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Initial Thoughts

Central to the investigation of resilience in socio-ecological systems is the understanding of

possible transitions between different system regimes at various scales. For this, agent-based

simulations can be used to represent the complex socio-ecological system of interest. Often,

these simulations are very complex themselves so that mathematical models of reduced com-

plexity could be of help not only to see the wood for the trees but to allow the application of

advanced analytic methods in order to, e.g., identify system regimes at different levels of scale

or to get a quantitative understanding of the transition pathways between these regimes (on the

basis of which questions of policy changes could be addressed).

Relevant Work

• Construction of Markov models of reduced complexity from simulation data

(involves appropriate “coarse-graining” of state space)

• Computation of committor functions: qi(z) = probability to hit regime Ri

next when being in state z

• Regime identification

• Transition networks

• Dominant pathways

Markov chain
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Network of transition probabilities.
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Transition matrix.

Regime Identification

Illustrative “toy” example

Individual level

Binary choice with choice rule:

• high probability: do what

majority is doing

• low probability: randomize

Population level

Regime identification via analysis of transition matrix

Structure of the transition matrix, no randomization: P has two eigenvalues 1 and

two dynamically invariant regimes
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Second right eigenvector of example

Regimes are related to eigenvectors and

eigenvalues of the transition matrix

• in practice: several blocks / regimes

with eigenvalues close to 1, eigenval-

ues relate to different time scales

• regimes can be computed via sign

structure of related eigenvectors

Further approaches to regime identification for Markov chains, e.g.,

• via expected hitting times

• via Schur decomposition

• via singular vectors.

Pathways of Regime Change

Cournot Duopoly

(Work in Progress. . . )

Sample path
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• two firms choose quantities from a grid

{0, 0.25, 0.29, 0.33, 0.5}

• update choice according to a Imitate-the-Best be-

havioral rule with one-step memory and payoffs

ui(q1, q2) = P (q1+q2)−c(qi), where qi is current

quantity of firm i, P = max(1− q1 − q2, 0) is price

funtion and c(qi) = 0.5q2
i

represents costs.

• known: {0.25, 0.29, 0.33} visited most often

• unknown: their weight in stationary distribution; how

do transitions take place?

Dominant eigenvalues, 2nd and 3rd eigenvectors
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Hierarchical Networks of Transitions Dominant pathways of change

❀ Direct pathway from Walras to

Cournot state is the most typical

pathway of change.
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