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Abstract

Simple egocentric measures are often used to givadication of node importance in networks,
for example counting the number of arcs at a ndttevever these (and even less obviously
egocentric measures like centrality and the idieatifon of cliques) are potentially fallible since
any such measure is only a proxy for the structpraperties of the network as a whole. The
effectiveness of such proxies relies on assumptinasit the generative processes which give rise
to particular networks and these assumptions ardamal possibly cannot be) tested within the
normal framework of Social Network Analysis (SNA).case studies of real social networks it is
often difficult to get enough data to evaluate hiaithfully the standard network measurds
characterise the network. Given these empiricalraathodological difficulties, therefore, we use
a set of agent-based simulations as case studiegdstigate some of the circumstances in which
simple measures fail to characterise key aspecsmél networks. Using this approach we start to
map out situations where simple measures mighbadtusted. In such circumstances, we suggest
that an alternative approach (in which agent-basigtilations are used as a sort of dynamic
description capturing qualitative facts about #irgét domain) might be more productive.

Introduction

Looking at the process of “normal science” in SNA suggests a ptencern with
measurement. In traditional (typically linear) statistioabdels, the measured “variables”
serve as inputs to the modelling process, with the corresponding pumfétients forming
the “outputs”. These coefficients tell us what the patternssufcestion are between variables
(however these are defined). Notoriously, even when a coeffidesignificant, it does not
explain the observed association but can only measure it. Thus it is agcéss further
research to hypothesikew a particular association comes about: what#usal mechanism

is by which the observed association arises (Hedstrom and Sweldl$8Y If the relevant
causal factors can be measured quantitatively and the mecharsm that can be captured
in a statistical model, quantitative methods can again be usédwotkat the corresponding
mechanism is at least not disproved. In the case of social ke&ralysis, however, matters
are more problematic on two counts. Firstly, the “measures” oivomke properties
(corresponding to variables in linear statistical models) mawgtt@mpting to approximate
properties of the whole network, a task for which they are molesswell suited. The most
individualistic measures (like density) are most likely not fotwe the overall “flavour” of
networks but even for obviously structural measures like centemlilycliques, we are still
entitled to ask how well these “sub network” measures should be tedpex capture
properties of the whole network. Secondly, and following from thiskitines of explanations
that can (and should) be used to account for observed associations bétaraetedsations



of networks unfortunately depend on the propertieghote networks. This is what we mean,
in the limit, by a “structural” approach to social understanding.

Thus, when we say that tie density in an information network eceded with success in the
job market, we have more to worry about than we do when we saydihedtion level is
associated with lower divorce risk. Firstly, it is always paesthat the explanation of a
traditional statistical association is direct. Perhaps someldamgt progressively in education
(like the ability to understand competing points of view) actualiijyces the risk of divorce
on an individual basis. SNA cannot readily offer these direct expaisabecause the whole
basis of the network approach is that information, reputation, favoursthad “resources”
are transmitted in a complicated way that means they endagat@itl differentially to actors
in the system. Secondly, even if they are not direct, the statiapproach seems to require
its explanations to be rather simple in practice (Abbott 2001). Byasinthe explanations
available in networks can depend (in the worst case) onpiteeise architecture, such that no
characterisation of any sub networks or their associations islequate representation to
explain the observed outcome. This is what is meant doynplex system and is captured in
the notion of algorithmic compressibility. Some systems (likeeat relationship in physics)
can be captured by algorithms that are clearly much “simpteithore economical” than the
systems themselves (in this case, an equation of the form lyzaRy contrast, the most
economical representations of certain systems are the systems tiesmsel

This insight should not be overplayed. It is possible, indeed likely, heatdrmal scientific
process has established at least some SNA measures which alt, iwefl characterise the
networks to which they are applied (at least in some casespyitalso turn out that social
networks are not complex in this worrying way. This paper is fhiereconcerned with a
slightly different question: how might we tell whether or rwdre is a problem of this kind
and how much of a problem is there? We advocate agent-basedtgmub address this
question on two grounds, associated with the two concerns alreaely’r&isstly, empirical
network studies are often (of necessity) quite small and thi:isniéas hard to use the
resulting data for exploration of alternative measuremeatesfies. Even if there is sufficient
data for this task the other problem (that of explanation) ltsatsead. One cannot judge
alternative characterisations of a network solely in termthefquality of the associations
they provide since these associations must be explained beforeathdyecevaluated as
genuine rather than merely spurious. Traditional SNA, like taawitistatistics, does not have
the tools at its disposal to explore the ramifications of proposeshcanechanisms unless
they are very simple or direct. By contrast, agent based giorulavolves specifyindpoth a
set of individual behaviours/attributes and unfolding the dynamics @dlsateractions to
include the evolution of networks. This means that we can both measutatsd networks
in different ways (just as we can real networks but on a mugerlacale) but also (as we
typically cannot do with real networks) investigate whether the network charsiitsriwe
choose to measure correspond effectively to the causal mecharuposed. For example,
suppose that we wanted to explain an association between howigsaaybde has and how

1 A way of summarising this concern is to say thas harder to make a clear-cut distinction betweeasures
and models in SNA than it is in traditional statist

%2 There are a variety of studies in SNA that attetogtompare measures or explore their performaiesland
1988, Borgattiet al. forthcoming and Costenbader and Valente 2003igeotypical examples). However, this
research focuses almost without exception on rolesst in terms of sampling or data errors rathen tha
considering issues about the general applicalgfitpeasures.



soon it hears some “gossip”. Clearly, if the mechanism of gossifai everyone who hears it
immediately tells everyone they know it is hard to see how nuoflees wouldnot have a
robust and explanatory association with how soon one hears. If, howevsocthkerules of
gossip are more complex, it becomes much harder to be confident‘tieat@unt” will yield

a measure that is strongly explanatory rather than simply weakly dssocia

There is another issue to consider in the context of network negasot and that is the role
of dynamics. In most SNA, the task is to reconstruct a statiwork. Even in “dynamic”
studies, what is actually created is a set of static netvairkged intervals (Barnett 2001).
SNA is well aware that any static network is a “snap sbbdta truly dynamic process in
which individuals interact and change both their attributes (weatitydst and so on) and
network positions. The question is then what we assume about the effective chisatier
of a dynamic network from a static “snap shot”. At one extreine possible that the
underlying generative mechanisms maintain certain charditerisf nodes so a well-
connected node at period 1 is also well connected at period 2. On theanbein the worst
case, even the distribution of a characteristic over the populationdefls may not remain
stable as the network evolves. Under these circumstances, asseclatween network
measures may or may not capture the underlying generativeamgch At worst, an
apparent association at a particular time point may simply betefiact of the current state of
the network which would not be found if the network was measured one pariied er later
or earlier. (The difficulties of conducting empirical SNA me&at this problem is rather
unlikely to be detected.)

The case studies offered in the next section illustrate how atimmulcan be used to explore
these issues and offer some illustrations of the potential weasne$ssimple network
measures.

Some Simulation Case Studies

In this section we apply the same “thought experiment” to a s#ivefse social simulations
involving networks: imagine that the model accurately represehéesdacial phenomena one
was investigating — to what extent would egocentric meadiges good characterisation of
the role that nodes were playing in the system?

The P2P Model

This is a model of nodes in a peer-to-peer (P2P) network. A P2P hkesvar computer-
mediated network that uses the Internet for file sharing arrdhseg. Such networks are of
wider social interest because they can be developed to represénplsenomena as the
creation of social capital in communities through the exchange of favours.

® Furthermore, as in traditional statistics (but mosimulation), SNA is obliged to study associaticbetween
measured networks even though the generative mechanismrlyiug them may be proceeding at a very
different tempo. For example, attitude change dm¢secessarily operate on a yearly time scaleptmatsuring
networks in annual surveys one can only use pasatsdds to predict current attitude.

* One might try and argue that the problems wittwoet measurement raised were simply artefacts thiera
inept simulated representations of reality. Howeitds not clear why this should be true and gitles absence
of alternative techniques, this approach wouldrb@ainger of simply sweeping the problem under #ipet.



In this simulation, nodes seek files by sending queries through therketsing a “flood fill”
algorithm — contacting everyone they know — for a set number of “Haps’transitions}.

This is a decentralised network in that each node only “knows” abamntitad number of
other nodes and is not aware of the whole network (for example vessato a central
server). To search the network a node sends its query to the nodes it knows and theypass it
to those they know and so on. This process continues until the queries Baveabsed on

for a certain maximum number of hops at which point the relevant copy of the quety “dies

If a node is currently sharing its files (it does not have to) arthppens to possess a
requested file, that file is sent back to the originator of dhery. Each node has a
“satisfaction” level. When a node gets a file it does not ljamd wants) its satisfaction level
increases. Satisfaction decays exponentially at 10% per cygkenkans that nodes have to
keep succeeding in their quest for files if they are to resetisfied. If the satisfaction level
of a node drops low enough then it will copy the connections and sharatgggtrof a
neighbouring node which is doing better (or with a low probability a@naipof the network
altogether and be replaced by a new node with a single random tonnéekhis constitutes a
social imitation process based on relative performance.

The network is directed so that if node A sends queries to notee Beverse does not
necessarily occtrEach node thus represents a person who is controlling some P2P esoftwar
on the Internet. If the controller is unsatisfied with the numbdiled they are getting they
may choose to imitate the way that another controller operates theirrsoftwa

The general structure of the network that develops is illustrategjure 1 below. Due to the
dynamics of the model a core partition develops which is totally cteh@nd the rest of the
network (the periphery) mostly consists of branches that link imsocbre either directly or
indirectly. There may also be one or more small isolated groughwhickly “die”. This is a
result of the dynamic node behaviour. If there were any nodesvéinaton a branch leading
away from the core, these would not be viable in terms of fileclsie® success and hence
their satisfaction level would fall until they reset their cotioes to random ones thus
“breaking” the branch. Of course, before this structure is eshadoli(and during transitory
periods afterwards) different patterns may occur but the combinaticore partition and
periphery is the “attractor” for the system.

small isolated group*=O

core
partitition

®> Real examples of such networks are BitTorrent mutélla.
® Each node has a list as an attribute and thisrdigtes which other nodes it sends queries to.



Figure 1. An illustration of the typical network structure that results in the P2P model — there is a
core partition that is totally connected and a cobction of branches feeding into this. Arrows show
the directions in which queries for files might besent.

The particular simulation that forms the basis of this castyss composed of a population
of 50 nodes simulated over 1000 time cycles. Unless otherwise shetestiatistics quoted are
from the last 600 time cycles to allow time for the simulatmsettle down into some sort of
dynamic equilibrium.

The core is usually totally connected and formed of an ovemalority of the nodes but

typically dominates any other totally connected partitions insyls¢em. Figure 2 shows the
sizes of the partitions during a typical simulation run. Usuallydbminant partition consists
of between 3 and 20 nodes whilst the other partitions involve 2-5 nodes.
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Figure 2. The distribution of sizes for totally comected partitions in the simulation. The size of th
largest at any time is shown in blue, the next inrgen, followed by orange, red and so on.

In this simulation, the number of nodes that decide to share tlesirgiiickly increases to
between 40% and 90% of the total.
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Figure 3. The number of nodes sharing files overrie.

We will consider four types of node: those in the core that shamdp), those in the core
that don’t shareif-def), those in the periphery that shamut{coop) and those in the
periphery that don’t shareut-def).

Whether the node is in the core partition and whether it is sharing #b&td have an impact
on the extent to which two measures of centrality are eateelwith its satisfaction level.



One would expect that the centrality of a node (assessed bdik hymber of outward links

it had and by the corresponding Bonacioteasure of centrality) would be correlated with the
level of satisfaction, since having access to more nodes should quegkging more
productive. This is true but to a varying and minor extent. TakBleotvs Pearson correlation
coefficients with the dependent variable being the node sattsidetrel for different types of
nodes and the independent variables being the number of links, the rafribks 6 cycles
ago, the centrality and the centrality 6 cycles ago.

Table 1. Pearson correlation coefficients with curent node utility for 4 types of node

Type Number of Number of Centrality Centrality
links links lagged 6 lagged 6
periods periods
in-coop -0.058 0.13 -0.062 0.12
out-coop 0.073 0.17 0.065 0.16
in-def 0.039 0.074 0.067 0.087
out-def -0.15 -0.053 0.066 0.13

There are a number of things to note about these results. Rinstiynone of the measures
explains more than 17% of the node satisfaction. A lag of 6 cyatasd out to give the
maximum correlation. (Figure 4 shows the correlation between nuohhiaks and centrality
for different lags. This shows that the poor result is not sira@le effect of inappropriately
chosen lags.)

0.18
0.17 A
0.16
0.15
0.14
0.13

0.12
0.11 /<> - cent R

01 —o—numIR

Correlation

0.09 ~
008 I I I I I

Lag (in cycles)

Figure 4. The correlation between two centrality masures and satisfaction level for different lags
(over all types of node).

" Details of this measure can be found in Bonacl€87).



Secondly, with the notable exception of the number of linkedtdef, the correlation for a
lag of 6 is higher than it is with no lags. This is not surprigimge it takes a number of
cycles for a query to propagate down the network and for the files teturned which will
only then increase the satisfaction level. The exception to therpas that the number of
links for out-def nodes has a stronger (negative) correlation with no lag than vath @& 6
cycles. This occurs because the lack of links for a node sometsidss from its previous
higher satisfaction level. What sometimes happens is that a mdte core partition is (or
becomes) a non-sharer. This reduces the satisfaction of ltke mbdes in the partition
because they bear the cost of its queries but gain no filesitirdims makes it slightly more
likely that they will re-organise themselves and effectivedglude the non-sharer, leaving it
on the periphery (or isolated) and hence without present links.

Thirdly, the correlation is sometimes very different for thfedént types of node. For
example whilst the correlation fout-coop nodes is just above the 15% level, thatifedef
nodes is much smaller. The fact that there are significardreif€es between the types of
nodes is reinforced by the differences in the averages fsfagdion level, number of links
and centrality for the four types shown in Figure 4.

Table 2. Average network properties by node type: Btwork connections

Type Average Average Average
utility number of centrality
links
in-coop 0.790694 2.967343 0.405458
out-coop 0.512293 2.500713 0.309861
in-def 0.373527 2.005525 0.269064
out-def 0.324489 1.492763 0.189887

It is interesting to compare this case with a variant ofribdel in which the only thing that is
changed is that when a query is to be sent down a link, it iscsentandomly chosen node
(effectively cancelling the network structure). Thus, in thisiea, if a node has 3 outward
links, it will send queries to 3 other randomly determined nodes. Thageveretwork
properties for this version of the simulation is shown in Tablen8y are remarkably similar
to those from the non-randomised model, except thatirtttef nodes achieve a higher
satisfaction and centrality. This occurs because their saifawill not be “dragged down”
by nodes that imitate them and hence use the same connectionsgatidenshare strategy.
This strategy is not available when the connections are randomised.

Table 3. Average network properties by node type: Bhdomised connections

Type Average Average Average
utility number of centrality
links
in-coop 0.707675 3.062462 0.409185
out-coop 0.51401 2.688987 0.320872




in-def 0.504822 2.62037 0.353121

out-def 0.313881 1.881392 0.224612

To give a better flavour of the dynamics at work in this simuative will trace some of the
history of a single node. Some node statistics are shown in Fguhech charts the number
of outward links the node has, its centrality, its satisfaction kewve whether it is currently
sharing its files or not.
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Figure 5. The last 600 cycles of a simulation rurof one particular node. The red line shows 1/3 of
the number of outward links the node has. The orang line shows the measure of centrality: from O
to 1 with 1 being the most central node. The bluefgen line shows the level of satisfaction for the
node. (It is blue when it is not making its files @ailable for sharing and green when it is.)

A detailed history of the node (although unfortunately not obvious froralibee graph) can
be gained by a detailed inspection of its state and the overall networkiigri{cimes will be
given using the scale in Figure 5.) At cycle 50 the node the mid periphery region, with
only one outward link but via that link it reaches a large numbethadr nodes (hence the
high centrality). It is not sharing its files. By cycle 7%has found several of the files that it
was looking for and thus has an increased satisfaction levelewowthis has lowered the
satisfaction of other nodes around it and so these have cealsekl tim it and it has thus
become a leaf node on the edge of the periphery. Next the node itdirdsets (due to its
low level of satisfaction) and the inspected node becomes isolaedu&e of this isolation it
eventually resets itself (twice). At cycle 180 the inspected mog@lest outside the core with
many links into it. Since the core is presently composed of rfiengharers, the inspected
node is doing well at this point.

In contrast, Figure 6 is a scatter graph for this node illustydhe absence of an overall
strong correlation between the number of outward links and its level of sabisfacti
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Figure 6. A scatter graph for the number of outwardlinks from the inspected node (lagged by 6
cycles) against satisfaction level recorded betwed®0 and 1000 cycles.

It is clear that, in this model, it is important to distinguisé effect of node centrality with
respect to both the kind of node (sharing or otherwise) and to itsgpositithe overall
network structure (periphery or core). Simple uniformly appliedrabtyt measures prove not
to be very helpful in this case.

At this point, it will be useful to revisit the arguments presémarlier in the light of this case
study and try to address some potential criticisms of this agpréastly, it might be argued
that this simulation either isn’t very realistic or, if itrealistic, it only accurately represents a
mechanical rather than a social process. This may be true, althahgiuld be clear that the
P2P model could easily be made much more sbéiaklvever, it isnot clear that this criticism
justifies disregarding a concern about the effectiveness of Saisumes. In the first place,
we are in a position to show that these issues arise in a numiigflecént simulations with
varying degrees of sociality. In the second, we could easilylajeytkis model in a more
social direction and see whether the same results obtained. A seitmmsm is that we are
setting up a “straw man” and that node densities (and everaldghtare very basic measures
of network structure. If this network were “properly” analysed3iyA, the critics might
claim, the most effective network measures would have been appked lbon study of the

8 This could be done, for example, by adding differfide types to reflect “specialisation” or diffemt types of
resources, “targeting” of requests (based on pastess/co-operation) rather than asking every@ognocation
in requests (rather than a directed network), dmdil sharing and so on. In these circumstantegems that
P2P inspired models might be highly effective fardying the evolution of social capital, particlyam the

form of “favours” (Ledeneva 1998, Williams 2004).



system. This criticism can be tackled in three ways. Fjrattycan observe the kinds of SNA
that are typically done to see how commonly such simple measerep@lied in practice.
Secondly, we can investigate more sophisticated measures using themsatagon although
there wasn’t time to do that for this conference. Thirdly, we atailenge the critics about
being “wise after the event”. Of course, once the generatiehanesm has been laid out and
analysed in simulation it is possible to see that sharing statusoae/periphery position will
be crucial determinants of satisfaction not captured by numberstward ties. However, a
typical piece of SNA does not have this access to the gamenaéchanism. Instead, it has a
more or less accurate “snap shot” of the network and (much motg) remene qualitative
data about individual behaviour. The reader will have to judge, from the&irexperience,
whether it is likely that SNA would “hit on” the correct genamtmechanism, given the
typical analysis it would apply to the file sharing domain.

Subject to these concerns, the results of the simulation provisiamear to support the
initial concern with measurement. Network density and centidditgiot, in this case, explain
very much about node satisfaction levels and it is only simulatidratiosvs us to say much
about why this is so. Interestingly, however, randomising theamktdoesn’t explain much

less about the system suggesting that what matters in this particiddel (to the extent it
matters at all) are properties like the average numbetiesf rather than their precise
arrangement. The ability to randomise a network in this way sigggesimportant advantage
of the simulation approach in identifying genuinely complex netwohaset in which the

randomised network behaves very differently from the non-randomised one.

An Extended Schelling Segregation Model

We now turn to a second (and substantially different) exampdetta sense of whether the
first result was somehow untypical. In this case, the socialonkts fixed at the start of the
simulation based on a number of parameters. These parametdrs avenber of friends for
each node, the degree to which friends are selected from riiee indial locality and the
degree to which friendship choice is biased towards those of the*squaé In this model it
turns out that the number of linksthe most important factor in determining the dynamics of
the system. However, the other structural parameters turn out¢oahaeffect that would
have been missed if only centrality was relied upon as an indication of strucipoaiance.

This simulation is based on Schelling’s pioneering model of spa&gkgation (Schelling
1969) but with the addition of a potentially non-local social network.plirpose is to
investigate the interaction of social and spatial effects imaatyc behaviour. Schelling
presented a simple model composed of black and white agents ondartemsional grid.
These agents are randomly distributed on the grid to start wittihénet must also be some
empty squares left without a agent of either type. Theresiagie important parametet,
which measures the extent to which each agent is “satisfiedi ts neighbours are different
mixtures of agent types. (See Figure 7 below for the neighbourhoottidefused.) For
example, an extreme xenophobe is only satisfied when completedyisded by agents of its
own type while a “cosmopolitan” might only be dissatisfied whemas one of only two of
its own type in the neighbourhood. This means that the ratio of “sgaé tty “other type”
agents in the neighbourhood around a particular agent runs from 1 to Ohloyebs each

° These two “types” are, of course, completely aabjt but are often interpreted as two differennittgroups
making residential decisions.



agent is considered and if the ratio in its neighbourhood is lesg than it randomly selects
an empty square next to it (if there is one) and moves there.

pd
O
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Figure 7. The Neighbourhood in the two dimensionabchelling model

The point of the model was that self-organised segregation of saksuwlted for surprisingly
low levels ofc due to movement around the ‘edges’ of segregated clumps. Even if agents
satisfied with their location when only 40% of their neighbours arth@fsame type then
racial segregation can still be observed. Not only does it not takdéawegls of intolerance to
cause such segregation but human intuition is also shown to be fairlatpooderstanding
the outcomes of even simple systems of interacting agents. Bidp#lew shows three stages
in a typical run of this model fa=0.5.
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Figure 8. A typical run of the Schelling model atterations 0, 4, and 40¢ =0.5).

We have extended this model by adding an explicit “social strictar¢éhe form of a
friendship network? This is a directed graph between all agents to indicate who they
consider their friends to be. The topology of this network is randonéyrdaned at the start
of the simulation according to three parametersntimber of friends, thelocal bias and the
racial bias. The number of friends indicates how many friends each agerbdatald. The
local bias controls how many of these friends come from thelingighbourhood. (A value
of 1 means that all friends come from the initial neighbourhood ahii@ue of 0 means that
all agents on the grid are equally likely to be assignedexwdf.) The racial bias controls the
extent to which an agent has friends of its own “type”. (A valugé means that all friends a
particular agent has are of its own colour and a value of Ohbatdent is unbiased with
respect to colour and friendship.) In this model the network structfiseedsfor the duration
of the run. The social network is assumed to serve several fundiiosity, influence (as

% The model arose because there has long been ameappmlisjunction between models explaining social
structure solely by reference to spatial locatiod those focusing on networks without any spatahgonent. It
seemed that the relationship between social artthptructure was of considerable importance.



defined shortly) only propagates between friends. Secondly, if art hge sufficient friends
in its neighbourhood it is unlikely to want to move. Thirdly (but dependinth@movement
strategy set for the run), if a agent has decided to move, ittimap move nearer to its
friends even if this move is not local.

The motivation for moving is different as well. Instead of beingedr by intolerance, the
idea is that it is driven by fear. Each agent has a fear. |[Bear is increased by randomly
allocated “incidents” that happen in the neighbourhood and also by traimsnfresn friend

to friend. There are two critical levels of fear. When the feaches the first level, the agent
(randomly with a probability each time) transmits a percentages déar to a friend. This
transmitted fear is added to the existing fear level ofribad. Thus fear is not conserved but
naturally increases and feeds on itself. When fear reachesdbedscritical level the agent
tries to move in order to be closer to friends (or further from niends). It only moves if
there is a location with more friends than its present location.nWwhedoes so its fear
decreases. Fear also decays naturally in each cycle firesesting a memory effect. This is
not a very realistic model of fear, since fear is usuallyaadf something, but it does seem to
capture the fact that fear is cumulative and caused in diggzsmmunication (Cohen 2002).
The incidents that cause fear occur completely randomly (and tthusutvbias) in all grid
locations but with a low probability. The other reason for moving iplgithat an agent has
no friends in its neighbourhood. However the main purpose of this modenpysio
demonstrate that social networks can interact with physicakspaways that significantly
affect social outcomes.

In this model the influence of agent colour upon movement is indnagtter than direct as it

is in the Schelling model). Agent colour influences the sociaktire (depending on the

local and racial biases) and the social structure influencesat&in. Thus we separate an
agent’s position in space and the social driving force behind relocation.

The dynamics of this model are roughly as follows. There igsoovement at the beginning
as agents seek locations with some friends but initially levefear are zero. Slowly fear
builds up as incidents occur (depending on the rate of forgetting cednparthe rate of
incident occurrence). Fear suddenly increases via small “avakinghen it reaches the first
critical level in many agents since it is suddenly transthitteer the social network causing
others to pass the critical level and transmit in their turn. When fear rebetsescond critical
level agents start moving towards locations where their friemesconcentrated (or away
from non-friends depending on the move strategy that is globallyT$es) process continues
and eventually settles down because agents will only move ifcreygo somewhere where
there are more friends than there are in their current location.

Table 4 shows some of the key parameters of the simulation faratige that we will
consider. This range of values has been chosen because it iatredetvee point of the model
and seems to be the critical region of change. The three parametevill vary are those
determining the topology of the social network: the number of frieadls agent has and the
local and racial biases. Each of these three parameters imaadsek5 times with each of 5
different values giving 625 simulation runs in total. Thus in eadhefyraphs below every
line represents the average value over 125 different simulation runs.

Table 4. Parameter settings

Parameter/Setting Values (or Range)
Number of Cells Up 20




Number of Cells Across 20
Number of Black Agents 150
Number of White Agents 150
Neighbourhood Distance 2
Local Bias 0.45-0.55
Racial Bias 0.75-1.0
Number of Friends 2-10

Figure 9, Figure 10 and Figure 11 show the development of segregapresented by the
average proportion of neighbours that have the same colour) for diffefeas v the three

parameters considered.
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Figure 9. The segregation of agents (the averageqportion of neighbours of the same colour) for
different values of thenumber of friends parameter (averaged over 125 runs).

As would be expected, the segregation outcome is affected by thenafrfriends that each
agent has — in this case the proportion of agents with a simitauraal neighbourhoods after

a relatively short time has elapsed.
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Figure 10. The segregation of agents (the averageoportion of neighbours of the same colour) for
different values of thelocal bias parameter (averaged over 125 runs).

The local bias determines how many friends are in the neighbourhoeddbragent at the
start. A higher local bias thus means that there is less motivation to move.
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Figure 11. The segregation of agents (the averageoportion of neighbours of the same colour) for
different values of theracial bias parameter (averaged over 125 runs).

The racial bias has almost no effect upon the distribution excegixtogme values where
there are essentially two separate social networks (oreabdr colour). This case makes the
whole model less constrained and allows for greater segregatiotoafs (since agents seek
to move away from non-friends who will tend not be the same colour). Woweven a small
level of connectivity between the social networks of different celonakes this level of
segregation difficult to achieve.

Next we compare some of the results of this model to a varitaetrewinfluence is
“redirected” to a randomly chosen agent instead of the intendspier. Figure 12 and
Figure 13 show the average fear levels for different settofggthe number of friends
parameter for the normal and randomised network versions respectively.
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Figure 12. Average fear levels for different numbes of links per node: Network communication
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Figure 13. Average fear levels for different numbes of links per node: Randomised communication

These two versions of the simulation show very different patterrdewélopment. In the
network communication version, fear feeds upon itself exponentialyigh cycles in the
social networks, whilst in the randomised communication version thisndbegem to occur.
This is confirmed by looking at the corresponding graphs for the gevdiemr levels for
different levels of local bias (Figure 14 and Figure 15).
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Figure 14. Average fear levels with different leveal of local bias: Network communication

Average of avFear

0.25

0.2 A

localBias
—0.45
—0.475
0.5
0.525
—0.55

0.15 A

0.1 A

0.05 A

1 6 11 16 21 26 31 36 41 46

Figure 15. Average fear levels with different leval of local bias: Randomised communication

Again we see a considerable difference in fear levels bothdifdrent levels of local bias
and with respect to whether the network is randomised or not.

This case study is very different from the previous one but, fdglyntor the argument of
this paper, raises similar issues. The two most importanteliifes are that this simulation is
clearly social (albeit simple) and that it involves a stagtwork rather than a dynamic one.
Despite these differences however, the two chief findings both sujygogeneral concern
with the characterisation of networks. The first is that, in #&dample (and unlike the
previous one) it appears to be the specific architecture of themketat affects the outcome
and not simple properties like the average number of ties. Sionulagips us to understand
what is happening here as the outcome will depend on the number, siz&uatdre of
feedback loops which allow fear to “breed”. These are clezbrer to “whole network”
properties than properties of individual nodes and are not (typicddéigjified in SNA. The
second interesting result is that although the initialisationnpetexs affect the behaviour of



the network in a predictable and well-behaved way, the respondefoadial bias parameter
is profoundly non-linear. Simplistically, this means that typioaédr associations for the
effect of this parameter will only work well at particular levels ia Wariable. The association
found in a polarised community will not sit well with that found in a -pofarised
community but this will not reflect error in either study but féet that the relationship is not
linear, something suggested by simulation but hard to diagnose ina@t&r\We now turn to
a third case study, hopefully sufficiently different again tosiitate the broad issue of
accurate characterisation by SNA measures.

The Water Demand Model

The final example concerns a social simulation that is momigesge in flavour (Edmonds
and Moss 2005). It is included to show that some of the same comtEasmeasurement
might still arise within a “more realistic” social simtitm as well as the relatively abstract
models already presented.

This model attempts to explore how the quality of variation in domesier demand in
localities may be explained by mutual influence. It was develapgzhrt of the FIRMA and
CCDeW? projects™® The initial model was written by Scott Moss and then developed by
Olivier Barthelemy. A fuller description of this model can barfd in Edmondst al. (2002)

but this source does not include the comparison described below.

The core of this model is a set of agents, each represerttimgsahold, which are randomly
situated on a two dimensional grid. Each of these households is edl@cagt of water-using
devices by means of a similar distribution to that found in theThames region of the UK.
At the beginning of every month, each household sets the frequencyhith the appliance
is used (and in some cases - depending on the appliance - the vdlumehause).
Households are influenced in their appliance usage by several sooetgisbours (and
particularly the neighbour most similar to themselves in use ofighubbbservable
appliances), the advice of the policy agent and what they themsditVaa the past. In
addition, the availability of new kinds of appliances (like power stevor water-saving
washing machines) also influences use. The demands for individual housateokisnmed
to give the aggregate water demand. Each month the ground watatieatyGWws) is
calculated based on the weather (for which past data or sichydagt data is used). If the
GWS is less than a critical amount for more than a month iggets the policy agent to
suggest lower water usage. If a period of drought continues the poj@yt progressively
suggests using less and less water. The households are biagéehtl to the influence of
neighbours or the policy agent to different extents and the simudatsrthese biases as
parameters. The structure of the model is illustrated in Figure 16.

Y http://firma.cfpm.org
12 http://www.sei.se/oxford/ccdew
3 For a more detailed description see Dowreng. (2003).
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Figure 16. The structure of the water demand model

The neighbours in this model are defined as those in 8paces orthogonally adjacent to a
specified household as shown in Figure 17. The default value of this digtanused in the
simulation was 4. The purpose of this neighbourhood shape was to produce G@mplex
set of neighbour relations than would be created using a simple distdated
neighbourhood (as in the Schelling model discussed above) while géilhing the
importance of neighbour influence in the model.
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Figure 17. The neighbourhood pattern for households the water demand model

To give an idea of the social topology that results from this neighbodrassumption we
have shown the “most similar’ neighbour influence pattern at a poiattypical run of the

simulation in Figure 18 below. Due to the fact that every agentahaique most influential
neighbour, the topology of this social network consists of a fews pdi mutually most

influential neighbours and a tree of influence spreading out from.tléseextent of the

influence that is transmitted over any particular path througmétwork will depend upon

the extent that each node in that path is biased towards beingnadtuby neighbours rather
than other sources (like the policy agent).
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Figure 18. The most influential neighbour relationat a point in time during a typical run of the
water demand model.

Households are also (but to a much lesser extent) influenced dyeailhouseholds in their
neighbourhood (as defined in Figure 17 above). Figure 19 illustedtethe effective
neighbour relations between the households for the same time pointsantgesimulation
run as shown in Figure 18. Note that the edges of this network angapyed around into a
torus (as is often assumed in social simulation), so the househdlds edges and corners
have fewer neighbours that those in the middle. The reason for thencheghbourhood
assumptions is that the resulting patterns (as in Figure 18 abo¥egame 19 below) seem to
us to be a reasonable mix of locality and complexity. We haveood gmpirical basis for
this claim. It just seems intuitively right to us and we couldfimat any evidence about what
the real structure is. (There have been some surveys dohe lyater companies that might
provide evidence but they were not made available to the projects.)

Figure 19. The totality of neighbour relations at he same point in time for the same simulation run
as shown in Figure 18 using the neighbour definitio given in Figure 17. (Each node connects to
those 4 positions directly up, down, left and righbn the grid.)

In each run the households are distributed and initialised randomly widsbverall
distribution of ownership and use of appliances by the households anthtineince biases
are approximately the same. In each run the same weatheés datl so droughts will occur
at the same time and hence the policy agent will issue the advice. Also in each run the
new innovations (like power showers) are introduced at the sameFiates 20 shows the



aggregate water demand for 10 runs of the model with the sanmgséttormalised so that
1973 is scaled to 100 for ease of comparison).

To illustrate the difference when the social network was disdjpve ran the simulation
again with the influence randomised in the same sense as ihwlas P2P model described
above. In this condition, the simulation had the same settings, stitiatures and so on
except that whenever a household looked to other households, instead ofirgerites
(public) patterns of water use for those households, the patternanddmly selected
households were substituted. Thus the neighbour-to-neighbour influence wags al
randomly re-routed in the second case. This does not affect the nunmiegghdjours for each
household, their cognition or the external factors. These all nethaisame. All it does is
randomise the structure of the network. In this way, we can obsdraemight be called a
“pure” network effect. Figure 21 shows 12 runs of the randomised influesrseon of the
model. This can be compared to Figure 20 where influence trsgsismioccurs through
networks.
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Figure 20. The aggregate water demand for 10 rung ¢he model (55% neighbour biased, historical
scenario, historical innovation dates, dashed linegdicate major droughts, solid lines indicate
introduction of new kinds of appliances).
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Figure 21. The aggregate water demand for 12 runsfahe (otherwise identical) model where the
neighbour influence relationship is “broken” by repeated randomisation.

The qualitative difference between the two runs is reasonably thethe first set of runs
(Figure 20) there is an almost uniform reaction to droughts {lamdadvice of the policy
maker) with nearly all runs showing a reduction in water demandgltinese periods. By
contrast in the second set of runs (Figure 21) the reaction to suoldsper not a general
reduction in demand but rather a period of increased dexmdatdity. Secondly, the first set
of runs shows much greater stability than the second setxthatte short-term “oscillations”
in demand even when matters are not complicated by a droughg arttoduction of new
water using technology.

What seems to be happening is that in the first model, snfafidrdenser) neighbourhoods
mutually influence each other towards a certain shared patterpjrdpadown any avalanches
of influence that might otherwise take place. In the disrupted modelgelhalds “flip”
between different patterns as the incoming influences vaultireg in a lot of noise. This
influence noise acts to drown out the relatively “faint” suggestiof the policy agent. We
would hypothesise that a “mean field” social influence modelwlmch each household
perceives the average of water use patterns from neighbours) b@®w@den smoother and
more consistent in behaviour than the first model presented herethehsiscial influence in
the model can be seen as somewhere “between” that of a rardamaslel and a mean field
models sometimes used to approximate the dynamics in such Thsess a situation that
allows localised mutually reinforcing patterns of behaviour to coenpath and influence
other such localised patterns.

Elsewhere, Barthelemy (2003) shows that the output of this model Igatjuely and
significantly affected by changes to the topology of the soadbork (including changes in
the density of agents), by whether the space has edgest¢ooidally wrapped) and by the
size of the agent neighbourhoods.



In any case it is clear that (as in the second case dugl\gtructure of the social network
does have a significant effect upon the resulting behaviour of thdasiom beyond that
indicated simply by the number of links each household has. If thensystrandomised so
the number of links stays the same but their arrangement disgdied pattern, the system
outcome is very different. In this model, it appears to be the “iatkof influence
neighbourhoods rather than the structure of feedback loops that makekstihetive
character of the network significant. However, it is clear tha¢ach case the underlying
social generative process for the network is what leads teffieist. The characterisation of
social networks by relatively simple egocentric measurgstmas involve downplaying (or
simply not thinking about) the fact that a dynamic social process underpsogiall networks
and this process, operating across a whole network, may displatinettie character of a
complex system.

Discussion

We have now presented three different simulation case studies andh#émacterisation by
measured network properties. The case studies differ in how “tlvadigé they represent a
social system, what social system they represent, whétheretworks involved are static or
dynamic and how much “sociality” (communication, influence or recgdion) each agent
displays in its interactions. In each case, it appears thatesingbvork measures must be
treated with caution as characterisations of these systemd. SMnald we conclude from
this? It would be very easy to think of reasons to ignore the geswgyument of this paper.
The models are not realistic, not typical or not very social, thasarements applied are
naive, the explanations of their failure are such as could haweolfeeed by any moderately
well trained SNA practitioner with good social intuition and withadourse to simulation.
However, even if we grant all these points, we believe thap#psr shows there is a case to
answer and a novel tool to answer it with. The fact that we haveprovided enough
evidence to carry the argument in a single paper does not meanetheve provided no
evidence at all. In future, we hope to provide further evidence, agpiye approach to more
models and examining more sophisticated characterisations but we tdwpthat this
approach may appeal to other practitioners who will carry out wathin the same
programme. What then do we consider this programme to be?

Granovetter (1985) famously introduced the concept of embeddedness. HEgsentia
embeddedness comes down to this: if an actor is socially embedusd,ittis not
satisfactorily represented using a model that ignores thecyart structure of social
relationships that the actor is involved in (Edmonds 1999). In other wbedfehaviour of
the actor can’t be reduced to interaction with a unitary environfoeset of identical others,
which comes to the same thing) or to an individual acting on its twmas concerns of
precisely this kind that formed the background to the developmeniAf-Sa concern to
capture embeddedness and it effects and move away from the dopraéiy extremes of
structuralism and individualism. However, the pragmatic difficultresolved in mapping
complete networks (and an enthusiasm for technical issues) bauked in the use of
standard proxies for this structure in the shape of network measumessures that can be
more easily calculated and interpreted. Unfortunately, the brdatditistical” approach to
SNA seems to have drawn attention away from two crucial elated differences between
networks and other objects of research. The first differentaist is much harder to draw a
clear distinction between measures and mechanisms. A setjoé<lis simultaneously a
characterisation of a network and the result of some underlymgyae/e process that stands
in need of explication. The second difference is that networks Heevedtential to be



complex systems, making it very hard to anticipate how structumdosidual level
interactions will “play out” to create macrostructure and tooy @éasapply inappropriate
measures to the system in consequence.

In fact, there are (at least) two ways of using network oreasOne may use them irp@st
hoc manner — that is, if one has a hypothesis or understanding aboussoalgghenomena
one then looks for appropriate means (including statistics on netwakunes) to test or
illustrate this. Here, one has an idea of the mechanism andrsa i®latively good position
to choose a measure (or other abstraction) that is suitable fdightqng or analysing the
phenomenon. A possible danger is that one chooses an abstraction tendamgirin the
hypothesis even if this is not representative of the phenomenon. For exampleridooatta
selection of centrality measures to see which one gives the strongekitomr one is seeking
to demonstrate, one is assuming (without evidence) that the underBguogarity is as
hypothesised. It may actually be that weakest association proves a particular measure to be
valuable because, in fact, there is no underlying causal mechanism to clssacteri

The second way has a moaepriori flavour. It is to use a network measure to gain an
understanding of some phenomena at the outset. For example, by metisugagtrality of
people with respect to some relationship in some social situatidntteen concluding
something about the situatidrom this measure. The danger of this procedure is that in order
to gain an understanding using such a measure, one has to assurabaatiots ability to
represent something meaningful and known about the phenomenon one is ttrying
understand. However carefully one designs a measure, scalimg) &dgusting it for various
contingencies, there will always be networks and situationsvifioch it gives a misleading
impression (for any particular purpose).

Of course, most research in SNA advances through a pragmaticrenof approaches that
attempts to boot strap the understanding and clarity available.ugowkis does not absolve
researchers from being more rigorous when communicating work te etlmre has to try to
untangle the complex web of steps that one used to achieve some wmadieystato one that

is more amenable to criticism and careful checking.

A Way Forward: Using Simulation Models to Stage Abstraction

It is easy to criticise any abstraction on the grounds thigaves out some aspect of the
phenomena in question. We are not seeking to do this. We recognisethtonabstraction
and simple description does not (in itself) progress understandiagstifaction is not done
explicitly it will occur anyway in an implicit manner. Humang aot able to perceive or read
without automatically abstracting comprehensible “stories”.

However we are suggesting that abstraction can be staged and ssadeastic through the
use of descriptive social simulation models. We suggest thatetostr should be staged
rather than jumping directly to network measures and their relafrdmsh are the result of
several progressive abstractions from the source phenomena$tadirgy occurs by starting
with a descriptive social simulation of the phenomenon that can therebdeassa basis for
further abstraction to single (simulated) social networks andlyfinal a comparison of

effective measures on those networks. This bottom-up process ohguitdm phenomena
towards higher abstraction (illustrated in Figure 22) can be seen as cantdenio Carley’s

call to make SNA more dynamic through the addition of agents (Carley 2003).
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Figure 22. An illustration of the use of simulationto stage abstraction.

The following steps might constitute this staging process:

Information about the dynamic and generative mechanisms could leeted| by
interviewing participants, stakeholders and experts as well dgdxt observation (if
this were possible).

Other information (in the form of time series statistics) ddug¢ gathered regarding
some of the outcomes of the model.

A descriptive social simulation (that is one aiming to repressnimuch of the
information as possible rather than trying to generalise moreaathg} would be built
using the two collected sources of information as cross-validation (MdsSdmonds
2005).

Multiple runs of the simulation would be analysed to generate soetalorks and
establish what can be meaningfully abstracted at this level.

Measures that are designed to reflect the important aspecke oégulting social
networks would be established, testing their interdependencies witbnwgcand
processes in the simulation.

These measures could then be applied back to the original phenanudrsztve their
effectiveness and generality.

Like any methodological recipe, one should always be cautious apgieability of “grand
plans”, but it is hoped that this paper, by illustrating its pointagusi series of “working
simulations” developed for other purposes has shown that the researelspdascribed
above is not completely speculative. “Field” studies on the P2P nfaddl users of the
software) to refine behavioural assumptions combined with quantitatoretoring of file
transfer within a bounded domain (such as a university) would addresstitevo points.



The (rather simple) P2P model already presented shows what kamélgEis can be carried
out on a simulation. While the last two stages would have tofaathe development of a
more empirically grounded model, we have at least hinted at hawgltt be carried out by
showing the kind of negative findings that arise from inappropnegasures. We intend to
provide a more detailed case study of this approach in a future paper.
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