

Analyzing the Hohokam water system with different scales

Workshop on **Cross-scale Resilience** May 1st-4th

Research Question

What were the daily efforts needed to sustain this system?

For the analysis, we utilize different time scales, spatial scales and agency scales.

Past systems

Scenarios about daily actions

Present systems

Known daily actions

Methodology that links daily actions with long term effects

Observed long term patterns

Scenarios about long term patterns

Core of the methodology: Agent Based Modeling (ABM); a method in which agents interact with each other and with their environment under predefined rules and change their state at each time step.

Assessing Cross-scale Resilience

Event scenarios pushing the boundaries -> of the system

The scenarios are implemented on an ABM short term model of the system

Themis D. Xanthopoulou^a, Maurits W. Ertsen^b, Jan C. A. Kolen^a **b WRM, CiTG, Delft University of Technology** a Faculty of Archaeology, Leiden University

The system

- Agrarian society in a desert climate
- Large scale irrigation with water diverted from rivers (Salt, Gila, Verde, Santa Cruz) • Use of the systems for over 1000 years before depopulation (approximately 100AD 1450AD)
- Irrigation is still important, with canals using routes of ancient ones Outlook of a resilient system

Data

- Environmental Proxies (River discharge, Rainfall) Population estimates
- Settlement positions in different periods and Irrigation system characteristics Crop choices and soil information

Image from Woodson 2010

scales of agency Irrigation community

Pima-Maricopa Irrigation Project under funding from the Department of Governance Act of 1994 (P.L. 103-413), for the design and development of a water delivery system utilizing Central Arizona Project water. Special