When Simple Networks Fail: Characterising Social Networks Using Simulation

Bruce Edmonds

Centre for Policy Modelling Manchester Metropolitan University bruce@edmonds.name

Edmund Chattoe

Department of Sociology University of Oxford edmund.chattoe@sociology.ox.ac.uk

University of Oxford Department of Sociology

Plan of the talk

- Really only a prospectus for the paper!
- A concern with network measurement and explanation
- A case study of a simulation of a Peerto-peer system
- A proposed solution

Background/Terminology

- Generative process: Gives rise to measured social network (Triad balance, preferential attachment ...)
- **Distributive process**: Gives rise to distribution of attributes over network (Information transmission)
- Only conceptually separate (favours)

- "Typical" SNA and measurement
 - Associations between network measures and attributes (or other network measures)
 - Generative challenge: What can we infer from associations about the underlying generative process?
 - **Distributive challenge**: What can we infer from associations about the underlying distributive process?
 - Not just criticisms of statistics revisited

Special concerns

- Are networks complex (not linear) systems? (Where does this leave inference?)
- To what extent do effects of networks depend on whole structure rather than separable characterisations of nodes?
- What do we say about dynamic networks?
- How do we tell how much of a problem this is?

University of Oxford Department of Sociology

Simplistic example

Same densities for all ties but one has a loop (alternative routes) and is disjoint. Problem gets more ambiguous when there is missing data.

CASE B

What does simulation contribute?

- Point is *not* simply that density is an insufficient measure. We can raise the same issue about any measure or set of measures.
- Explicit formulation of generative process
- Explicit formulation of distributive process
- Ability to "sample" the simulated system in more than one way at very low cost.

University of Oxford Department of Sociology

The problem

- Under what circumstances can existing network measures can tell us useful things about the generative and distributive mechanisms at work in networks?
- What do we do when the existing measures fail in particular applications or classes of cases?

Case study – A Peer-to-Peer (P2P) File-sharing system

Collection of servers, each of which:

- Is controlled by a user to some extent
- 'Knows' a limited number of servers, with which it can communicate (the network)
- Makes some (or no) files available for download by other servers
- Search for files is by flood-fill: (i.e. send query to n others who send it to n others...)
- If query matches an available file it is sent back to originator

A Simulation of a P2P System

- 50 servers, each can decide to share files (*coop*) or not (*def*) at any time
- Try collect 'sets' of related files stored (initially) randomly by sending queries
- Satisfaction is measured by success at collecting files (small) cost of dealing with others' queries (but decays over time)
- May look at and copy what a more satisfied server does, or may drop out and be replaced (especially if satisfaction is low)

Key issue is number (and manner) of cooperation

• Why does anyone cooperate?

• How does network structure impact upon this?

Size of partitions during a run

Green – 2nd largest (if there is one)

Red, orange, etc. - even smaller ones

Suggests four types of node

- *In-coop* those who share their files in core partition
- *In-def* those who don't share their files in core partition
- *Out-coop* those who share their files but are outside the core partition
- *Out-def* those who don't share their files but are outside the core partition

University of Oxford Department of Sociology

Some Statistics

Туре	Average utility	Average number of links	Average centrality
in-coop	0.79	3.0	0.41
out-coop	0.51	2.5	0.31
in-def	0.37	2.0	0.27
out-def	0.32	1.5	0.19

 Manchester Metropolitan University
 University of Oxford

 Centre for Policy Modelling
 Department of Sociology

Regression coefficients with satisfaction levels of nodes

Туре	Number of links	Number of links lagged 6 periods	Centrality	Centrality lagged 6 periods
in-coop	-0.058	0.13	-0.062	0.12
out-coop	0.073	0.17	0.065	0.16
in-def	0.039	0.074	0.067	0.087
out-def	-0.15	-0.053	0.066	0.13

Manchester Metropolitan UniversityUniversity of OxfordCentre for Policy ModellingDepartment of Sociology

A history of a single node

Blue/green – is level of satisfaction (blue when *coop* green when *def*)

Red – number of outgoing arcs / 5

Orange – measure of centrality (0 – least to 1–most central)

Conclusion of Case-study

- The global measures were not very useful in providing 'leverage' on what was happening
- Rather a structural analysis based on a detailed understanding of the dynamics created a more useful categorisation of node types.
- It can be unsafe to assume that such measures derived from empirical studies give a helpful picture of the role of networks

University of Oxford Department of Sociology

Caveats

- Implausibility critique: Simulations not very "social" so SNA (developed on "real" networks) not challenged
- Naivety critique: Real practitioners of SNA would not have used those measures.
- BUT an attempt to raise a general problem and thus will require dialogue with traditional SNA to avoid these critiques. Dialogue has to start somewhere.

