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Abstract. This paper determines the complexity of a constraint model-based 
proof of the envelope of a tendency in the dynamics of a Multi-Agent-based 
Simulation model. The proof is performed via a constraint model-based 
exploration of simulation trajectories using forward inference, by means of 
which a whole fragment of the simulation model theory is investigated. Such 
exploration allows for all simulation trajectories defined by a range of 
parameters of the model  and a range of choices of the agents. The paper verifies 
that the search is coNP-complete. 

1 Introduction  

There is a need for studying and proving (emergent) tendencies in the simulation of 
social systems (including simulation of organizations). This need has been especially 
remarkable in those works related with elaborating or testing theories [1, 4, 6]. Such a 
need has not been satisfied by traditional approaches for exploring the dynamics of 
simulation models, such as Scenario Analysis and the Monte Carlo method. Neither 
of these approaches performs exhaustive explorations of simulation trajectories in 
subspaces of the simulation theory. The explored trajectories are chosen, in the first 
case, by a domain expert, and in the second case, randomly. Owing to these facts, 
those approaches cannot be used for proving tendencies in the dynamics of a 
simulation model - the allowed conclusions are valid either according to the expertise 
of a domain expert or statistically. 

As an alternative to these traditional methods, in previous papers [8-10] a 
hierarchy of computational architectures for searching for and proving tendencies in 
a Multi Agent System-based (MABS) simulation model has been proposed. The first 
architecture, that at the higher level, consists of the MABS model where tendencies 
will be searched for by the modeller. After a tendency is found, at a second 
architectural level, a constraint logic model1 proof of the envelope of the simulation 
trajectory is proposed. In those papers, a computational technique for doing this proof 
                                                                 
1 The term ‘logical model’ means model in the logical sense, which is different to the idea of 

model in modeling and simulation theory. In the terminology used in this paper, a logical 
model corresponds to a simulation trajectory. 
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efficiently is implemented and illustrate by using an example. And, at a third 
architectural level, a more general proof of the envelope of the found tendency would 
be implemented by exploring a wider fragment of the simulation theory by using a 
syntactic driven search. As explained better in [10], this research contributes in 
bringing closer the simulation and the logic programming communities.   

The present paper examines the computational complexity of the procedure 
implemented in the second architectural level. First, in the second section, simulation 
theory formalisms are given. Then, in section three, the idea of envelope is reviewed.  
Afterwards, in the fourth section, the logic-based exploration of simulation 
trajectories implemented for proving the envelope of tendencies in simulation models 
is described. Then, in the fifth section, the computational complexity of such 
exploration is established. And finally, in section six, some conclusions are drawn. 

2 Simulation Theory 

2.1 Formal Representation of a System (according to Zeigler [13-15]) 

The idea is to provide a formal description of a target system or of a model of it. 
Originally, Zeigler’s [15] basic formalism is intended to describe simulation models 
whose structure is fixed, which are common in modelling and simulation of industrial 
systems, for instance, of queue systems. These ideas can be easily extended to MABS 
models.  

Aspects of Zeigler’s formalism are represented in Figure 1.  The situation is shown 
for two simulation (time) steps: from the former time1 to the latter time2. An input 
value x, an output value y, an internal state q, at each time step, and the transition 
from the first time step to the next one, are illustrated. The output is a function 
defined by a modeller or by an observer. The domain of the output function is the 
internal state of the system. It is supposed that there is a function λ generating the 
output yi from the state of the system qi, and a function δ defining the new state of the 
system qi+1 as a function of a previous state qi and the input xi+1. Time is considered as 
an independent variable.  

 

 

Figure 1. Basic notions in Zeigler’s formalism: input values x1, x2; system states  q1, 
q2; output values y1, y2; output function  λ; and transition  function δ. 
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More formally, Zeigler’s notation for a system S is:  S = < T, X, Ω, Q, Y, δ, λ  >. 
Where: 
T: Time base (T =  Reals or T = Integers). 
X:  Input value set (each input is a sequence of values) 

Ω: Input segment set, subset of (X, T),  Ω = {w / w: < 0, τ  > → X, τ ∈ T}. 
Q: State set. 
δ: State transition function. δ: Q x Ω  → Q. 
λ: Output function, λ: Q → Y.  
Y: Output value set.  (there should exist a set of output segments{ρ / ρ: < 0, τ  > → Y, 
τ ∈ T}) 

The set < T, X, Ω, Q, Y, δ, λ > is called the system structure. The subset < X, Ω, Q, 
Y > gives the static structure and the rest of the specification, δ and λ, the dynamic 
structure. The dynamic structure consists of the laws for changing the state of the 
model (usually having time as the independent variable). Notice that there are no laws 
of change either for the static or for the dynamic structure, that is, this specification 
does not consider systems with variable structure.  

2.2 Zeigler’s Levels of System Specification 

The idea is to have a hierarchy of descriptions of systems by increasing levels of 
elaboration in the sense that the higher the level, the more detail the system 
specification offers. This is helpful, for instance, for comparing model descriptions 
and for determining the degree of specification a model has. 

Level 0: Observation Frame, S = < T, X, Y  >. The sets of inputs (X), outputs (Y), 
and the time base (T) are distinguished but it is not known how the two first 
interrelate. 

Level 1: Input/0utput (I/O) Relation Observation (IORO), S = < T, X, Ω, Y, R>, (R 
⊆  Ω  ×  (Y,T), where (w,ρ) ∈ R →  (implies) (dom(w) = dom (ρ )).  Ω  is the set of 
inputs and R is a relation between the input and output sets. Still, it is not possible to 
differentiate among the different outputs associated with one input and vice versa.  

Level 2: I/O Function Observation (IOFO), S = < T, X, Ω, Y, F  >, (f ∈ F → 
(implies) f ⊆  Ω  ×  (Y,T) is a function, and if f = (w,ρ) then dom (w) = dom (ρ )). At 
this level, there is a function from the input to the output set which permits to 
differentiate among the different outputs associated with an input. According to 
Zeigler’s theory, this is granted by the knowledge of the initial state. Still, there is no 
knowledge about the states of the system along time (apart from the initial state).  

Level 3: I/O System Specification, S = < T, X, Ω, Q, Y, δ, λ  >. At this stage, the 
state set (Q), the transition (δ) and output (λ) functions are also known. Nevertheless, 
there is no distinction of the components of a system. 

Level 4: Multicomponent System Specification. Each component is defined as a 
subsystem and how components work together is indicated. At this level, Zeigler 
presents two slightly different specifications: the nonmodular coupled 
multicomponent system and the modular coupled network of systems. The difference 
between this two specifications is put in the following terms by Zeigler et al. [13, pp. 
125]: “Whereas in networks of system specification individual component systems 
are coupled by connecting their input and output interfaces in a modular way, 
components of [nonmodular] multicomponent systems influence each other directly 
through their state transition functions”. Thus, the difference is only in the way the 
interaction among subsystems is defined: via an interface and in a modular way in a 
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network of system specification, or directly by their state transition functions in a 
nonmodular way in a nonmodular multicomponent system specification. Both cases 
are useful to describe Multi-Agent Systems (MAS). In particular, the description of a 
nonmodular coupled multicomponent system can be summarised as follows:  

MS (a multicomponent system) = < T, X, Ω, Y, D, {Md}  >.     Where: T, X, Ω, Y, 
are as defined above. D is the set of component references, and, the set {Md} gives the 
specification for each d in D. For all  d ∈ D:  Md = < Qd , Ed , Id , δd , λd  >, is a 
component, where:  

Qd is the set of states of the component d,  
Ed ⊆ D is the set of components influencing d,  
Id ⊆ D is the set of components influenced by d,  

jEjiIid QQ
dd ∈∈

×→Ω××:δ  is the state transition function of d,  

YQiIid
d

→Ω××
∈

:λ is the output function of d. 

2.3 MAS-based Simulation 

A MAS consists basically of a hierarchy of agents.  Each agent can be described as a 
system by using Zeigler’s formalism: agents without sub-agents will be described at 
level 3 while containers will be described at level 4. In general, a multicomponent 
system specification is useful to describe any MABS model.  

A sort of change allowed in MAS but no explicitly considered in Zeigler’s 
formalism is structural change. Structural change happens, for instance, when agents 
are eliminated or when new agents are introduced in a simulation trajectory. For this 
to happen, laws of structural change should be given, e.g., conditions for introducing 
a new agent, as well as specifications about the structure and initial state of the new 
agent, and about how it will interact with other agents. Structural change brings in 
changes at the system specification at level 4 in a simulation trajectory. Formalisms 
for simulations involving structural change are presented by Barros [2-3]. 

3 Enveloping Tendencies in a Simulation Model 

The idea is to enclose or encircle in some sense several instances of the simulation 
output as an alternative to statistical summaries. An envelope will be, in some sense, a 
contour of several instances of the simulation output. It does not seem convenient to 
use the strong concept of envelope managed in mathematics. Rather, an envelope will 
be chosen considering the trade-off between practical usefulness (for a modeller) and 
precision.  

By precision we mean how close the concept is to the ideal mathematical notion of 
a tangent curve/surface. For example, in mathematics given a family of functions 
(which might correspond to several runs of a simulation output Y, got, for example by 
varying some parameters), let us say  yj(t), j =1,2, .,.k, an envelope of this family will 
be a curve E being tangent at each point to a member of that family (let us say it is 
tangent to yj at (ti,  yj (ti)). Obviously, in simulation only as a casualty the instances of 
a simulation output could conform a family of curves having such a kind of tangent - 
so we have to use a more relaxed concept of envelope. 

Consider the case of enveloping a single simulation output, Y. Each trajectory will 
generate a sequence of real values over time, Y. Calling yij the output value at time 
instant i for trajectory j, an envelope might consist of two sequences of values over 
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time: Eupper and Elower, which in some sense cover all trajectories. The value of Eupper at 
time instant i must be greater than or equal to yij for all j, and Elower at time instant i 
must be lower than or equal to yij for all j. That is, the envelope would be given by two 
sequences of values over time, where for each time instant all values generated by the 
simulation trajectories are enclosed by the two values given by these two value sets. 
More precisely, if the outputs yij are given for the simulation trajectories j = 1,…,k, 
and for the time instants ti = 1,2,…l, then the envelope of interest at ti might be 
defined by the two values:   Eupper , i = max j ( yij)  and  Elower , i =min j ( y ij). 

Alternatively, first an approximating function, f, for the output value set Y that each 
trajectory generates might be elaborated; then, the instances of these functions (one 
function for each trajectory) might be enveloped. 

To illustrate the practical use of analysing the simulation outputs by enveloping the 
output think about the simulation of a chaotic system, where the envelope might help 
in defining the area where a chaotic attractor is placed. 

4 Proving Tendencies Via a Model-based Exploration of Simulation 
Trajectories in a MAS-based Simulation Model 

4.1 Logical Model-Constrained Exploration of Simulation Trajectories 

A simulation – e.g., an event-driven, a finite differences, or a MABS - can be seen as 
a partial logical model defined by the sequence of states (of the set Q, in Zeigler’s 
formalism) generated by the transition function δ for a system in the third or fourth 
level of specification defined in Zeigler’s formalism. Usually, in a trajectory only a 
partial set of all the facts of the logical model corresponding to the trajectory are 
explicitly generated. This partial set consists of those facts that are relevant, either 
because they are required for the modeller as outputs or because they are necessary to 
generate the simulation transition states. The remaining facts (although knowable) are 
left as unknown.  

There are different methods to specify a theory in a language. One method 
commonly employed in logic consists in using a set of formulas of the language to 
represent the axioms of the theory . In a declarative program a simulation model is 
specified via a database, a rulebase (which defines the transition function) and the 
underlying logic of the program. Potential trajectories are defined via non-
deterministic factors of the simulation. These factors are usually represented by the 
parameters of the model and the choices of the processes.  

The interest in this paper is in exploring the simulation trajectories corresponding 
to a range of parameters of the model and choices of the agents. The transition 
function, δ, either for each agent (or other simulation process) or for the whole 
simulation model is nondeterministic. 

The idea in previous studies [8-10] has been to analyse the emergence of 
tendencies  in a simulation by exploring a subspace of the space of trajectories. For 
this exploration, a logical model-based constraint search was implemented where 
constraints standed for selected parameters and choices. The exploration allows a 
modeller to explore that fragment of the simulation theory defined by the selected 
range of parameters and choices (see Figure 2). Consequently, the resulting 
conclusions and proofs will be valid over that fragment of the theory and, under 
appropriate justifications, they could be extrapolated to the whole simulation theory 
or to a corresponding real model.  
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Figure 2. Theory given by simulation trajectories 

4.2 Logical Model Exploration for Proving the Necessity of a Tendency 

The idea is to generalise about tendencies going from the observation of individual 
trajectories to observation of a group of trajectories generated for certain parameters 
and choices. In particular, it is intended to know if a certain tendency is necessary or 
contingent in the explored trajectories. We understand a simulation trajectory as a 
logical model embedded in a simulation program (a ‘possible world’ in semantic 
terms) and involving trajectories of entities (e.g., agents) inside the simulation and, 
hence, different from trajectories of these entities. It is a cross-product of all settings 
of the structure of the simulation model and all processes (e.g., agents’ choices) into 
one path through a high -dimensional space (see Figure 3).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Representation of a simulation theory in terms of the simulation trajectories, and 
of these in terms of agents’ choices (for a single parameter-setting and two agents) 
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As said above, the transition function of an agent, other process, or the whole 
simulation model is nondeterministic as the simulation model can assume alternative 
parameters and as the agents and/or process can select alternative choices. 

The character of the search in our models has been predominantly logical model, 
constraint, forward-chaining, and clausal ordered. A logical model is generated for 
each combination of parameters and choices and for a finite iteration number, n. 
Given a combination of parameters and choices a deterministic transition function 
may be defined to generate the logical model by iterating from the initial state until 
the iteration number, n, is reached.  

In the suggested exploration, first, each combination of parameters provides a 
different structure of the simulation model (see Figure 4). Following, ‘paths’ 
representing trajectories are generated for each structure. Then, while the simulation 
is going on, choices produce branch points where alternative settings for each choice 
turn out into a different simulation trajectory.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  4. A model constraint-based exploration of the dynamics of a simulation model 
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This exhaustive constraint-based search over a range of possible trajectories makes 
it possible to establish the necessity of postulated emergent tendencies. Following a 
procedure similar to that used in theorem-proving [5,12], a subset of the possible 
simulation parameterizat ions, agent choices and iteration number is specified, the 
target emergent tendencies are prearranged in the form of negative constraints, and an 
automatic search over the possible trajectories is performed.  

Tendencies are shown to be necessary for the finite number of iterations n, with 
respect to the range of parameterisations and non-deterministic choices, by first 
finding a possible trajectory without the negative constraint to show the rules are 
consistent and then showing that all possible trajectories violate the negation of the 
hypothetical tendency when this is added as a further constraint. This is equivalent to 
showing that all possible tendencies obey the positive form of the constraint, i.e., that 
the positive form is true for all tendencies. 

5 Determining the Complexity of a Constraint Model-based Proof 
of the Envelope of a Tendency 

The aim of this section is to demonstrate that the exploration of trajectories proposed 
in the previous section applied over an infinite (theoretically)  number of iterations is 
coNP-complete. To make clearer the exposition, the simulation exploration 
subject of this paper will be called the target problem .  As is usual for this sort 
of verification, two steps are followed: 

First, it will be proved that the target problem is in coNP by expressing it as a 
binary tree of depth n.  

Second, it will be proved that the problem is also coNP-complete by translating the 
validity (of Boolean expressions) problem, a typical coNP-complete problem, into the 
target problem.  

For the first part of the proof the aim is to form a Boolean quantified expression:  
                   ∀x1  ∀ x2  ∀ x3  ∀ x4  ∀ x5  …∀ x2n -1  ∀ x2n  (F)                (1) 
where F is the formula to be evaluated over the variables x1 … x2n and n is the number 
of iterations. 

 The deterministic part in the state transition of the simulation will be called 
environment’s actions, and it will be assumed that it corresponds to the impair 
variables in (1). It captures changes not associated with agents’ choices – and 
basically that part of the simulation where “agents are placed”. Consequently, there is 
only one alternative action for the impair  variables 2. The even variables correspond to 
the agents’ choices (which are going to be called agents’ actions). More precisely, for 
iteration i, i = 1, 2, …, n, there are two subsets of variables: {x2i- 1} and  {x2i}, where 
{x2i - 1} is used to represent the environment actions and {x2i} stands for the agent’s 
actions. Thus, a whole simulation path or simulation trajectory is represented by a 
concatenation of branches, where each branch corresponds to a unique assignment of 
values to each variable in the whole set {xi}. 

Finally, F will be the question: whether the searched tendency has occurred in a 
simulation trajectory. The whole expression (1) is true if for all possible assignments 
of values to the variables the tendency occurs. As each particular assignment of 
values to the whole set of quantified variables corresponds to a simulation trajectory, 

                                                                 
2 Environment’s actions are assumed deterministic. The results of this paper are easily 

extendible to the case where the environment’s actions are non-deterministic. 
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the proof is successful if this expression is valid for all possible values the quantified 
variables can take! (e.g., for all possible agents’ choices3). 

To check if the proof is successful, a Boolean circuit, where an AND gate stands 
for the∀  quantifier, is written (see Figure 5). A leaf in this circuit is evaluated to 
true if the tendency is found in the corresponding simulation path and to false 
otherwise. The whole circuit will be true if and only if the tendency appears in all 
simulation paths. Hence, the proof is successful if and only if the circuit is true (e.g., 
the tendency is found in all paths).  

These two expressions of the problem (that is, the Boolean circuit shown in figure 
5 and the expression of equation (1)) are sufficient to prove that the target problem is 
coNP.  

The next task is to prove that the problem is coNP-complete. It is easy to see the 
similarities between the target problem and the validity of a Boolean expression. A 
Boolean expression is an expression: (a) x, where x is a Boolean variable (variable 
that takes the values True and False), (b) ¬φ,where ¬ is the logical not, and φ is a 
Boolean expression c) φ1 ∨ φ2, where φ1 and φ2 are Boolean expressions and ∨ is the 
logical symbol or (d) φ1 ∧ φ2, where φ1 and φ2 are Boolean expressions and ∧ is the 
logical  symbol  and. Validity  of  a  Boolean  expression  φ,  consists   in  determining  

 
 

Figure 5. Boolean circuit for the target problem 
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whether the Boolean expression φ is valid under all truth assignments 
(interpretations). If φ is not a valid formula, it can be disqualified by exhibiting a truth 
assignment that does not satisfy it. 

We may evaluate a Boolean expression by using a Boolean circuit similar to that 
given in figure 5 (see figure 6). A first variable is chosen from the Boolean expression 
φ and represented by the first node, and then two branches are generated from this 
node: one the case the variable is given the false value and the other for the case the 
variable is given the true value. Then a node is aggregated to each of these branches 
representing a second selected variable, and two branches from each of these new 
nodes will represent the true and false value assignments to this second variable. 
Imagine that this procedure is continued until all variables in the expression φ are 
considered. A leaf of this tree (i.e., a path) will be evaluated to true if the Boolean 
expression φ is true for the particular (an unique) value assignments the variables 
have in that path of the Boolean tree. Consequently, the expression φ is valid iff all 
leaves of the Boolean tree have been evaluated to true. 

 

 
Figure 6. Boolean circuit for the validity problem 
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This tree corresponds to a target problem, where:  
a. The number of iterations, n, corresponds to the number of variables in the 

Boolean expression φ, 
b. The environment decisions are not considered (do not change the state of the 

system), 
c. The agents have only two nondeterministic choices: true or false (corresponding 

to the two possible assignment of values a Boolean variable can be given), 
d. The question: is the Boolean expression φ true for the assignment of values the 

variables hold in a certain path?, corresponds (in the translation of the validity 
problem into the target problem) to the question: does the tendency appears in 
the corresponding path where agents take decisions in accordance to the 
assignment of values to the variables?, 

e. The tendency appears in a simulation path if the expression φ is true for the 
assignment of values to the variables in accordance to the decisions of the agents 
in that path. 

f.  Finally, the expression φ is valid iff the tendency appears in all simulation paths.  
Thus, the output of the validity problem has been reduced to the target problem: 

The validity of a Boolean expression φ can be checked simulating the equivalent 
MABS problem. Therefore, the target problem is coNP-complete. 

6 Conclusion 

This paper has verified that the complexity of a constraint model based exploration of 
simulation trajectories for proving (the envelope of) tendencies in the dynamics of a 
MABS model is coNP-complete. 

Proving the envelope of tendencies in simulation outputs is an alternative to 
traditional methods used for examining simulation outputs, such as scenario analysis 
and Monte Carlo techniques. The former allows elaborating more general conclusions 
than the latter. 

As explained better in [10], constraint exploration of simulation trajectories brings 
closer the simulation and the logic programming communities.  This paper contributes 
in making clearer a property of a constraint exploration of simulation trajectories, 
namely its complexity, an area of high interest to these two communities. 
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