Theory: bool

Parents


Type constants


Term constants


Axioms

BOOL_CASES_AX
|- !t. (t = T) \/ (t = F)
IMP_ANTISYM_AX
|- !t1 t2. (t1 ==> t2) ==> (t2 ==> t1) ==> (t1 = t2)
ETA_AX
|- !t. (\x. t x) = t
SELECT_AX
|- !P x. P x ==> P ($@ P)
INFINITY_AX
|- ?f. ONE_ONE f /\ ~(ONTO f)

Definitions

EXISTS_DEF
|- $? = (\P. P ($@ P))
TRUTH
|- T = (\x. x) = (\x. x)
FORALL_DEF
|- $! = (\P. P = (\x. T))
AND_DEF
|- $/\ = (\t1 t2. !t. (t1 ==> t2 ==> t) ==> t)
OR_DEF
|- $\/ = (\t1 t2. !t. (t1 ==> t) ==> (t2 ==> t) ==> t)
F_DEF
|- F = (!t. t)
NOT_DEF
|- ~ = (\t. t ==> F)
EXISTS_UNIQUE_DEF
|- $?! = (\P. $? P /\ (!x y. P x /\ P y ==> (x = y)))
LET_DEF
|- LET = (\f x. f x)
COND_DEF
|- COND = (\t t1 t2. @x. ((t = T) ==> (x = t1)) /\ ((t = F) ==> (x = t2)))
ONE_ONE_DEF
|- !f. ONE_ONE f = (!x1 x2. (f x1 = f x2) ==> (x1 = x2))
ONTO_DEF
|- !f. ONTO f = (!y. ?x. y = f x)
TYPE_DEFINITION
|- !P rep.
     TYPE_DEFINITION P rep =
     (!x' x''. (rep x' = rep x'') ==> (x' = x'')) /\
     (!x. P x = (?x'. x = rep x'))

Theorems