G. L., 1991,Made-up Minds – A Constructivist Approach to Artificial Intelligence.
Cambridge, MA: MIT Press.
Edmonds, 1996

Edmonds, B., 1996, ‘Pragmatic Holism’. CPM Report 96-08, MMU, 1996.
http://www.cpm.mmu.ac.uk/cpmrep08.html
Edmonds and Dautenhahn, 1998

Edmonds, B. and Dautenhahn, K., 1998, ‘The Contribution of Society to the Construction of
Individual Intelligence’. Workshop on Socially Situated Intelligence, SAB’98. Zurich, August
1998.
French, 1989

French, R. M., 1989, Subcognition and the Limits of the Turing Test.
Harnad, 1990

Harnad, S., 1990, ‘The symbol grounding problem’.Physica D, 42:335-346.
Lane, 1976

Lane, H., 1976,The Wild Boy of Aveyron. Cambridge, MA: Harvard University Press.
Neisser et al., 1996

Neisser, U. et al., 1996, Intelligence: knowns and unknowns,American psychologist,
51:77-101.
Riegler, 1992

Riegler, A., 1992, ‘Constructivist Artificial Life and Beyond’. Workshop on Autopoiesis and
Perception, Dublin City University, Aug. 1992.
Turing, 1936

Turing, A. M., 1936, ‘On Computable Numbers, with an application to the
Entscheidungsproblem’.Proceedings of the London Mathematical Society, 242:230-265.
Turing, 1950

Turing A. M., 1950, ‘Computing Machinery and Intelligence’.Mind, 59:433-460.
Vaario, 1994

Vaario, J., 1994, ‘Artificial Life as Constructivist AI’.Japanese Society of Instrument and
Control Engineers, 33:65-71.

