
A Brief Introduction to Policy
Modelling

Using agent-based simulation

Session 1
About agent-based simulation

Introduction:
some history and motivation, a

first model to play with

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 2

Welcome

•  This brief introduction is part of the EAEPE
Conference, Manchester Metropolitan
University, Nov. 2016.

It is organised and run by
– Bruce Edmonds and Ruth Meyer from

the Centre for Policy Modelling at the
Manchester Metropolitan University

•  If you have not installed NetLogo (version
5.2.something), please do so now from:
http://ccl.northwestern.edu/netlogo

 A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 2

Aims of the Sessions

To introduce you to:
•  Agent-based simulation
•  Its application to policy modelling
It will not get you to a point where you can
start to program your own simulations, this
takes quite a bit longer (just like any other
technique).
However it will give you an idea of what this
approach can do, some of its difficulties, and
help you understand some of its key ideas

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 4

Outline of the Sessions

Session 1: Agent-based simulation (ABS)
•  Background and introduction
•  About ABS, including how a model is made
•  Some examples to play with
Session 2: Its application to policy issues
•  About policy modelling
•  Some more applied examples to play with
•  What to do next if you want to go further
•  Concluding discussion and Q&A

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 5

The importance of formal models
Formal models are important because:
•  they allow the sharing of representations

(without being changed by re-interpretation),
and so allow a community of researchers to
critique, check, compare and improve such
models collectively

•  they can be indefinitely elaborated to ‘fit’
almost anything if complicated enough

•  they are complementary to natural language
accounts – allowing the properties and
outcomes of processes and systems that are
too complicated for the mind to track, to be
reliably traced and inspected

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 6

Mathematical formal models
•  Arithmetic, trignometry, difference equations,

differential equations, statistics etc.
•  Used to be the only kind of formal model

practically available and thus were essential to
any science of the measurable

•  After WWII these models were applied to
understanding social phenomena

•  If one wanted to analytically solve them, one is
limited to quite simple systems

•  Which limited their use to: analogies of
behaviour or aggregate summaries of systems

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 2

Economics
•  By focusing on money (rather than value),

preferences (rather than item properties), optimizing
utility functions (rather than choice processes) etc. it
was found that some interesting models of social
phenomena involving exchange were solvable

•  This became known as neo-classical economics
•  It might have been that such models would

approximate the behaviour of observed economic
phenomena, in aggregate

•  However, it became more interested in the
mathematical properties of its models than whether
it successfully captured observed phenomena

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 8

Simulation

•  Numerical solutions to mathematical
models have been around a long time

•  Computers made this a feasible approach
•  Alternative models of computation (such as

cellular automata) appeared since WWII
•  Simulation developed into an essential tool

of science and engineering, allowing
systems that were too complex for solvable
mathematics to be modelled

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 9

Agent-Based Simulation
•  In 1967 the computer language Simula 67 was specified

and developed for organisational modelling
•  This used separate computational entities for each thing

modelled, and messages between the entities for
interaction (this became object-oriented computing)

•  One use is to model social systems, (such as the
Schelling model in a following slide)

•  (the computational entities are called ‘agents’ when the
entities can be usefully interpreted as having cognition)

•  It was no longer necessary to put up with simplistic or
wrong assumptions just to get a useable formal model

•  Solvable mathematical models and computational
models each have different pros and cons…

•  …but now can choose the most appropriate kind of
formal model for the phenomena one is dealing with

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 10

Schedule, Course Material, etc….

The course materials, examples etc. are all at
 http://cfpm.org/eaepe

More materials for a fuller, 2-day course are
freely available at:
 http://cfpm.org/simulationcourse

This latter site has pointers to:
•  The example models and the slides that explain

them, divided into 8 sessions
•  Further material on the web
•  Pointers to books, links, tutorials etc.

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 2

About NetLogo
•  “Logo” was a language invented by Semour Papert (a

student of Piaget)
•  Designed to be easy to write and read – ‘english like’ –

a large built-in vocabulary and designed so one can
progressively build up a personal set of user-defined
words

•  Designed as a language to explore ideas with in a
playful manner

•  NetLogo is a development of this, but with agents,
patches etc. to facilitate the accessible construction,
sharing and exploration of simulations

•  But it is a full programming language and you could
program any simulation in it if you wanted to

•  Has become somewhat of a standard in the social
sciences, with many available models (e.g. at http://
OpenABM.org or bundled in the package)

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 12

A Classic Example of an Agent-Based
Model: Schelling’s Segregation Model

Schelling, Thomas C. 1971.
Dynamic Models of
Segregation. Journal of
Mathematical Sociology
1:143-186.
Rule: each iteration, each dot
looks at its 8 neighbours and
if, say, less than 30% are the
same colour as itself, it moves
to a random empty square
This was a kind of thought
experiment to look at the
possible outcomes that result
from the above rule

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 2

Staring the first NetLogo Model

•  Goto http://cfpm.org/eaepe and download
the file “schelling.nlogo” file

•  If NetLogo is installed properly this should
load and run when launched, if not you may
have to start NetLogo and use “File” then
“Open” etc. to load the model.

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 2

NetLogo – Interface Panel

Command
Buttons

Parameter
Slider

Typed Direct Commands

Speed
Control

Text Output

Panel
Selection

(looks
slightly

different on
Windows

and Macs)

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 2

Graph of
outcomes

Visualisation
of world

Play with the model!

Play with the
model, try different
parameters, see
what the results
are, what do you
conclude?

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 2

1. Set the parameters

2. Press “setup” to
initialise model

3. Press “step” to make
model do one set of

instructions, press again…

4. The “go” button means
“repeatedly do go”

Play with the model!

•  Try swapping
between
“Interface”,
“Info” and
“Code” panels

•  Read the
explanation

•  Look at the
code

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 17

These change the view
of the model

The Information Tab
Click on the “Info” tab
to see a description of
the model (or whatever

the programmer has
written, if anything!)

Read it, scrolling down

Here are some suggestions
of bits of code to add and

things to

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 2

The Code Tab
Code is complex and it
will take some time to
learn to “read” it (but
NetLogo code is a
LOT easier than most)
Grey=comments (you
can ignore these)
Green = special
structural words
Blue = commands
Purple = NetLogo
defined
Red = constants
Black = programmer
defined words

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 19

NetLogo Documentation
•  The NetLogo documentation is good –

accessible, well written, gives examples and is
extensive

•  Access it either by using the menus:
–  ‘Help >> NetLogo User Manual’

•  Particularly useful is the Dictionary got to:
–  Either from the Manual main page
–  Or ‘Help >> NetLogo Dictionary’

•  Most experienced NetLogo programmers
work with this open all the time, referring back
and forth to it as they program

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 20

Questions about model outcomes
What do you notice about the segregation model
– can you answer any of these?
•  What happens if there are no spaces free?
•  What happens if there are only a very few

spaces free?
•  What happens if there are a lot of spaces free?
•  What happens with very low “%-similar-

wanted”?
•  What happens with very high “%-similar-

wanted”?
•  What happens if you gradually increase “%-

similar-wanted” (0% then “go”, 5% then “go”,
10% then “go” etc.)?

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 21

Discussion
•  Outcomes, even from very simple rules, are difficult

to anticipate…
•  ...until one has spent time playing with the model,

then it may seem obvious
•  Small changes in the rules or parameters can cause

big changes in outcome – qualitatively as well as
quantitatively

•  But one can test these quite easily!
•  The behavioural rules can be anything, and do not

have to be restricted to any particular theory
•  However the space of possible models and settings

is HUGE and can not all be explored

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 22

Using NetLogo commands,
changing code, adding to the

interface

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

A very simple model to get an idea of
how such simulations work
•  Goto http://cfpm.org/eaepe, download the

file “commands.nlogo” model and run it
•  This is a very simple model to illustrate how

commands are run in simulations – how
NetLogo works

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 24

Typing in Commands
Press “setup” to
initialise world

World with different
colour patches

An agent!

Type commands in here
as follows…

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

The command centre…
•  “show” means show the result in the command

centre
Try:
•  show timer (and then try this again)
•  show count agents
•  show agents
•  show sort agents
•  show count patches
•  show count patches with [pcolor = white]
Anything typed into the command centre is from
the “observer” point of view (yours!)

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

Inspecting Patches and Agents
Right-click (or
ctrl click) on a

patch, then
“inspect” that

patch

Magnified
View

Properties of patch

Type commands to patch here, e.g. set pcolor red

Click on little “x” in
corner to get rid of

inspector

Right-click (or
ctrl click) on a
agent, then

“inspect” that
agent

Try typing commands to agent, e.g.:
•  show who
•  fd 1
•  fd 2
•  rt 90
•  lt 90
•  fd 1 rt 90 fd 1
•  set color purple
•  set size 4

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

Some important ideas
•  The whole world, the turtles, the patches (and

later the links) are “agents”
•  That is, they:

–  have their own properties
–  can be given commands
–  can detect things about the world around them,

other agents etc.
•  But these are all ultimately controlled from the

world (from the view of the observer)
•  It is the world that is given the list of

instructions as to the simulation, which then
sends commands to patches, agents (and
links) using the “ask” command

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

Using “ask”
“ask” sends commands to a
whole set of agents (one at a
time in a random order)

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

Try typing commands to agents
via the world, e.g.:
•  ask agents [fd 1]
•  ask agents [set color grey]
•  ask agents [set shape

“person”]
•  ask agents [fd 1 rt 90 fd 1]
•  ask agents [show patch-here]
•  etc.
Can also ask patches:
•  ask patches [show self]
•  ask patches [set pcolor black]
•  ask patch 0 0 [show agents-

here]

Running a simulation (the hard way!)

•  Each time “step” is pressed
the procedure called “step” is
caused to run – this is a list of
commands, a program.

•  We will now look at this.

2. Press “setup”
to initialise world

1. Move the slider to
change parameter

3. Press “step” to make
the program run one time

step

4. Press “step” lots of times!!

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

The Program Code

This text is the program

Click on the “Code” tab
to see the program

It has different parts

This chunk of code (from “to”
to “end”) is the “setup”

procedure – what happens
when you press the setup

button

Text that if after a
semi-colon “;” are

comments and have no
effect Scroll down to look at the “go” procedure

– this is what the “step” button does
A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

Parts of the Code

Everything between “to” and
“end” defines what “go”

means

“ask agents” means to ask
(all) agents to do some

code, one after the other

What it is asking them all to
do is between the square

brackets “[….]”

“if” statements are
conditionals they have a
condition and an action

All the square brackets inside
each other can be confusing, if
you double-click just outside a
bracket, it shows what is in side

between it and the matching
bracket

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

To change the program…

type the following:
;; my bit!
if random-float 1 < 0.05 [lt 90]

Click within the text
and type!

You can press “Check” to see if
you got the syntax of everything

right!

If all is well you can then
click on “Interface” to go
back and try the effect of

your change when running
the code (pressing the

“step” button)

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

Adding a button and running the code
(the fast way!)
Click on the “Interface”
tab to get back to the

main view

Right-Click some empty
space and choose “button”

Type the text “go” here and
then check (to on) the

“forever” switch then “OK”

Now when you press the “go”
button it will keep doing doing

the “go” procedure forever
(until you “unpress” it)

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

Adding a button and running the code
for only 10 steps

Right-Click some different
empty space and choose

“button”

Type the text “repeat 10 [go]”
here

Type the text “10 steps” here
and then “OK” Now when you press the “10

steps” button it will do the
“go” procedure only 10 times

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

Key facts

•  Programs are lists of commands, in this
case done one after another

•  In NetLogo, there are different kinds of
active ‘agent’ that can execute code, e.g.
the ‘turtles’, patches, the observer context

•  Some commands (e.g. ‘ask’) can pass
control to other agents, so they can execute
commands

•  So in NetLogo (and many other languages)
you have to remember who is doing it

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 36

The Experimentation Cycle

Often programming, especially in the
exploratory phase, involves a cycle of:
•  Writing some code
•  Trying it out (as part of a program or as a

direct command)
•  Finding errors
•  Reading the NetLogo documentation (more

on this next session)
•  Correcting Errors
•  Until it works as you want it to (if ever!)

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

Heterogeneous Adaptive Agents
– a model of voting for parties

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 38

Fixed vs. Reactive vs. Adaptive vs.
Reflective Agents vs. …
How agents control behaviour is a matter of simulator
choice, e.g…
•  Behaviour might be fixed – an engrained habit,

procedure, or built-in reflex
•  It might be reactive – a certain response is

‘triggered’ under certain circumstances
•  The agent might have internal memory/states that

are changed by interaction and upon which future
behaviour depends – this is adaptive behaviour

•  The agent might do something more complicated…
weighing up future alternatives, solving a puzzle,
reasoning about possibilities etc. – these reflective
actions are quite complex to program

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

The “voter” simulation
•  This is a very simple simulation where votes and

parties are spread over a political spectrum – voters
vote for the party nearest in position to them, parties
shift position if they do not win

•  Load the simulation “voting.nlogo”
•  Choose the number of voters and number of parties

you want
•  Initialise the simulation (“setup”)
•  Then experiment with pressing the “vote” and “shift”

buttons (the later causes all parties who did not win
to shift their political position randomly)

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

Commands and Buttons
All buttons do is cause a

given command to be
executed when they are

pressed – same as typing
them in.

Try typing the commands “vote” (followed by
enter/return) or “shift” here

Right-Click (Mac: ctrl+click)
on some empty space and

choose “Button”

Type in the commands you
want, in this case “vote shift”

and the button name you want
“Vote+Shift” then “OK”

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

Commands and Buttons
Now try your new button.

Now create a button called
“go” that does the command

“vote shift” but with the
“forever” option selected

Create a new button called
“10xVote+Shift” that does

the command
“repeat 10 [vote shift]”

If you need to move/resize
the button right-click and

“Select” it then drag/adjust it

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

Improving the look
•  Add the command set shape "person" within the update-voter-

appearance procedure
•  Add the command set color [color] of chosen-party within the

“ask voters […]” within the “vote” procedure. after the “set
chosen-party…” command

•  go back and try the simulation now
•  within setup within create-parties add the line

set won? false just after the line set political-position…
•  within the update-party-appearance procedure add the

command:
•  ifelse won?

 [set shape “face happy”]
 [set shape “face sad”]

•  go back and try the simulation again
•  experiment with changing the code so that the size of parties

depends on how many votes they got

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

“AgentSets” in NetLogo
One powerful facility in NetLogo is the ability to deal with sets of agents.
Examples include:
•  turtles – all agents
•  parties – all agents of the breed “party”
•  parties with [not won?] – the set of parties with the won? property set

to false
•  [color] of chosen-party – extracts the value(s) from a set of agents
•  one-of voters – a random one from all in voters
•  max-one-of parties [votes] – the agent in parties with the most of

property: votes
•  min-one-of parties [abs (political-position - [political-position] of

myself)] – the agent in parties with the minimum value of abs (political-
position - [political-position] of myself) in other words, the closest to its
own political position

Look at the code again and see if you identify when sets of agents
are used and how the code works
The category called “Agentset” in the NetLogo dictionary shows some of
the primitives that can be used with these

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

An Investigation

•  Set the number of voters to 100, the
number of parties to 3

•  Run it quite a few times
•  Observed what tends to happen, e.g.

– How do parties in the middle fare compared to
parties on the wings

– Under what sort of conditions does a party
dominate for a period of time?

– Under what sort of conditions does power
switch rapidly between parties?

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

The importance of visualisations
•  Due to the fact that it is (relatively) easy to create a

simulation you do not understand and that…
•  …You can not rely on your intuitions and classic

outputs such as aggregate measures/graphs
•  Making good visualisations of what is happening is

very important
•  I often spend as much time on getting the

visualisations of a model right as I do the original
“core” programming

•  And this can allow a “step change” in my
understanding

•  The NetLogo “world view” is ideal for this

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

Adding a graph

Right-Click (Mac: ctrl+click)
on some empty space near

the bottom and choose
“Plot”

Replace the
“plot count turtles”

command there with:
plot [political-position] of

max-one-of parties [votes]
then “OK”

In other words to plot the
political position of the

winning party

Change the Y max value to “1”

If necessary, expand the
NetLogo window to see the

new plot window
Now re-run the simulation

looking the political position
of the ruling party

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

Discussion – Interpreting an ABM

•  Simulations (indeed any model) is
meaningless without some interpretation of
what things are meant to stand for to guide
model development and investigation

•  How do you interpret your observations of
the model with 100 voters and 3 parties?

•  The questions:
– How meaningful is the simulation?
– How empirically realistic is the simulation?

•  Are not quite the same!
A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

A change to the simulation setup

•  In the setup procedure, where voters are
created, change the command set political-
position random-float 1 to: set political-
position random-normal 0.5 0.15

•  This changes the initial distribution of voters
from a uniform one to a normal distribution

•  Go back and re-investigate the behaviour of
the simulation with this setup

•  How much does it change the results? Just
a bit? Qualitatively different?

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

Other things to try
•  Does changing the initial distribution of parties

on the political spectrum change the behaviour
of the simulation

•  Can you try to change how the political parties
adapt to losing?

•  Can you add a rule so that voters change their
political position as well?

•  Can you change the simulation so that all
parties somewhat adjust between elections but
after an election there is a bigger or different
shift?

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

Randomness!
•  It is very tempting when some process is either complex

or unknown to chuck in a random choice
•  But this is as much a definite choice with consequences

as any other and should be used with caution!
•  It is OK when…

–  this is just a temporary ‘stub’ which will be replaced later (but
then this needs to be declared if it is left in)

–  One just needs a variety of behaviours for exploratory/testing
purposes (but then if you are publishing the results you have
a different purpose)

–  One knows the behaviour IS random (check the evidence
that this is so)

–  One is pretty sure that the behaviour is irrelevant to the
outcome one is looking at (run the model with different kinds
of behaviour and check it makes no difference)

•  But otherwise it might be better to replace it with
something more definite or more realistic

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

Mutual Adaption and Emergence
– a model of opinion change in a

group setting

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 52

Mutual Adaption and Emergence
•  Many interesting cases come about when agents

are mutually adapting, so that the resultant
organisation or social structure results from this
mutual adaption

•  However such a process can be difficult to predict
from the initial conditions, this is called “emergence”

•  Chance developments during the development of
such organisation can determine which of several
possible outcomes result

•  Sometimes there are several, quite different, kinds
of outcome that can occur from the same start

•  In such situations, averaging the results from many
runs is not helpful, indeed can be very misleading –
better to try to characterise the different “phases”

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

Simulation of Influence with a Group

•  Model originated from an EU project looking
at how information disseminated to farmers

•  They noticed that during meetings opinions
often diverged into contrasting groups

•  They made an abstract simulation to try and
capture this phenomena

•  Now a great family of related models along
these lines, called “opinion dynamic”
models

•  This is a simplified version of one of these

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

Details of this Influence Simulation
•  Agents all have different levels of:

–  agreement on an issue, represented by a number -1 to 1
–  uncertainty about their opinion, represented by a number

from 0 to 2
•  Each iteration one (randomly picked) agent is randomly

paired with another
•  That other influences their opinion and uncertainty, but

only if the other’s opinion is sufficiently close to their
own (difference is less than their uncertainty)

•  There are some “extremists” who are divided between
those with opinion 1 and -1 initially

•  And “moderates” who have a random opinion initially
•  This is a simple version of an existing model (see Info)
•  There are many, many variants of these!

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

An example of what happens

The vertical scale
represents the

opinion of each,
from -1 up to 1

Each line shows the
“trajectory” of a single agent

The COLOUR of each is their level of
uncertainty, from blue (maximally

uncertain) to red (minimally uncertain)

In this case (roughly) two
groupings with “extreme”
certain views emerged

(Simulation) time is this axis
A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

The Consensus Simulation
•  Load the “opinion change.nlogo” simulation
•  “prop-of-extremists” is the proportion of

extremists in the initial population
•  “uncert-of-moderates” is the initial uncertainty

of the moderates (initial uncertainty of
extremists is fixed at 0.05)

•  “speed-uncertainty-change” is how much an
agent’s uncertainty is changed if influenced by
another (opinion is always changed 5%)

•  Play with the settings, run the simulations, see
how many qualitatively different kinds of
outcome there are and under what conditions
they tend to occur

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

Procedures

•  To organise code better, you can ‘bunch’ a
whole lot of commands and give they a
label you decide upon

•  So they you can use this label and NetLogo
will know this means to do the whole lot of
commands it was defined with

•  You can progressively define such labels
using other labels etc., building up your own
vocabulary of powerful commands

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 58

Go to the Code Tab and browse down
to the bottom of the code
Between ‘to’
and ‘end’
there are
sets of
commands
with a given
label, each
label can
then be
used
elsewhere

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 59

Different kinds of procedure

•  Since the context of commands matters,
whether the commands are being done
within the context of an agent, the
observer, a patch (or even a link) …

•  …it is useful to keep track of which
procedure (or chunk of code) is within which
kind of context

•  Some primitives and variables can only be
used within an agent (turtle) context, others
only within a patch context and others only
within the observer context, etc.

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

Some Global Procedures in the code

The “setup” and
“go” procedures are
within the observer
(the global) context

But some
chunks of
code are
within the

agent context

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

Agent procedures

A lot of the other
procedures are
within the agent

context

Local agent variables are only
usable within the agent context

Some primitives are only usable
within the agent context

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

Things to try in this simulation

•  Can you work out when one gets one, two
or more groups out of the process?

•  What might one add to help understand
what is happening in the simulation?

•  What happens if you change code in the
procedure: “be-influenced-from”?

•  What happens if everyone is only
influenced by the nearest other?

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

If you have finished…

•  … try playing with some of the other
simulations

•  Goto http://cfpm.org/eaepe/
•  And read the document:

“Other models to play with.pdf”
•  And follow its instructions
•  Each time: read the “Info Tab”, play with the

simulation, look at the code (but only expect
to understand small bits of the code as yet)

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 64

Conclusions of Session I
I hope you have got a little bit of an idea
concerning agent-based simulation :
•  What it is
•  How it is programmed
•  Its flexibility
•  That the outcomes can be surprising
•  That it can be hard to understand how one’s

own model works
•  The space of possible models is huge
What we have not talked about is how to apply
this to policy issues, and how to check if a model
is (in any sense) correct!

A Brief Introduction to Policy Modelling, EAEPE Conf., Manchester, Nov. 2016, slide 23

The End

The Centre for Policy Modelling:
 http://cfpm.org

Introduction to ABS and Policy Modelling materials:

http://cfpm.org/eaepe

