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Abstract. The paper argues for, and discusses, the practice of “Strong Empirical 
Modelling”. This involves a shift in effort from the internals of a model towards 
how the model relates to observational data. This kind of modelling is contrasted 
to theory-based modelling which, it is argued, will not be sufficient for making 
substantive progress understanding social phenomena in a scientific manner, due 
to the inherent weakness of social theory. However, there are different ways of 
relating data to modelling, so these are reviewed and criteria for their strength 
and the difficulties discussed. A sketch of how to define the empirical strength of 
a model is discussed, and the piece ends with a suggested system of “Modelling 
Ready Levels” to eliminate confusion about the state of modelling projects. 
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1 The mapping between model and what it represents 

The word “model” is heavily overloaded in terms of its meaning. It can refer to many 
kinds of entity, including: a diagram, a species, a set of equations, an object or some 
computer code. However, a model has to be more than a thing because the purpose of 
a model is to represent something. A random rock, chunk of code or set of equations is 
not a model because it does not model anything. Thus, properly speaking, a model is 
composed of a thing plus a relationship to what it models. This target for the modelling 
can also be many different things, including: a set of ideas, an observed system, a de-
sign, the processes or structures in a theory, some data or even another model. Added 
to this, a model can be built for many different purposes including: prediction, to sup-
port an exploration or the theoretical exploration of a set of mechanisms [11]. Many of 
the confusions around modelling methodology seem to come from an assumption that 
all models are basically the same – that there is “one methodology to rule them all” – 
but it might be closer to the mark to say the situation is more complicated. Wartovsky 
[19] defined modelling as using A to get understanding about something else, B, by a 
mapping, C, between them. We adopt this definition here. 
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Whilst the context of this paper is agent-based social simulation, our focus is on the 
relationship between a model and what it represents. This relationship often gets much 
less attention than the specification and internal working of models as an object and 
can, itself, be of various kinds. The relationship might be precisely defined, so one 
knows which part of the model represents what exactly but might be much more loosely 
defined. In some models the relationship is not really defined at all, but merely implied 
by the labels given to its parts (e.g. variable names). Some modelling relationships are 
formally described leaving the modeller with no choice as to how it is applied in any 
circumstance, but in others the modeller can adjust the relationship to make the model 
apply in different ways for different cases. Some modelling relationships have been 
independently and repeatedly confirmed (e.g. how the gas laws relate to volume) and 
in others the intended relationship turns out to be simply wrong (e.g. relating phlogiston 
to observed cases) so that the relationship cannot be established. In some cases, the 
meaning of parts of the modelling relationship are straight forward (e.g. how many 
people have died of a particular disease) and, in other cases, the relationship itself is 
built upon other models (e.g. what temperature means and how one measures it). 

To make its message clear, this paper does not attempt to unravel all the possible 
complications and variations in the modelling relationship but contrasts two very dif-
ferent cases: (a) where a model is intended to map to abstract ideas, processes, struc-
tures etc. and (b) where the model maps to empirical data in a well-defined manner. We 
argue that, if social simulation is to succeed in its goal to significantly increase reliable 
understanding of observed social phenomena, we need far more modelling that of type 
(b) than (a). Furthermore, we suggest that the first type of model (a) might often frus-
trate progress because it deceives as to the nature of social phenomena and diverts re-
searcher effort from modelling that will be, ultimately, more productive. 

The paper starts by illustrating the difference between theoretical and empirically 
grounded models and then goes on to explain the difficulties inherent in most existing 
social theory, difficulties that make it a hard tool to use to obtain progress towards 
empirical adequacy. Having motivated the empirical route, we then briefly survey the 
different ways that data and models can be related and some criteria for judging these. 
We end with a specific suggestion in terms of “Modelling Readiness Levels” to facili-
tate greater clarity with respect to different modelling projects. 

2 Theoretical vs Empirical Grounding 

To make the exposition clearer we define what we mean by “Empirical Grounding”.  A 
model is completely empirically grounded if all its assumptions, structures, theories, 
outcomes etc. either: 

• Map to a set of data in a sufficiently convincing manner (which relates to the purpose 
of the model), 

• Are uncontroversial - that is, it is not contested or seriously doubted by other re-
searchers and could easily be empirically shown (e.g. that cars drive on roads), 

• Are themselves empirically grounded (using the same definition). 
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There are several things to note about this. Firstly, this is a recursive definition. That 
is, if you chase down what the model relates to, then what those are based upon and 
then what those are based upon etc. you come to data in a precise manner or something 
that is so obvious that one would be wasting one’s time getting data to prove it. Sec-
ondly, that it relies upon the judgement of researchers, namely: what counts as a suffi-
cient mapping to data for its purpose and what is uncontroversial. Thus, the extent of 
empirical grounding is up for debate, but the grounds for such debate are relatively 
clear. It may well be that some components of a modelling enterprise are empirically 
grounded and others not. It will inevitably be the case that even where elements are 
empirically grounded, they are so to a degree and only given some assumptions or con-
text. As with all judgement, mistakes are possible but a process of chasing the ground-
ing and making the basis of a model clear, can make those more apparent and flag those 
for future evaluation if doubts emerge – there is a clear process by which these judge-
ments could themselves be empirically investigated. 

We contrast two cases: a model that is not empirically grounded and one which is. 

1. A model whose specification and outcomes relate ultimately only to ideas. These 
ideas could be in the form of: assumptions, theories, processes, structures, stories or 
analogies, but these ideas are not themselves empirically grounded. The ideas might 
well relate to what is observed, but in a loose, analogical manner. Such a model 
might be used for exploring the theoretical consequences of the ideas it is based 
upon, as an analogy for thinking about a class of systems or simply an illustration 
[11]. For convenience we will call this a “Theoretical Model”. 

2. A model whose specification and outcomes ultimately relate to data – they are em-
pirically grounded. Such a model might be used to support complex explanations, 
test hypotheses (in which case all but the hypothesis being tested is empirically 
grounded), predict possible outcomes or simply act as a kind of description of its 
data [11]. For convenience we will call this an “Empirical Model”. 

We realise these are extreme cases and that many models might have a mixture of em-
pirical grounded and other elements. In this paper, we are arguing that, if social simu-
lation is to make real progress in understanding observed social phenomena we need 
more empirically grounded models, stronger grounding in those models that have some 
grounding and more empirical grounding in all models. This is what we mean by argu-
ing for “Strongly Empirical Modelling”.  

3 The Weakness of Social Theory 

But what is wrong with basing one’s model on theoretical ideas and not seeking to 
ground it in empirics? The short answer is that while such theories can be superficially 
attractive and convincing, they often have multiple, critical weaknesses. Here we 
briefly list some of the critical weaknesses of social theory. 

• Vagueness. Social theory is very often vague. This is evidenced by the fact that when 
simulation modellers try to make a model that implements such theories, they have 
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to make lots of modelling choices – choices where it is not clear which was intended, 
and which have more empirical support [1]. Each such implementation of the theory 
is then precise and is a better basis for use in modelling, but each implementation 
will come with its own additional assumptions, so the result is not easier to test. 

• Lack of Clarity in Terms of its Empirical Support. Social theory is often supported 
using a variety of sources, including: argument, coherence with other theory, plau-
sibility, qualitative agreement with evidence, case studies and checkable agreement 
with empirical data. It is often unclear which of these are critical to a theory and 
which offering merely additional support. 

• Undefined Scope. One of the aspects of the vagueness of social theory is that, not 
only are the workings of the theory vaguely described but also the conditions under 
which it is posited as holding. In other words, the scope of much social theory – 
when it should and should not hold – is not made clear. Indeed, in many cases the 
scope is not described at all, leaving it entirely implicit. 

• Context Conflation. Much numerical data derived from observations of social phe-
nomena (e.g. Likert values from surveys) are shorn of information about the kind of 
context they were collected in (e.g. the situation of the persons surveyed). To use 
such data in the support of a social theory (e.g. using a statistical model) derived 
from different contexts – where people might be acting in fundamentally different 
ways - masks the sub-cases where the theory does not hold (or even where the rela-
tionship is in the opposite direction). 

• Effect Weakness. Due to the complexity of most social phenomena, when the effect 
predicted by a theory is compared against empirical data, the effect size is often small 
– that is the theory only explains a small proportion of the observed variation, with 
the rest being random or external to the theory (in a correlation analysis this would 
be measured in terms of the R2 statistic).  

• Suggestibility. Finally, due to the ease with which theory expressed in natural lan-
guage can be interpreted, there is a danger that such theory is used as an analogy – a 
way of thinking about some phenomena rather than explaining it in any more precise 
manner. Thus, social theory can be far more suggestable than the evidence warrants. 
Formal theories and models are also suggestable, but less easy to interpret. 

• Indirect nature of the mapping to observable phenomena. Mapping a model to the-
oretical elements that might then relate to observed phenomena (or, even worse, map 
to other theoretical elements that then map to something observed), adds an interme-
diate stage in the journey from model to observed phenomena. This ‘extra stage’ 
inevitably adds more flexibility and imprecision to the total mapping and thus weak-
ens the empirical grounding of the model. 

• Non-scientific attractiveness of non-empirical models. One of the most insidious 
weaknesses of mapping to theory is that it is very attractive to researchers compared 
to trying to maps to evidence. It is a lot easier to relate to (since it provides an acces-
sible narrative), it is easier to do (real data being notoriously difficult to align to), 
and more likely to get you published (somehow reviewers feel accept a theoretical 
basis when they question any modelling not based on a theory). Also, it gives an 
impression of progress, since one can imagine the future applicability of one’s model 
because the model supports an analogy with which to think about phenomena [10]. 
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Ultimately, we need to develop lineages of models that map in a well-founded man-
ner to observed phenomena, rather than their surface attractiveness, so that is what 
we should use to select from the available models [8]. 

To summarise this section, for the above reasons, theoretical elements tend to add huge 
amounts of unreliability into a modelling enterprise. This might be tolerable if either 
(a) the theory is reliable, that is empirically well established and has a well-defined way 
that it is related to observable phenomena or (b) the theory is what is being tested using 
a simulation, where all other aspects of the simulation are strongly empirically 
grounded (otherwise any ‘test’ of the theory’s reliability is only relative to all the other 
non-empirically grounded aspects of the model). In either case, if one wants to make 
some progress in modelling observed phenomena then one needs to reduce the theoret-
ical elements in a model as far as one can. 

4 Different Approaches to Relating Models to Evidence 

There are many ways to map a model to evidence at a variety of different modelling 
stages and to demonstrate different objectives. We will not go through all the possibil-
ities here but, rather, discuss some of the ‘dimensions’ in which these differ and then 
some criteria by which one could address their adequacy.  

4.1 Mapping to specification, parameters or outcomes 

There are different ‘parts’ of a model that one can map to evidence.  
One can use evidence to inform the processes and structures that are built into the 

model, thus constraining the model to the evidence as part of its design and implemen-
tation - this is essentially the “KIDS” approach [9]. The evidence used in this way 
might be quantitative (e.g. reading in map data) but may also be qualitative. In particu-
lar, qualitative evidence has been used to determine what kinds of decision-making 
processes an agent might use in a simulation (e.g. [3]). 

One can adjust otherwise unknown values of a simulation to fit evidence – called 
‘calibration’. Often this is with respect to ‘free parameters’, which are parameters that 
cannot be derived from measuring or observing the target phenomena. Unless all other 
aspects of a simulation are empirically well-founded this does not infer the actual val-
ues, but it does show the model could be mapped to the evidence and thus potentially 
applicable to the situation from which the evidence came. Whilst calibration is usually 
done on parameter values, other unknown simulation data can be determined in this 
manner. An example of this is [2]. 

Validation is when the output of a simulation is compared to evidence. This is sup-
posed to be a check that the model is not misguided. This is a harder test than making 
a simulation based on evidence or adjusting unknown parameters etc. since those are 
not strong constraints from the evidence – regardless of how wrong a simulation is, 
those are usually possible to fit. However, validation comes in all sorts of strengths and 
can be against known – so called ‘out-of-sample’ - data. 
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4.2 Different kinds of precision 

A model is rarely supposed to be 100% precise concerning what is being modelled. 
There are many reasons for this, including measurement noise, intrinsically random 
processes in the target phenomena and processes that are simply not going to be in-
cluded in a model [7]. The required kind of fit of model aspect to evidence depends 
upon what one is using the model for. Classically, model output might be compared 
numerically to a corresponding set of real-world measurements, but this is not the only 
kind that might be appropriate. For example, one might compare some distributional 
properties, as in [18] which describes a method to formally compare the shapes of data 
sets. Even less precisely, model and evidence might be compared in a qualitative man-
ner, such as “are both monotonically increasing as a certain parameter increases” or 
“tend to decrease over time”. Human narrative accounts can be used to inform what 
mechanisms are included in the model specification, e.g. as in [14]. 

4.3 Single vs. Multiple Dimensions 

If a model is designed to focus on a particular output value (or sets of that value over 
time), e.g. if it was a model to predict that value, then the appropriate validation would 
only involve that value (e.g. a graph comparing simulation and empirical values). How-
ever, many agent-based models have many inputs and parameters which may be lacking 
data to fill. This means that any ‘fit’ with observed data might be due to deliberate or 
implicit ‘tuning’ of these and not due to a more fundamental ability of a simulation to 
adequately represent what it models (in the relevant aspects). In these cases, to establish 
the empirical reliability of a model, it will be necessary to compare the model output to 
available data in several dimensions simultaneously. This simultaneous comparison 
makes it far less likely that any fit is accidental if each dimension compared constrains 
different aspects of the model. If some aspects of the model are not constrained, then 
those aspects cannot be said to be validated. Generally, the more complicated the model 
is and more imprecisely the match between model outputs and empirical data, the more 
dimensions need to be compared. Pattern-oriented modelling advocates for a less pre-
cise comparison but over many independent dimensions [12]. 

4.4 For different modelling purposes 

Establishing that a particular model achieves its purpose [11], will depend upon the 
kind of purpose. For example, if a model is designed to predict a particular target value 
given a set of parameter settings, then comparing to data that includes measured values 
that correspond to the target and parameters. For prediction, checking the other internal 
aspects of the model are not immediately important to the prediction (although they 
might be important to work out how a prediction happens or goes wrong), but it is 
important that this data is unknown to the modeller at the time of prediction (so there 
is no accidental fitting) and that it is checked repeatedly over the operating range of the 
model. For supporting a possible explanation of complex phenomena in terms of the 
workings of the model, it is acceptable to know the data beforehand and to actively try 
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to ‘fit’ the target data, but enough aspects of the simulation need empirical checking to 
ensure that the model correctly supports the explanation given. 

4.5 Criteria for the strength of the mapping 

What is important about all this is how effective the mappings are for establishing that 
the model is adequate for its purpose [11]. This might involve evaluating the extent that 
the mappings: 

1. Show that the model is applicable to the observed case being studied. Just because 
we can imagine that a model might be applicable to a particular case (e.g. due to its 
plausibility or that the model was developed with that in mind), does not mean it 
actually is – the apparent applicability might be ‘delusional’ and due to using the 
model as an analogy – a way of thinking about the target – rather than corresponding 
to anything empirical [10]. Calibrating the model to plausible input/parameter values 
and checking the output corresponds to some empirical data will establish this, as 
well as making clearer the assumptions behind the mapping from model to data in 
these respects. The applicability is shown by the extent of the adaption of free pa-
rameters/inputs to make the model fit the target data compared to the how con-
strained the model is by the empirical data available.  

2. Limit the uncertainty in the model. Traditionally models were seen as prediction ma-
chines, and if prediction is the purpose of your model, then it is important to elimi-
nate the uncertainty of the predictions the model supports. There are, at least, two 
ways of doing this: (a) simplify the internal construction of the model to use fewer 
inputs or so uncertainty in input is not propagated/amplified for the outputs, and (b) 
fix some of the inputs and parameters using data. Here, the extent to which the un-
certainty is eliminated can be judged. 

3. Eliminate the possibility that the fit with the available evidence is accidental. This 
criterion can be seen as an extension of (or stronger version than) criterion (1) above. 
The usual way to achieve this is via some kind of validation - a comparison of model 
outcomes with some sets. This is stronger if the validation is independent, that is the 
modeller did not have knowledge of the data/evidence involved when they made, or 
even calibrated, the model. Here the key comparison is between the ‘flexibility’ of 
the model compared to the constraints provided by the available data. 

4. Reduce the chance that an alternative model would be better. More fundamentally 
there is the problem that although one’s model seems to explain an observed situa-
tion well, this does not mean it is the best model for doing this – there may be mul-
tiple viable models. Comparing alternative models (or model versions) against avail-
able data to see which is the better explanation can be very informative (or more 
subtly which model fits/explains which observed situations best). Frequently there is 
no comparison of alternative models to data – not even a ‘null’ model (e.g. where 
interactions are random rather than via the network). 
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5 Comparing Models on Empirical Strength 

Given that it is a desirable goal that models progress towards greater empirical ground-
ing, the question arises as to how to compare models in this regard. In this there are 
several different ways of doing this, including the following. 

1. How much of the variation/patterns observed in the outcome data is explained  
2. How certain we can be that the match of model and data is not a matter of chance 
3. How broad is the scope of the model, i.e. the set of circumstances where the model 

works well against the data 

The first of these roughly corresponds to R2 with traditional regression models, but 
could be much broader with ABMs, for example one model might get some of the levels 
roughly right, whilst another might get the levels as well as the kinds of distribution 
and a third get the levels, the general distribution and some of the short-term temporal 
dynamics. The second might be related to the ‘p values’ used in Null Hypothesis testing 
in statics, but might be more about the extent that a model can be fitted to any data set. 
The third is the conditions of application under which the model is expected to be reli-
able, roughly what might be called its level of generality. 

At any stage, which of the above routes towards greater empirical grounding should 
be sought when comparing models is a difficult question to answer in general. How-
ever, there is considerable scope for improving all of them relative to the current state 
of the art and we suspect that it might be more productive to start with models with a 
very narrow scope but that are strong in terms of criteria 1 and 2 and then compete in 
terms of scope rather than pretend that models are vaguely applicable everywhere and 
look for weak signals in terms of these. 

6 Some of the Difficulties of Empirical Modelling 

Any particular kind of scientific project will face difficulties and potential limitations, 
and Strongly Empirical Modelling is no different. In this section we review some of 
these difficulties. 

• The Sheer Difficulty of Empirical Modelling. There is no doubt that making a 
model fit to sets of empirical data is far more difficult than merely being compati-
ble to a theory. Thus, if one simply wants to play around with ideas, then theory-
based modelling is appropriate.  

• Unearthing Hidden Contextual Assumptions. All modelling rests upon a raft of 
assumptions, only a few of which we have good evidence to support. Some of these 
assumptions will be implicit, that is we are not aware of these (e.g. the various 
possible assumptions behind representations of space). Whilst many of these may 
be unproblematic (they are either common-sense or do not impact upon the results 
much), others of these may be important. 

• Finding Enough Data of the Right Kind. It is a frequent experience of empirical 
modellers that there is either some desired data is not available, or it is not of the 
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right kind/quality. However, it is acceptable to leave parts where there is no good 
data, using synthetic data or good guesses for these as long as one makes that clear. 
Future researchers might then have that data. Progress towards SEM is a collective 
affair and can not just be down to what is possible in single projects. 

• Modelling ill-defined or ill-measured phenomena. Whilst many aspects of a simu-
lation may lack good data, a more fundamental problem is when the mapping from 
model elements to what they model are ill-defined. This is particularly true of con-
structs that theory proposes, e.g. social capital. However, part of the progress in 
empirical modelling involves making these explicit and testing which measure-
ment methods are reliable. 

• Opening oneself up to criticism. Adding data and other evidence into the modelling 
mix means that there are more aspects to criticise. Leaving these difficult aspects 
to the future restricts the range of possible criticism to internal modelling aspects. 
This will necessitate a change in habit from reviewers - instead of forming judge-
ments based on how many worries/weaknesses one has and rather adopting an at-
titude that is more like “well some data is better than none”. Otherwise, we risk 
giving more status to the safely unfinished over modelling work which engages 
with the messy world of data. 

• Over-convincing oneself. It is a common phenomenon that the more one is engaged 
with one’s model, the more one sees the world through the model. Finding good 
relationships with data can further convince one in this manner. Thus, there is a 
danger of being over-convinced of the reliability of a model (for its purpose). This 
is especially a danger if the specification of a model is largely evidence-based. 
Thus, some kinds of strong and independent validation processes are essential be-
fore we trust a model – calibration processes are not enough for this. 

• Getting published. It is the experience of the authors that it can be more difficult 
to get SEM research published compared to theory-based work. Somehow having 
a “theoretical framework” reassures reviewers, resulting in data- or evidence-
driven modelling being criticised as being “under theorised”. Whilst the debate 
between theory-driven and evidence-driven modelling approaches is far from set-
tled, a greater tolerance of these different approaches is necessary. 

 
However, one of the potential issues – that of a lack of methodology for relating data 
to agent-based models – is, we feel, not a problem. For some of this methodology see 
[5, 6, 9, 11, 1418]. 

7 Being Clear about the Level of Modelling Achievement 

After the “Challenger” disaster in 1986, and President Reagan’s 1988 Directive on Na-
tional Space Policy (which encouraged cooperation between NASA and other partners) 
NASA sought to formalise how ready technology was for deployment in space mis-
sions. In this context, clarity concerning the state of a technology is clearly crucial since 
the mission may have to rely upon it. If the description of some technology gives an 
impression that it is more mature than it is, then either this could endanger the crew, or 
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require substantially more time and resources to further develop it. Thus, the idea of 
“readiness levels” was introduced to add clarity and prevent such false impressions [16] 
(these are showing in Table 1). These levels are relative to the requirements for relia-
bility for their use, with safety critical technologies having to reach higher levels than 
others before being used. These levels were then further elaborated and similar systems 
of levels adopted by others, notably the EU. [13] describes this history of these levels 
and critiques its later interpretation. 

Table 1. The Original NASA TRL Definitions (1989) 

TRL Criteria for Achievement 
1 Basic Principles Observed and Reported 
2 Potential Application Validated 
3 Proof-of-Concept Demonstrated, Analytically or Experimentally 
4 Component/Breadboard Laboratory Validated 
5 Component/Breadboard Validated in Simulated/Realspace Environment 
6 System Adequacy Validated in Simulated Environment 
7 System Adequacy Validated in Space 

 
Although it is rare that social simulations are as obviously critical as those in space 

missions, they are being increasingly looked to help inform the consideration of policies 
that can affect people’s lives (e.g. during COVID [17]). Maybe due to the pressure on 
academics to be “relevant”, some papers on social simulation work can give the im-
pression that they are more ready to be reliably applied than is warranted by their sub-
stantiated progress. Thus, it may be useful to have an equivalent of these levels for the 
modelling domain, maybe as summarised in Table 2. 

Table 2. Possible Modelling Ready Levels (MRL) 

TRL Criteria for Achievement 
1 Concepts for an ABM described 
2 Detailed specification for an ABM described 
3 ABM is implemented, at least one run is shown 
4 ABM assumptions etc. are all fully documented and the code is available 
5 ABM is verified against specification and sensitivity analysis done 
6 ABM is shown to be applicable to a situation, e.g. compared to some 

data/evidence or calibrated 
7 ABM is sufficiently validated against evidence/data to show it is reliable 

for its declared purpose 
8 ABM is shown to work for its intended use/situation, in practice 
9 ABM is proven to work for the situation/problem described - repeatedly 

by users/stakeholders 
 

Such a system of levels would aid those who would want to use/rely on social sim-
ulations in a policy context, and in grant calls/applications (e.g. “We are looking for 
research currently at level 3-4, for development to level 7”). However, it would also be 
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useful for other modellers trying to understand the level of reliability of models de-
scribed in scientific papers (e.g.  “The model is currently at level 5. We think it could 
be shown to work at level 6 with access to the right data, but this has not been done 
yet”). This would help other researchers assess other work, in particular if they are 
looking to build upon that work by reusing aspects of the model or method. 

8 Conclusion 

Strongly empirical modelling is hard and faces a number of obstacles. However, if we 
really want to make scientific progress the extra effort cannot be avoided. One cannot 
rely upon theory-based modelling until it has been empirically tested in rigorous ways. 
Part of the rigour that is needed is a transparency as to what has been achieved empiri-
cally and what are merely future hopes. We hope that this paper helps lay out the 
groundwork for such an approach. 
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