Prototype Firma Thames Model

Design and methodological issues

1 of 17

The issue

- Identify the conditions in which it is feasible to reduce water consumption by exhortation
- Role of word-of-mouth communication

Prototype model: agent motivation

- Agents of three broad types though none are identical with any of the others
 - One type listens primarily to government
 - One type decides on basis of interaction with neighbours
 - One type pleases primarily own self

The physical analogy

- Consumer agents placed at random on toroidal grid
- Can "see" other consumers in limited number of nearby cells

Modelling judgement, experience and "world view"

- Each agent has criteria
 - for evaluating rules of behaviour
 - for evaluating other agents
- Qualitatively represented -- *e.g.*:
 - Closely similar consumption habits of agents
 - Behaviour observed in neighbours

Rules of behaviour judged by provenance

- invented by oneself
- observed behaviour of other agents
- behaviour suggested by "authority"

Other consumers judged by similarity to self

- Suggested by *consistency principle*
- People like best those with whom they agree the most
- People agree the most with those whom they like the best

Model structure

Results

- policyAgent suggests rules reducing frequence and amount of consumption during "dry" months
- Hierarchy-accepting citizens likely to conform
- Sociable citizens influenced by neighbours some of whom conform to authority
- Individualist citizens can be influenced by enough weight of neighbour behaviour

Lessons from previous models

- Agents such as the *citoyens* are metastable
 - The change behaviour or choices periodically under pressure
 - Not responsive to small changes in environment
- Systems characterised by sudden changes
- System changes mainly of small magnitude; relatively few of larger magnitudes

Experience from statistical mechanics

- Standard examples are avalanches, earthquakes, sunspots
 - Modelled in statistical mechanics as self-organised criticality
 - Few analytical (mainly simulation) results
- Result of
 - metastable components
 - component interaction
 - slow but persistent drivers (*e.g.* energy inputs)

Social and mechanical systems

- Similarities
 - Component (agent) metastability
 - Component (agent) interaction
- Difference
 - Reaction of components to system drivers changes
 - Stable statistical relationship between depth of snow and avalance size
 - Response of public to exhortations to save water changed by behaviour of exhorters -- leaks issue

Design of prototype: the issues

- Validation
- Ability to extend and elaborate model
 Modularity
- Ease of stakeholder comprehension
 - Encapsulation

Validation as description

- Validation is the demonstration that a model is a "good" representation of its target system
 - Comparison of qualitative focus group or survey data with agents' "judgements"
 - Comparison of numerical output with statistical data
 - Interaction with stakeholders

Compositional design

- Agents represent actors and institutions at coarser and finer grain
- By encapsulating code representing actors and institutions in agents, easier to have alternative agents representing same (e.g.) institutions
 - Fine grained agents representing real institutions or individuals can be modelled by coarse grained representations of same institutions or individuals
- Agents containing agents: organisations contain departments; departments contain actors

Purpose of compositional design

- More coarse grained models can be related directly to behaviour of more fine grained models
 - Agents in more coarse grained models are themselves less detailed models of agents in more fine grained models
 - Consistency of behaviour across grains is essential
- Agents at every grain of analysis should be kept sufficiently simple that stakeholders (and modellers!!) can understand their behaviour
 - More detailed descriptions obtained from finer grained representations of parts of model.

Natural extensions

- Compare consumer behaviour with and without policy agent
- Elaborate the behaviour of the policy agent
 - Base representation on stakeholder descriptions
- Closer integration of water model with social model
- Simulate extreme events
 - Mechanism implemented for Firma project

