
Computational Complexity of a Constraint Model-
based Proof of the Envelope of Tendencies in a MAS-

based Simulation Model

Oswaldo Terán*†, Bruce Edmonds*

*Centre for Policy Modelling, Manchester Metropolitan University,
Aytoun Building, Aytoun Street, Manchester, M1 3GH, UK.

Tel. +44 161 247 6478 Fax. +44 161 247 6802
b.edmonds@mmu.ac.uk

†Department of Operation Research and Centre for Simulation
 and Modelling, Universidad de Los Andes. Venezuela

Tel. +58 274 240 2879
oteran@ula.ve

Abstract. This paper determines the complexity of a constraint model-based
proof of the envelope of a tendency in the dynamics of a Multi-Agent-based
Simulation model. The proof is performed via a constraint model-based
exploration of simulation trajectories using forward inference, by means of
which a whole fragment of the simulation model theory is investigated. Such
exploration allows for all simulation trajectories defined by a range of
parameters of the model and a range of choices of the agents. The paper verifies
that the search is coNP-complete.

1 Introduction

There is a need for studying and proving (emergent) tendencies in the simulation of
social systems (including simulation of organizations). This need has been especially
remarkable in those works related with elaborating or testing theories [1, 4, 6]. Such a
need has not been satisfied by traditional approaches for exploring the dynamics of
simulation models, such as Scenario Analysis and the Monte Carlo method. Neither
of these approaches performs exhaustive explorations of simulation trajectories in
subspaces of the simulation theory. The explored trajectories are chosen, in the first
case, by a domain expert, and in the second case, randomly. Owing to these facts,
those approaches cannot be used for proving tendencies in the dynamics of a
simulation model - the allowed conclusions are valid either according to the expertise
of a domain expert or statistically.

As an alternative to these traditional methods, in previous papers [8-10] a
hierarchy of computational architectures for searching for and proving tendencies in
a Multi Agent System-based (MABS) simulation model has been proposed. The first
architecture, that at the higher level, consists of the MABS model where tendencies
will be searched for by the modeller. After a tendency is found, at a second
architectural level, a constraint logic model1 proof of the envelope of the simulation
trajectory is proposed. In those papers, a computational technique for doing this proof

1 The term ‘logical model’ means model in the logical sense, which is different to the idea of

model in modeling and simulation theory. In the terminology used in this paper, a logical
model corresponds to a simulation trajectory.

 2

efficiently is implemented and illustrate by using an example. And, at a third
architectural level, a more general proof of the envelope of the found tendency would
be implemented by exploring a wider fragment of the simulation theory by using a
syntactic driven search. As explained better in [10], this research contributes in
bringing closer the simulation and the logic programming communities.

The present paper examines the computational complexity of the procedure
implemented in the second architectural level. First, in the second section, simulation
theory formalisms are given. Then, in section three, the idea of envelope is reviewed.
Afterwards, in the fourth section, the logic-based exploration of simulation
trajectories implemented for proving the envelope of tendencies in simulation models
is described. Then, in the fifth section, the computational complexity of such
exploration is established. And finally, in section six, some conclusions are drawn.

2 Simulation Theory

2.1 Formal Representation of a System (according to Zeigler [13-15])

The idea is to provide a formal description of a target system or of a model of it.
Originally, Zeigler’s [15] basic formalism is intended to describe simulation models
whose structure is fixed, which are common in modelling and simulation of industrial
systems, for instance, of queue systems. These ideas can be easily extended to MABS
models.

Aspects of Zeigler’s formalism are represented in Figure 1. The situation is shown
for two simulation (time) steps: from the former time1 to the latter time2. An input
value x, an output value y, an internal state q, at each time step, and the transition
from the first time step to the next one, are illustrated. The output is a function
defined by a modeller or by an observer. The domain of the output function is the
internal state of the system. It is supposed that there is a function λ generating the
output yi from the state of the system qi, and a function δ defining the new state of the
system qi+1 as a function of a previous state qi and the input xi+1. Time is considered as
an independent variable.

Figure 1. Basic notions in Zeigler’s formalism: input values x1, x2; system states q1,
q2; output values y1, y2; output function λ; and transition function δ.

Transition
function δ

Input
value x1

Output value y1

 State q1

System

λ

Time

time2

time1

Input
value x2

Output value y2 State q2

System

λ

 3

More formally, Zeigler’s notation for a system S is: S = < T, X, Ω, Q, Y, δ, λ >.
Where:
T: Time base (T = Reals or T = Integers).
X: Input value set (each input is a sequence of values)

Ω: Input segment set, subset of (X, T), Ω = {w / w: < 0, τ > → X, τ ∈ T}.
Q: State set.
δ: State transition function. δ: Q x Ω → Q.
λ: Output function, λ: Q → Y.
Y: Output value set. (there should exist a set of output segments{ρ / ρ: < 0, τ > → Y,
τ ∈ T})

The set < T, X, Ω, Q, Y, δ, λ > is called the system structure. The subset < X, Ω, Q,
Y > gives the static structure and the rest of the specification, δ and λ, the dynamic
structure. The dynamic structure consists of the laws for changing the state of the
model (usually having time as the independent variable). Notice that there are no laws
of change either for the static or for the dynamic structure, that is, this specification
does not consider systems with variable structure.

2.2 Zeigler’s Levels of System Specification

The idea is to have a hierarchy of descriptions of systems by increasing levels of
elaboration in the sense that the higher the level, the more detail the system
specification offers. This is helpful, for instance, for comparing model descriptions
and for determining the degree of specification a model has.

Level 0: Observation Frame, S = < T, X, Y >. The sets of inputs (X), outputs (Y),
and the time base (T) are distinguished but it is not known how the two first
interrelate.

Level 1: Input/0utput (I/O) Relation Observation (IORO), S = < T, X, Ω, Y, R>, (R
⊆ Ω × (Y,T), where (w,ρ) ∈ R → (implies) (dom(w) = dom (ρ)). Ω is the set of
inputs and R is a relation between the input and output sets. Still, it is not possible to
differentiate among the different outputs associated with one input and vice versa.

Level 2: I/O Function Observation (IOFO), S = < T, X, Ω, Y, F >, (f ∈ F →
(implies) f ⊆ Ω × (Y,T) is a function, and if f = (w,ρ) then dom (w) = dom (ρ)). At
this level, there is a function from the input to the output set which permits to
differentiate among the different outputs associated with an input. According to
Zeigler’s theory, this is granted by the knowledge of the initial state. Still, there is no
knowledge about the states of the system along time (apart from the initial state).

Level 3: I/O System Specification, S = < T, X, Ω, Q, Y, δ, λ >. At this stage, the
state set (Q), the transition (δ) and output (λ) functions are also known. Nevertheless,
there is no distinction of the components of a system.

Level 4: Multicomponent System Specification. Each component is defined as a
subsystem and how components work together is indicated. At this level, Zeigler
presents two slightly different specifications: the nonmodular coupled
multicomponent system and the modular coupled network of systems. The difference
between this two specifications is put in the following terms by Zeigler et al. [13, pp.
125]: “Whereas in networks of system specification individual component systems
are coupled by connecting their input and output interfaces in a modular way,
components of [nonmodular] multicomponent systems influence each other directly
through their state transition functions”. Thus, the difference is only in the way the
interaction among subsystems is defined: via an interface and in a modular way in a

 4

network of system specification, or directly by their state transition functions in a
nonmodular way in a nonmodular multicomponent system specification. Both cases
are useful to describe Multi-Agent Systems (MAS). In particular, the description of a
nonmodular coupled multicomponent system can be summarised as follows:

MS (a multicomponent system) = < T, X, Ω, Y, D, {Md} >. Where: T, X, Ω, Y,
are as defined above. D is the set of component references, and, the set {Md} gives the
specification for each d in D. For all d ∈ D: Md = < Qd , Ed , Id , δd , λd >, is a
component, where:

Qd is the set of states of the component d,
Ed ⊆ D is the set of components influencing d,
Id ⊆ D is the set of components influenced by d,

jEjiIid QQ
dd ∈∈

×→Ω××:δ is the state transition function of d,

YQiIid
d

→Ω××
∈

:λ is the output function of d.

2.3 MAS-based Simulation

A MAS consists basically of a hierarchy of agents. Each agent can be described as a
system by using Zeigler’s formalism: agents without sub-agents will be described at
level 3 while containers will be described at level 4. In general, a multicomponent
system specification is useful to describe any MABS model.

A sort of change allowed in MAS but no explicitly considered in Zeigler’s
formalism is structural change. Structural change happens, for instance, when agents
are eliminated or when new agents are introduced in a simulation trajectory. For this
to happen, laws of structural change should be given, e.g., conditions for introducing
a new agent, as well as specifications about the structure and initial state of the new
agent, and about how it will interact with other agents. Structural change brings in
changes at the system specification at level 4 in a simulation trajectory. Formalisms
for simulations involving structural change are presented by Barros [2-3].

3 Enveloping Tendencies in a Simulation Model

The idea is to enclose or encircle in some sense several instances of the simulation
output as an alternative to statistical summaries. An envelope will be, in some sense, a
contour of several instances of the simulation output. It does not seem convenient to
use the strong concept of envelope managed in mathematics. Rather, an envelope will
be chosen considering the trade-off between practical usefulness (for a modeller) and
precision.

By precision we mean how close the concept is to the ideal mathematical notion of
a tangent curve/surface. For example, in mathematics given a family of functions
(which might correspond to several runs of a simulation output Y, got, for example by
varying some parameters), let us say yj(t), j =1,2, .,.k, an envelope of this family will
be a curve E being tangent at each point to a member of that family (let us say it is
tangent to yj at (ti, yj (ti)). Obviously, in simulation only as a casualty the instances of
a simulation output could conform a family of curves having such a kind of tangent -
so we have to use a more relaxed concept of envelope.

Consider the case of enveloping a single simulation output, Y. Each trajectory will
generate a sequence of real values over time, Y. Calling yij the output value at time
instant i for trajectory j, an envelope might consist of two sequences of values over

 5

time: Eupper and Elower, which in some sense cover all trajectories. The value of Eupper at
time instant i must be greater than or equal to yij for all j, and Elower at time instant i
must be lower than or equal to yij for all j. That is, the envelope would be given by two
sequences of values over time, where for each time instant all values generated by the
simulation trajectories are enclosed by the two values given by these two value sets.
More precisely, if the outputs yij are given for the simulation trajectories j = 1,…,k,
and for the time instants ti = 1,2,…l, then the envelope of interest at ti might be
defined by the two values: Eupper , i = max j (yij) and Elower , i =min j (y ij).

Alternatively, first an approximating function, f, for the output value set Y that each
trajectory generates might be elaborated; then, the instances of these functions (one
function for each trajectory) might be enveloped.

To illustrate the practical use of analysing the simulation outputs by enveloping the
output think about the simulation of a chaotic system, where the envelope might help
in defining the area where a chaotic attractor is placed.

4 Proving Tendencies Via a Model-based Exploration of Simulation
Trajectories in a MAS-based Simulation Model

4.1 Logical Model-Constrained Exploration of Simulation Trajectories

A simulation – e.g., an event-driven, a finite differences, or a MABS - can be seen as
a partial logical model defined by the sequence of states (of the set Q, in Zeigler’s
formalism) generated by the transition function δ for a system in the third or fourth
level of specification defined in Zeigler’s formalism. Usually, in a trajectory only a
partial set of all the facts of the logical model corresponding to the trajectory are
explicitly generated. This partial set consists of those facts that are relevant, either
because they are required for the modeller as outputs or because they are necessary to
generate the simulation transition states. The remaining facts (although knowable) are
left as unknown.

There are different methods to specify a theory in a language. One method
commonly employed in logic consists in using a set of formulas of the language to
represent the axioms of the theory . In a declarative program a simulation model is
specified via a database, a rulebase (which defines the transition function) and the
underlying logic of the program. Potential trajectories are defined via non-
deterministic factors of the simulation. These factors are usually represented by the
parameters of the model and the choices of the processes.

The interest in this paper is in exploring the simulation trajectories corresponding
to a range of parameters of the model and choices of the agents. The transition
function, δ, either for each agent (or other simulation process) or for the whole
simulation model is nondeterministic.

The idea in previous studies [8-10] has been to analyse the emergence of
tendencies in a simulation by exploring a subspace of the space of trajectories. For
this exploration, a logical model-based constraint search was implemented where
constraints standed for selected parameters and choices. The exploration allows a
modeller to explore that fragment of the simulation theory defined by the selected
range of parameters and choices (see Figure 2). Consequently, the resulting
conclusions and proofs will be valid over that fragment of the theory and, under
appropriate justifications, they could be extrapolated to the whole simulation theory
or to a corresponding real model.

 6

Figure 2. Theory given by simulation trajectories

4.2 Logical Model Exploration for Proving the Necessity of a Tendency

The idea is to generalise about tendencies going from the observation of individual
trajectories to observation of a group of trajectories generated for certain parameters
and choices. In particular, it is intended to know if a certain tendency is necessary or
contingent in the explored trajectories. We understand a simulation trajectory as a
logical model embedded in a simulation program (a ‘possible world’ in semantic
terms) and involving trajectories of entities (e.g., agents) inside the simulation and,
hence, different from trajectories of these entities. It is a cross-product of all settings
of the structure of the simulation model and all processes (e.g., agents’ choices) into
one path through a high -dimensional space (see Figure 3).

Figure 3. Representation of a simulation theory in terms of the simulation trajectories, and
of these in terms of agents’ choices (for a single parameter-setting and two agents)

Represented
conceptuall

Time
Edge

 Ag.1

Ag.2

Agents’ trajectories

Agent 1 choice
point at time t1

Time direction
t1 t2

Agent 2 choice
point at time t2

Sim. trajectory
break point at
time t1 (due to
agent 1
choice)

Simulation
trajectories

The box contains the
simulation theory

Ag.2-Edge

Ag.1-Edge

Sim. trajectory
break point at time
t2 (due to agent 2
choice)

Causes

Causes

Whole Theory

Whole simulation content -
all trajectories are included

Allows to
investigate

Constrained subspace
of trajectories A Fragment of the theory

 7

As said above, the transition function of an agent, other process, or the whole
simulation model is nondeterministic as the simulation model can assume alternative
parameters and as the agents and/or process can select alternative choices.

The character of the search in our models has been predominantly logical model,
constraint, forward-chaining, and clausal ordered. A logical model is generated for
each combination of parameters and choices and for a finite iteration number, n.
Given a combination of parameters and choices a deterministic transition function
may be defined to generate the logical model by iterating from the initial state until
the iteration number, n, is reached.

In the suggested exploration, first, each combination of parameters provides a
different structure of the simulation model (see Figure 4). Following, ‘paths’
representing trajectories are generated for each structure. Then, while the simulation
is going on, choices produce branch points where alternative settings for each choice
turn out into a different simulation trajectory.

Figure 4. A model constraint-based exploration of the dynamics of a simulation model

A subspace of
tendencies

Space of all
possibilities

Envelope of
tendencies in
the subspace
(the broken
line)

Alternative
settings of
parameters

Structure of the model
for a combination of
parameters

Trajectories given a
structure. Branches are
due to agents’ choices

… … …

Mapping of a
tendency from
the trajectories

 8

This exhaustive constraint-based search over a range of possible trajectories makes
it possible to establish the necessity of postulated emergent tendencies. Following a
procedure similar to that used in theorem-proving [5,12], a subset of the possible
simulation parameterizat ions, agent choices and iteration number is specified, the
target emergent tendencies are prearranged in the form of negative constraints, and an
automatic search over the possible trajectories is performed.

Tendencies are shown to be necessary for the finite number of iterations n, with
respect to the range of parameterisations and non-deterministic choices, by first
finding a possible trajectory without the negative constraint to show the rules are
consistent and then showing that all possible trajectories violate the negation of the
hypothetical tendency when this is added as a further constraint. This is equivalent to
showing that all possible tendencies obey the positive form of the constraint, i.e., that
the positive form is true for all tendencies.

5 Determining the Complexity of a Constraint Model-based Proof
of the Envelope of a Tendency

The aim of this section is to demonstrate that the exploration of trajectories proposed
in the previous section applied over an infinite (theoretically) number of iterations is
coNP-complete. To make clearer the exposition, the simulation exploration
subject of this paper will be called the target problem . As is usual for this sort
of verification, two steps are followed:

First, it will be proved that the target problem is in coNP by expressing it as a
binary tree of depth n.

Second, it will be proved that the problem is also coNP-complete by translating the
validity (of Boolean expressions) problem, a typical coNP-complete problem, into the
target problem.

For the first part of the proof the aim is to form a Boolean quantified expression:
 ∀x1 ∀ x2 ∀ x3 ∀ x4 ∀ x5 …∀ x2n -1 ∀ x2n (F) (1)
where F is the formula to be evaluated over the variables x1 … x2n and n is the number
of iterations.

 The deterministic part in the state transition of the simulation will be called
environment’s actions, and it will be assumed that it corresponds to the impair
variables in (1). It captures changes not associated with agents’ choices – and
basically that part of the simulation where “agents are placed”. Consequently, there is
only one alternative action for the impair variables 2. The even variables correspond to
the agents’ choices (which are going to be called agents’ actions). More precisely, for
iteration i, i = 1, 2, …, n, there are two subsets of variables: {x2i- 1} and {x2i}, where
{x2i - 1} is used to represent the environment actions and {x2i} stands for the agent’s
actions. Thus, a whole simulation path or simulation trajectory is represented by a
concatenation of branches, where each branch corresponds to a unique assignment of
values to each variable in the whole set {xi}.

Finally, F will be the question: whether the searched tendency has occurred in a
simulation trajectory. The whole expression (1) is true if for all possible assignments
of values to the variables the tendency occurs. As each particular assignment of
values to the whole set of quantified variables corresponds to a simulation trajectory,

2 Environment’s actions are assumed deterministic. The results of this paper are easily

extendible to the case where the environment’s actions are non-deterministic.

 9

the proof is successful if this expression is valid for all possible values the quantified
variables can take! (e.g., for all possible agents’ choices3).

To check if the proof is successful, a Boolean circuit, where an AND gate stands
for the∀ quantifier, is written (see Figure 5). A leaf in this circuit is evaluated to
true if the tendency is found in the corresponding simulation path and to false
otherwise. The whole circuit will be true if and only if the tendency appears in all
simulation paths. Hence, the proof is successful if and only if the circuit is true (e.g.,
the tendency is found in all paths).

These two expressions of the problem (that is, the Boolean circuit shown in figure
5 and the expression of equation (1)) are sufficient to prove that the target problem is
coNP.

The next task is to prove that the problem is coNP-complete. It is easy to see the
similarities between the target problem and the validity of a Boolean expression. A
Boolean expression is an expression: (a) x, where x is a Boolean variable (variable
that takes the values True and False), (b) ¬φ,where ¬ is the logical not, and φ is a
Boolean expression c) φ1 ∨ φ2, where φ1 and φ2 are Boolean expressions and ∨ is the
logical symbol or (d) φ1 ∧ φ2, where φ1 and φ2 are Boolean expressions and ∧ is the
logical symbol and. Validity of a Boolean expression φ, consists in determining

Figure 5. Boolean circuit for the target problem

3 And, for all environment’s actions, in case of a nondeterministic environment.

 AND (gate)
(Initial State)

 AND

Deterministic environment
transition

Nondeterministic Agents’
choices

AND AND …. …. ….

… … …

Leaf 1 is:
true, if tendency
occurs in this
simulation path;
 false, otherwise

… … …
 Leaf kn

 10

whether the Boolean expression φ is valid under all truth assignments
(interpretations). If φ is not a valid formula, it can be disqualified by exhibiting a truth
assignment that does not satisfy it.

We may evaluate a Boolean expression by using a Boolean circuit similar to that
given in figure 5 (see figure 6). A first variable is chosen from the Boolean expression
φ and represented by the first node, and then two branches are generated from this
node: one the case the variable is given the false value and the other for the case the
variable is given the true value. Then a node is aggregated to each of these branches
representing a second selected variable, and two branches from each of these new
nodes will represent the true and false value assignments to this second variable.
Imagine that this procedure is continued until all variables in the expression φ are
considered. A leaf of this tree (i.e., a path) will be evaluated to true if the Boolean
expression φ is true for the particular (an unique) value assignments the variables
have in that path of the Boolean tree. Consequently, the expression φ is valid iff all
leaves of the Boolean tree have been evaluated to true.

Figure 6. Boolean circuit for the validity problem

z2=F z2=T

 Initial State

 z1 first variable of φ

Deterministic environment transition
(the state of the system is not changed)

Nondeterministic Agents’ choices
of T (True) and F (False)

… … …

Leaf 1 is:
true, if t φ is
true for the
assignment of
values to the
variables in this
path;
 false, otherwise

… … …

 Leaf 2n is

true, if t φ is true
for the assignment
of values to the
variables in this
path;
 false, otherwise

Deterministic environment transition
 (the state of the system is not changed)

 z2 second variable of φ

 z2 second variable of φ

Nondeterministic Agents’
choices of True and False

z1=T z1=F

z2=F z2=F

 11

This tree corresponds to a target problem, where:
a. The number of iterations, n, corresponds to the number of variables in the

Boolean expression φ,
b. The environment decisions are not considered (do not change the state of the

system),
c. The agents have only two nondeterministic choices: true or false (corresponding

to the two possible assignment of values a Boolean variable can be given),
d. The question: is the Boolean expression φ true for the assignment of values the

variables hold in a certain path?, corresponds (in the translation of the validity
problem into the target problem) to the question: does the tendency appears in
the corresponding path where agents take decisions in accordance to the
assignment of values to the variables?,

e. The tendency appears in a simulation path if the expression φ is true for the
assignment of values to the variables in accordance to the decisions of the agents
in that path.

f. Finally, the expression φ is valid iff the tendency appears in all simulation paths.
Thus, the output of the validity problem has been reduced to the target problem:

The validity of a Boolean expression φ can be checked simulating the equivalent
MABS problem. Therefore, the target problem is coNP-complete.

6 Conclusion

This paper has verified that the complexity of a constraint model based exploration of
simulation trajectories for proving (the envelope of) tendencies in the dynamics of a
MABS model is coNP-complete.

Proving the envelope of tendencies in simulation outputs is an alternative to
traditional methods used for examining simulation outputs, such as scenario analysis
and Monte Carlo techniques. The former allows elaborating more general conclusions
than the latter.

As explained better in [10], constraint exploration of simulation trajectories brings
closer the simulation and the logic programming communities. This paper contributes
in making clearer a property of a constraint exploration of simulation trajectories,
namely its complexity, an area of high interest to these two communities.

Acknowledgements. The research reported here was funded by the CDCHT (the
Council for Scientific, Humanistic and Technological Development) of the
Universidad de Los Andes, Venezuela, under project I-524-AA, by CONICIT (the
Venezuelan Governmental Organisation for promoting Science), and by the Faculty
of Management and Business, Manchester Metropolitan University.

References

1. Axtell, R., R. Axelrod, J. M. Epstein, and M. D. Cohen, “Aligning Simulation Models: A
Case Study and Results”, Computational Mathematical Organization Theory, 1(2), pp.
123-141, 1996.

 12

2. Barros, F.J., “Modeling Formalisms for Dynamic Structure Systems”, ACM Transactions
on Modeling and Computer Simulation, 7(4) (1997), pp. 501-515.

3. Barros, F.J., Modeling and Simulation of Dynamic Structure Discrete Event Systems: A
General Systems Theory Approach, Ph.D. Dissertation, Department of Informatics
Engineering, University of Coimbra, 1996.

4. Carley K., M. Prietula, and Z. Lin, “Design Versus Cognition: The Interaction of Agent
Cognition and Organizational Design on Organizational Performance”, Journal of Artificial
Societies and Social Simuation 1(3), 1998 (accessible at:
http://www.soc.surrey.ac.uk/JASSS/1/3/4.html).

5. Loveland, D. W., Automated Theorem -proving: A Logical Basis, North-Holland Pub.,
Amsterdam, 1978.

6. Moss, S., “Social Simulation Models and Reality: Three Approaches”, MAB’s 98: Multi-
agent Systems and Agent-Based Simulation , Paris, 1998 (accessible at
http://www.cpm.mmu.ac.uk/cpmrep35.html).

7. Papadimitriou, Christos, Computational Complexity, Addison-Wesley Publishing
Company, California, USA, 1994.

8. Terán Oswaldo, Bruce Edmonds and Steve Wallis, “Mapping the Envelope of Social
Simulation Trajectories”, MABS2000 @ ICMAS-2000: The Second Workshop on Multi
Agent Based Simulation, Boston, July 9, 2000. Published in: Moss, Scott and Paul
Davidsson (Editors), Multi Agent Based Simulation (MABS-2000), Lecture Notes in
Artificial Intelligence, Vol. 1979 , Springer Verlag, Berlin

9. Terán Oswaldo, Bruce Edmonds and Steve Wallis, “Determining the Envelope of
Emergent Agent Behaviour via Architectural Transformation”, ATAL-2000: The Seventh
International Workshop on Agent Theories, Architectures, and Languages, Boston, July 7-
9, 2000. Published in: Castelfranchi, C. and Y. Lesperance (Editors), Intelligent Agents VII.
Agent Theories, Architectures, and Languages. Lecture Notes in Artificial Intelligence, Vol.
1986, Springer-Verlag, Berlin

10. Terán Oswaldo, Bruce Edmonds and Steve Wallis, “Constraint Exploration and Envelope
of Simulation Trajectories”, First Workshop on Rule-Based Constraint Reasoning and
Programming at the First International Co nference on Computational Logic (CL2000), July
24-28, 2000, Imperial College, London, UK (this paper is accessible at:
http://www.pst.informatik.uni-muenchen.de/personen/fruehwir/cl2000r.html; and at:
http://arXiv.org/abs/cs/0007001)

11. Woolridge, Mike “The Computational Complexity of Agent Design Problems”,
in Proceedings Fourth International Conference on MultiAgent Systems
(ICMAS-2000) , Boston, MA, USA, July 10-12, 2000, pp. 341-348.

12. Wos, L., Automated Reasoning: Introduction and Applications, Prentice Hall, London,
1984.

13. Zeigler, Bernard, Herbert Praehofer, and Tag Gon Kim, Theory of Modelling and
Simulation , Academic Press, San Diego, CA, USA, 2000.

14. Zeigler, B., Multifaceted Modelling and Discrete Event Simulation , Academic Press,
London, UK, 1984.

15. Zeigler, B., Theory of Modelling and Simulation, Robert E. Krieger Publishing Company,
Malabar, FL, USA, 1976.

