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We report results from over 20,000 runs of a coupled agent-based model of land use change and species
metacommunity model. We explored the effect of increasing government incentive to improve biodi-
versity, in the context of other influences on land manager decision-making: aspirations, input costs, and
price variability. The experiments test the four kinds of policy varying along two dimensions: activity-
versus-outcome-based incentive, and individual-versus-collective incentive. The results from the
experiments using boundedly rational agents, and comparison with profit-maximisation reveal thresh-
olds in incentive schemes, where a sharp increase in environmental benefit occurs for a small increase in
incentive. Further, the context affects the level of incentive at which turning points occur, and the degree
of effect. Variability in outcome can also change with incentive and context, and some evidence suggests
that environmental benefits are not always monotone increasing functions of incentives. Intuitively, if
the incentive signal is large enough, land managers will farm the subsidy; and if the subsidy does not
exactly match desired landscape outcomes, deterioration in environmental benefits may occur for higher
incentives. Our results, whilst they suggest that outcome-based incentives may be more robust than
activity-based, also highlight the importance of context in determining the success of agri-environmental
incentive schemes. As such, they lend theoretical support to schemes, such as the Scottish Rural
Development Programme, that include a localised component.

� 2012 Elsevier Ltd. All rights reserved.
“the matter promises to be even more complex and mysterious
than was originally supposed”

(Sir Arthur Conan-Doyle, The Sign of the Four)
1. Introduction

The Convention on Biological Diversity (Article 11) requires the
subscribing countries to “adopt economically and socially sound
measures that act as incentives for the conservation and sustain-
able use of components of biological diversity”. Intensive agricul-
ture is a major source of biodiversity loss, due to habitat destruction
and loss of heterogeneity (Meehan et al., 2010; Kwaiser and
Hendrix, 2008; Benton et al., 2003; Hald, 1999), and therefore an
excellent candidate for policy intervention. Besides its important
intrinsic value, biodiversity matters in agro-ecosystems because it
can influence the long term sustainable productivity (Carvalheiro
et al., 2011; Tilman et al., 2002; Naeem et al., 1995; Tilman and
r Socio-Ecological Systems.
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Downing, 1994), and hence system resilience, especially in view
of increasingly costly inputs ultimately derived from oil. The Scot-
tish Government adopted the biodiversity 2010 agenda of reducing
biodiversity loss from agriculture.

In designing interventions, many governments favour a mix of
market-based approaches and regulatory policy measures. Market-
based approaches, according to economic theory, are more cost-
effective, allow a flexible response to price signals, and avoid
biodiversity being seen as a liability rather than an opportunity.
Under this ideology, conservation incentives to land managers may
be offered as voluntary measures aimed at correcting market fail-
ures causing the loss of species and ecosystem services. The
removal of perverse (from the perspective of biodiversity conser-
vation) incentives leading to over-intensification, has also been
advocated as a policy measure (see, for example, Polasky et al.,
1997). However, price volatility has the potential to compound
the impact of intensification on biodiversity. Such volatility is
a feature of liberalised agricultural markets with important effects
on farmers’ income, and as a consequence, on biodiversity levels (as
we will show). Careful design of incentives based on an under-
standing of the underlying biological system is therefore crucial for
policy success in agricultural socio-ecosystems.
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Cost-effectiveness is an important metric of policy evaluation.
This can be interpreted in twowayswith different consequences for
evaluation. Firstly, a set of policy measures can be considered more
cost-effective than others, if the total cost needed to achieve a policy
goal is lower than for other measures. This interpretation is useful
when there is a specific conservation objective, such as the survival
of an endangered species. The second interpretation is concerned
with overall conservation output. In this case a set of policy
measures is more cost-effective than others if it results in higher
overall biodiversity for a given cost. This point of view is usefulwhen
policymakerswant tomaximise the conservation output for a given
available budget. In this study our focus is on overall biodiversity,
measured by species richness at the landscape scale.

We have developed FEARLUSeSPOMM (Gimona et al., 2011;
Gimona and Polhill, 2011) to explore biodiversity incentive
schemes, by coupling FEARLUS (Polhill et al., 2001; Gotts et al.,
2003; more recent versions described in Polhill et al., 2008; Gotts
and Polhill, 2009; Polhill et al., 2010b), an agent-based model of
agricultural land use change, with an enhanced version of
Moilanen’s (1999, 2004) Stochastic Patch Occupancy Model.
Moilanen’s (1999, 2004) model is a metapopulation model, simu-
lating the occupancy of a single species in a space of connected
patches (Levins, 1968), We have enhanced this model to simulate
multiple species and interactions among them, making SPOMM
a metacommunity model (Gilpin and Hanski, 1991; the extra ‘M’ in
SPOMM stands for ‘Metacommunity’). In previous work (Gimona
and Polhill, 2011), we explored the robustness of biodiversity
policy and agri-environmental incentives across several scenarios of
land manager, government policy and environmental attributes
using a small sample of values for the incentive amount. These
results suggested that it might be interesting to explore the effect of
more gradually increasing the incentive, with a view to examining
the relationship between incentive amount and species richness in
more detail. We therefore chose a subset of the scenarios in Gimona
and Polhill (2011) with which to increase the sample size of the
incentive amount in this paper.We showhere some selected results
from this exploration, which amounted to over 20,000 runs of the
coupled models, with a view to revealing more about the potential
relationships between incentives and species richness, highlighting
some of the sensitivities of biodiversity to farmer agent attributes,
incentive scheme design, and other drivers of farmer behaviour.

In agro-ecosystems biodiversity is influenced by local manage-
ment and by the landscape structure, which is a product of the
decisions of individual land managers. Agent-based modelling is
a natural tool to model the human portion of such systems, and is
particularly well suited to studying coupled humanenatural
systems (Hare and Deadman, 2004; Boulanger and Bréchet,
2005), because it allows an intuitive representation of the envi-
ronment and the embedding of agents within it. However, such
couplings are not necessarily straightforward. Matthews et al.
(2005) summarise various challenges in coupling social and envi-
ronmental models, noting the stress many authors, reflecting on
experiences in the area, place on a consistent integrated ontology in
the coupled whole. In FEARLUSeSPOMM, some of these issues
have been addressed because FEARLUS and SPOMM operate
at compatible levels of abstraction and spatio-temporal scales.
SPOMMwas also specifically designed to be coupled with FEARLUS,
and the process involved the developer of the latter.

The style of modelling in FEARLUS has been described by Boero
and Squazzoni (2005) as a ‘typification’: the model constitutes
a theoretical construct “intended to investigate some properties
that apply to awide range of empirical phenomena that share some
common features” (para 3.8). As such, it is contrasted with ‘theo-
retical abstractions’ (Boero and Squazzoni cite work on the pris-
oner’s dilemma as an example (Axelrod, 1997; Axelrod et al., 2002))
and ‘case-based models’, designed to be fitted to a particular time
and place and provide an explanation of some of the phenomena
observed there. Dean et al.’s (2000) work on the Anasazi is one of
the examples given. As another example of a typification, Boero and
Squazzoni (2005) cite their own work on industrial districts
(Squazzoni and Boero, 2002; Boero et al., 2004). Typifications tend
to make use of qualitative information, theory and second-order
data (e.g. stylised facts) in exploring a class of phenomena, as
opposed to case-based models, which will require significant
amounts of quantitative data to fit to a specific instance of such
a class. The version of FEARLUS used here is based on qualitative
research with farmers and key informants in northeast Scotland,
key assumptions in the model being checked with interviewees
(Polhill et al., 2010b). Similar arguments would apply to the
SPOMM, which may also be deemed a typification in the domain of
ecology, and hence to FEARLUSeSPOMM. Typifications are useful
for exploring questions ‘in principle’ about the relationships among
phenomena in a class of systems.

One of the earliest agent-based models of a coupled humane
natural system is Lansing and Kremer’s (1994) work on Balinese
water temples. This model was validated on empirical data, and
was successfully used to persuade policy-makers of the merits of
the water temple system for managing pests and irrigation. More
recent work includes Guzy et al. (2008), who use a spatially-explicit
agent-based model to assess the impact of urban expansion into
farmlands and forests under various land use policy scenarios, and
Brady et al.’s (2012) empirical model of the effects on ecosystem
services of reforms of the European Union’s Common Agricultural
Policy on marginal agricultural regions in Sweden. Scenario anal-
ysis is a popular way to use agent-based models of coupled
humanenatural systems; Lempert (2002) recommend the use of
ensembles of scenarios to model possible futures to explore
robustness, resilience and stability of alternative policies. Partici-
patory modelling techniques are often used in the study of such
systems to capture local knowledge and engage with key stake-
holders and decision-makers (Voinov and Bousquet, 2010). Recent
examples include Anselme et al.’s (2010) work on shrub
encroachment impacts on biodiversity conservation in the French
Alps, and Lagabrielle et al.’s (2010) participatory process to inte-
grate ecological knowledge into spatial planning on Réunion Island.
A scenario approach is used here because FEARLUSeSPOMM is
a typification: comparing results from as wide a range of scenarios
as feasible with the computational power available is one way to
avoid over-reliance on a specific instance of the model that has not
been fitted to a particular case study in the real world.

Parker et al. (2008) outline various ways in which human and
environmental systems can be coupled within a model, which can
be divided into open-loop and closed-loop categories. In open-loop
categories, submodels are executed sequentially, with no feedback
from one submodel to another. Closed-loop categories feature such
feedbacks, and although more challenging to implement, are
clearly better fitted to capturing the complexity of the co-evolving
landscape. An et al.’s (2005) IMSHED model, for example, is able to
explore responses of households and panda populations to
different conservation scenarios; they argue that the inclusion of
feedbacks in their model leads to more representative results.
Manson’s (2005) SYPRIA model also features closed-loop humane
environment interactions. FEARLUSeSPOMM currently features
closed-loop interactions when outcome- rather than activity-based
biodiversity incentive schemes are used.

2. Method

Here we give an overview of FEARLUSeSPOMM using Grimm et al.’s (2006;
2010) ODD (Overview, Design concepts and Details) model description protocol,
with a slight modification to introduce the scenarios used as part of the overview. In
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subsection 2.2, we outline the simulations conducted, and in 2.3 the method used to
interpret the results. Note also that here we describe FEARLUSeSPOMM as config-
ured for these experiments. Other configurations are possible.
2.1. A coupled human and natural system model

2.1.1. Overview
2.1.1.1. Purpose. The purpose of the model is to explore how effective in principle
various agri-environmental incentive schemes are at managing catchment biodi-
versity in the context of a number of other influences on land manager decision-
making.

2.1.1.2. Entities, state variables and scales. The key entities in the model are an
environment, consisting of a toroidal grid of 25 � 25 land parcels (a.k.a. patches),
each owned by a landmanager, who chooses a land use (conceptually, a combination
of crop and land management strategy) for each parcel they own every year (the
time step in the model). Land managers use a satisficing algorithm to choose land
uses; no change is made to the land uses unless their profit (return minus input
costs) is below an aspiration threshold for a number of consecutive years specified
by their ‘change delay’. When changing land uses they use a simplified form of case-
based reasoning (Aamodt and Plaza, 1994), searching their case base for prior
experiences of a land use, consulting neighbours for advice or experimenting if no
such experience is available. Each experience (or ‘case’) stores the land parcel and
economy as the context in which the decision was made, the land use chosen as the
action taken, and the profit made as the outcome.

Each land use has a different yield, and this together with an exogenous
economy time series and break-even threshold parameter (representing input costs)
determines the economic return from the market accumulated to the land
manager’s account. Each land use makes one or more habitats for species available
where it is used. Each patch records the species living on it as presence or absence
(i.e. numbers of individuals are not recorded). Each species has parameters affecting
L
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Fig. 1. UML class diagram showing th
its dispersal distance (alpha) and patch extinction probability (mu). A government
agent monitors the environment, and has a rule it uses to issue an incentive to land
managers, designed to prevent biodiversity loss.

Land managers offer a fixed price for land parcels that come up for sale due to
neighbours going bankrupt, once their account exceeds their ‘land offer threshold’.
Land managers are regarded as bankrupt when their account is negative. A UML
class diagram of the salient features of FEARLUSeSPOMM is shown in Fig. 1.

2.1.1.3. Process overview and scheduling. Each time step (year), consists of:

(i) Land managers choose land uses for each of the land parcels they own.
(ii) The land uses are used to derive a habitat map for species.
(iii) Species compute patch extinction and colonisation probabilities based on the

habitat map and their prior distribution.
(iv) The government agent uses its rule to issue financial incentives to land

managers.
(v) An economic return from the market is computed from the yield of the land

use, and the current state of the economy, and added to the land managers’
accounts.

(vi) Land managers update their case base.
(vii) Land managers with a negative account are regarded as bankrupt, and sell

their land parcels.
2.1.1.4. Scenarios. A scenario is defined by four components: the rule used for the
government agent, the time series used for the market, the break-even threshold for
land managers, and the aspiration level. For the sake of convenience, we will use
a nomenclature to refer to scenarios, consisting of a string of the following format:
‘g/m/b/a’, where g refers to the government rule, m to the market, b to the break-
even threshold (one of {25, 30}), and a to the aspiration threshold (one of {1, 5}).
All scenarios use the same setup for species, habitats and land uses, which are the
same as those in Gimona and Polhill (2011).
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The experiments in this paper use six land uses comprised of two classes having
three levels of intensity: GL1, GL2 and GL3 (from low to high intensity; yielding 4, 5
and 6 in arbitrary units of yield respectively) representing grazing; AL1, AL2 and AL3
(low to high intensity; yields 4.5, 5.5, 6.5) representing arable. See Fig. 2. Land uses
are mapped onto habitat provision: AL1 provides AH1, AL2 provides AH2, AL3
provides AH3, GL1 provides GH1, GL2 provides 20% GH1 and 80% GH2, GL3 provides
GH3.

There are ten species, with parameters in Table 1; all can survive on at least one
of habitats AH1 or GH1, and all except a competitor species (C), which causes the
local extinction of G1, G2 and G3 after three consecutive years of occupancy, can
survive on at least one of AH1 or GH2. (For this reason, GL2 provides 20% GH1.)
Species A2, A3 and G4e6 cannot survive on the habitats associated with the most
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Fig. 2. Income from each land use in each economy (solid linesdthe sinusoidal solid line is
with break even thresholds (dotted lines: dark dotted line 25, light 30) and break-even thres
dashes 5; dark when applied to break-even threshold 25, light for 30).
intensive land uses. Thus the lower intensity land uses AL1, GL1 and GL2 are the
most important for biodiversity, but they have the lowest yields. Species G1e4 can
only survive on grazing land uses, whilst A1 can only survive on arable. Species A1, C
and G4e6 have the smallest dispersal kernel (which is inversely related to a e see
Equation (1) below), whilst A3 and G1 have a larger dispersal kernel. Note also that
GL1, the lowest intensity ‘grazing’ land use provides the best habitat for species Cda
setup designed to implement one of many mechanisms, from real-world findings
such as those in Wallis de Vries et al. (1998), by which biodiversity can be improved
through grazing. This is consistent with the ‘intermediate disturbance hypothesis’
(Connell, 1978) in ecology: that biodiversity first rises, then falls, as the frequency
and intensity of disturbance to an environment increases. To obtain a maximum
landscape scale species richness of 10, a mixture of lower intensity land use types is
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hold plus aspiration thresholds (dashed lines: long dashes aspiration threshold 1, short



Table 1
Parameters for species used.

Spp. a m Habitats Competition (time)

GH1 GH2 GH3 AH1 AH2 AH3

A1 1.3 0.1 e e e Y Y Y None
A2 0.9 0.1 e Y e Y Y e None
A3 0.8 0.1 e Y e Y e e None
C 1.3 0.05 Y e e e e e G1, G2, G3 (3)
G1 0.8 0.1 Y Y Y e e e None
G2 0.9 0.1 Y Y Y e e e None
G3 1.1 0.1 Y Y Y e e e None
G4 1.3 0.1 Y Y e e e e None
G5 1.3 0.1 Y Y e Y e e None
G6 1.3 0.1 Y e e Y e e None
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required, including GH2 (or possibly GH3) to provide a refuge for G1e3 from C,
without too much fragmentation so that species can re-disperse to patches with
suitable habitat on which they become extinct.

We tried four rules for the incentive scheme, each intended to lessen the impact
of the competitor species C (Gimona and Polhill, 2011, p. 179). Each rule uses an
incentive computed from two parameters, reward (runs used integers in [1, 10]) and
ratio ({1, 2, 10} tried), as follows (parentheses refer to the government rule setting in
the scenario nomenclature described above):

� Activity rule (g ¼ ‘A’): Pay reward to each land manager for each parcel using
GL2 or AL1. Note that rewarding for GL2 instead of GL1 is intended to avoid
incentives that will cause the extinction of G1e3 through competition with C.

� Outcome rule (g ¼ ‘O’): Pay reward to each land manager for each occupancy of
A2, A3, G3, G5 or G6 on a parcel they own. G3, with the smallest dispersal
kernel, is the most vulnerable of G1e3. Rewarding for presence of G3 is
intended to provide an incentive for land managers to provide a refuge for
these three species.

� Cluster-Activity rule (g ¼ ‘CA’): Pay reward/ratio to each land manager for each
parcel using GL2 or AL1, plus reward/ratio for each (Moore) neighbouring
parcel using the same land use.

� Cluster-Outcome rule (g¼ ‘CO’): Pay reward/ratio to each landmanager for each
occupancy of A2, A3, G3, G5 or G6 on a parcel of land they own, plus reward/
ratio for each neighbouring parcel also having the same species.

We define ‘incentive’ as the amount paid by the rule. As shown above, for
Activity and Outcome rules, the incentive is equal to the reward parameter; for
Cluster-Activity and Cluster-Outcome rules, the incentive is equal to the reward
parameter divided by the ratio parameter.

In our experiments, we used two time series for the economy, one having a fixed
price for each land use, the other a variable price. The ‘fixed’ market (m ¼ ‘F’ in the
scenario nomenclature) offered 5 units of wealth per unit yield of AL1, AL2 and AL3,
and 5.5 per unit yield of GL1, GL2 and GL3. The ‘variable’ market (m ¼ ‘V’) oscillated
approximately sinusoidally between 3.25 and 6.75 with period 20 years for AL1, AL2
and AL3; and between 4 and 7 with period 16 years for GL1, GL2 and GL3. A regular
oscillationwas used rather than (for example) a randomwalk, to make the effects of
variability easier to discern: note that the land manager agents lack the intelligence
to learn temporal patterns.

Fig. 2 compares the income from each land use with break-even thresholds and
aspiration thresholds. In the ‘fixed’market, GL1 and AL1 alwaysmake a loss; GL2 and
AL2 make a loss if the break-even threshold is 30; and GL3 and AL3 always make
a profit. However, land managers will not satisfice on GL2 and AL2 when the break-
even threshold is 25 unless the aspiration threshold is 1, neither will they do so on
GL3 andAL3when the break-even threshold is 30 unless the aspiration threshold is 1.
In the ‘variable’market, each land use is sometimes profitable, and sometimesmakes
a loss, with the exception of GL1 when the break-even threshold is 30, which always
makes a loss. (AL1 makes a very small profit in this case, but not enough to meet
aspirations.) Aspirations, however, are measured at the farm scale as a mean over
land parcels. Thus land uses that are not profitable and/or donotmeet aspirations can
be retained if the landmanager hasmore than one land parcel, with the other parcels
using land uses that generate sufficient income to compensate for the loss.

2.1.2. Design concepts
2.1.2.1. Basic principles. Case-based reasoning (Aamodt and Plaza, 1994) is an arti-
ficial intelligence technique based on evidence about expert practice in a range of
occupations. An expert practitioner in any area where complex, context-dependent
decisions are required (such as medicine, law, farming or design) will frequently
approach a new problem by recalling examples of similar problems encountered in
the past, the solutions attempted, and how successful they were. Case-based
reasoning requires the decision-maker to have an episodic memory e a record of
specific past experiences against which to compare the current case. It involves
selection of the most appropriate prior cases, comparison of the success
encountered in prior cases treated in different ways, and adaptation of the details of
any past solution suggested by this process to the current case. The case-based
reasoning algorithm used here is simplified, lacking a rich matching algorithm
that would be expected in an artificial intelligence implementation to determine the
degree of analogy between the current situation and an experience in the episodic
memory. Case-based reasoning nevertheless describes the principles onwhich parts
of the decision-making algorithm are based. Other aspects of land manager
decision-making draw on Simon’s (1955) ‘satisficing’, and qualitative research of
farmers in northeast Scotland (Polhill et al., 2010b), which, among other things,
introduced the ‘change delay’ parameter for land managers.

Stochastic patch occupancy models such as Moilanen’s (2004) SPOMSIM model
the presence or absence of species on patches of land.We have extended the concept
to model multiple species, addressing the concept of ‘metacommunities’ (groups of
communities connected by dispersal) in ecology (Holyoak et al., 2005) through
treating each cell in the modelled space as a landscape patch.

2.1.2.2. Emergence. The emergent outcomes from the model are the species rich-
ness, spatial distributions of land uses, and the ability of the landmanagers to stay in
business.

2.1.2.3. Adaptation. Adaptation occurs through bankruptcy and in-migration of land
managers with different settings for their change delay parameter. Where the
change delay makes a difference to the ability of land managers to stay in business,
those with less favourable settings will go bankrupt, with the effect that the
distribution of change delay in the population of agents will be different from the
distribution from which this parameter is initialised.

2.1.2.4. Objectives. Objectives are implicit, but land managers’ decision-making
algorithms are aimed at keeping them in business, and the government agent’s
object is to improve biodiversity.

2.1.2.5. Learning. Land manager agents learn by storing new cases (each experience
they have of using any particular land use) in their case base.

2.1.2.6. Prediction. Land managers predict the economic return they expect to get
from a particular land use choice on the basis of the cases stored in their case base.
Where they have no case for a particular land use, they may base their prediction on
the experience of a neighbouring land manager who is willing to give them ‘advice’
in the form of a case they have encountered and stored. Where they have no access
to a case for a land use, either in their case base, or in the form of advice, they
‘predict’ that the untried land use will meet their aspiration threshold.

2.1.2.7. Sensing. Land managers are aware of the state of the economy, their
experiences of using different land uses, and of their neighbouring land managers.
The government agent knows whatever it needs to in order to implement the
incentive rule. In the case of ‘Activity’, the government agent is aware of all land uses
applied, in the case of ‘Outcome’, it is aware of the presence or absence of each
species on each patch of land.

2.1.2.8. Interaction. Land managers interact with each other through offering and
requesting ‘advice’ e experience with using land uses they have not used, or do not
remember having used themselves. The government agent interacts with land
managers by issuing the incentive in accordance with its rules. Land managers
interact with species by choosing land uses making differing amounts of habitat
available for them. The government agent, for the ‘Outcome’ and ‘Cluster-Outcome’
rules, interacts with species through observing their presence or absence.

2.1.2.9. Stochasticity. For species, stochasticity is used to determine patch level
absence or presence, based on the formulae calculating probabilities of local
extinction or occupation, as appropriate. In land managers, stochasticity is used to
decide between two land uses with the same expected outcome.



Table 2
Summary of parameter exploration: first phase.

Parameter Values

Government rule Activity, Outcome,
Cluster-Activity,
Cluster-Outcome

Reward 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
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2.1.2.10. Observation. Each time step, land uses, bankruptcies, land manager
income, and government expenditure were recorded. Species occupation data were
recorded every 10 time steps.

2.1.3. Details
2.1.3.1. Initialisation. The landscape is initialized to a random distribution of the
land uses AL1 and GL1 chosen with equal probability on each parcel. All species are
then allocated to those patches on which they can survive. Land managers are
randomly assigned one parcel each, and have 0 initial account; their change delay is
taken from a uniform integer distribution in the range [1, 9]. Aspirations are set
according to the scenario the run belongs to (i.e. 1 or 5), as is the break-even
threshold (25 or 30).

2.1.3.2. Input. The economy time series (one of ‘fixed’ (F) or ‘variable’ (V)) is the only
input to the model.

2.1.3.3. Submodels

(i) Land use decision-making.

Each land manager computes the mean profit from all their land parcels in the
previous year, and if this has been less than their aspiration for at least as long as
their change delay (the number of consecutive years they are prepared to tolerate
below-aspiration profits), theywill use case-based reasoning to choose a land use for
each land parcel they own; otherwise they will make no changes. Note that the
enterprise-level aspiration means that there is no requirement for individual land
parcels in a multi-parcel estate to fulfil aspirations.

Specifically, if A is the aspiration threshold of a land manager, M is the total
economic return they received from themarket in the previous year, P is the number
of parcels they own, and R the amount of incentive the manager received in step (iv)
of the previous year, then the aspiration threshold test above is that (M þ R)/P > A.

To make a (potential) change using case-based reasoning, managers consider
each parcel in turn, and for each land use calculate expected profit by searching the
case base for an experience of using that land use in the expected state of the
economy (a symbol standing for the relationship between land use and price at
a particular time step), which is assumed to be the same as the previous year. If
a case is found, the expected profit is that recorded in the case. If not, then if
a neighbour1 has a case for the expected state of the economy, the profit recorded
there is used as the expected profit for the land use, otherwise the aspiration itself is
used (i.e. it is assumed that the land use for which there is no experience will just
meet aspirations). The land use assigned to the parcel is that with maximum ex-
pected profit; if there are two or more such land uses, one is selected at random.

The case base as used here may thus be conceived as a data structure consisting
of a hash table for each land use, with key the symbol representing the state of the
economy, and entry a (possibly empty) list of prices returned to the land manager
when they have used the land use in that state of the economy. Searching the case
base is a matter of looking up the list in the hash table for the land use in question,
which is associated with the required economy state symbol. Where the list has
more than one price, the most recent price is returned.

(ii) Update habitats.

The habitat map is computed from the land uses as described in Initialisation
above.

(iii) Update occupancy.

Dispersal, colonizationand local extinction arecomputedasperMoilanen (2004),
with the extraproperty that if species C is present on apatch for four consecutive time
steps, it causes local extinction of G1, G2 and G3 if present, and prevents them
recolonising whilst occupancy continues. The Moilanen equations are given below:

Let Sps(t) be the connectivity of species s on patch p at time t, computed as:

SpsðtÞ ¼ Ac
ps

X
qsp

Opsðt � 1Þexp��asdpq
�
Ab
qs (1)

where Aps is the amount of habitat made available on patch p for species s (see
Scenarios), q iterates over all patches other than p, Ops(t) is an occupancy indicator
variable (1 if patch p is occupied by species s at time t, 0 otherwise), as is a dispersal
parameter for s (see Table 1), dpq is the Euclidean distance between patches p and q
(assuming a toroidal spatial topology), and b and c are parameters (both 1).

Then the probability that s colonises a patch p it currently does not occupy is
given by (2), where y is a parameter (set to 1):
1 The neighbours of a land manager are those owning a parcel in the Moore
neighbourhood of that land manager’s parcels.
CpsðtÞ ¼ �
SpsðtÞ

�2
=
��

SpsðtÞ
�2þy2

�
(2)
and the local extinction probability of s on a patch p it occupies is given by (3),
where x is a parameter (set to 1), m is the mortality parameter of s (Table 1), and Aps

is as per (1):

Eps ¼ ms=A
x
ps (3)

(iv) Implement incentives.

Managers receive funds from the government agent according to the rules
described above.

(v) Economic returns.

Updating the state of the economy from the economy file provides a market
price pi for each land use i. A yield, yi for each land use is set as described in the
Scenarios section. If e is the break-even threshold, then the economic return for each
land parcel is piyi � e.

(vi) Case base update.

The case base of a landmanager is updated on a parcel-by-parcel basis, assuming
an equal distribution of reward across the parcels the land manager owns. A case is
added for each parcel, containing the state of the economy, the land use chosen, and
the economic return plus distributed reward: piyi � e þ R/P, where R is the total
reward received by the manager in step (iv), and P the number of parcels they own.
Any cases from more than 75 time steps ago are removed from the case base.

(vii) Land exchange.

If a landmanager’s account is less than zero, they are bankrupt, and all their land
parcels are sold. For each parcel for sale, choose a new landmanager at random from
a set consisting of one new in-migrant land manager, and all land managers in the
Moore neighbourhood of the parcel with an account >40. Assign the parcel to the
manager selected. If the new owner is the in-migrant manager, then initialize its
other variables (as per initialization, above); if not, deduct 20 from the account of the
new owner. Note that in-migrant managers cannot be assignedmore than one of the
parcels for sale.

2.2. Run setup summary

Table 2 summarises the first set of parameter explorations done. Each combi-
nation of parameters (960 in total) was repeated 20 times using different seeds for
the pseudo-random number generator, making 19,200 runs overall. (Note that, as
discussed above, the ratio parameter has no effect on runs using government rules
‘Activity’ or ‘Outcome’. Effectively, there were 60 rather than 20 replications of these
parameter settingsdthis was done to provide sufficient samples for any statistical
tests comparing the Cluster-x rules with their non-clustered counterparts.) Each run
was for 200 time steps.

A second phase of parameter explorations was conducted for the Activity and
Outcome government rules using higher values of Reward (see Table 3) to create
runs with total expenditure more comparable to the levels seen in the Cluster-x
rules. (Expenditure is somewhat complicated as the amount spent depends not only
on the rule itself, but also on the success of the rule.) At 20 runs per parameter
setting, this amounted to a further 2240 runs.

There are 32 scenarios in total, defined by the combinations of values explored
for government rule, market, break-even threshold and aspiration threshold. Within
each scenario, the reward and ratio parameters define the level of incentive applied
by the government agent in accordancewith its rule. In phase one, each scenario has
600 runs exploring different incentive settings; phase two adds 140 runs to the 16
scenarios A/*/*/* and O/*/*/* (using * as a wildcard) exploring further incentive
settings.
Ratio 1, 2, 10
Market ‘Fixed’, ‘variable’
Break-even threshold 25, 30
Aspiration threshold 1, 5



Table 3
Summary of parameter exploration: second phase.

Parameter Values

Government rule Activity, Outcome
Reward 15, 20, 25, 30, 40, 50, 100
Ratio 1
Market ‘Fixed’, ‘variable’
Break-even threshold 25, 30
Aspiration threshold 1, 5
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2.3. Analysis

Runs were rejected from consideration if they led to a high bankruptcy rate
(more than 10% of managers per year). Four hundred and eighteen runs fell into this
category (all from scenarios matching */F/30/5, where there are no fluctuations in
the market, and the demands on and ambitions of land managers are highest),
leaving 21,022 runs. Runs were also rejected if they led to a very high expenditure by
the government agent (mean annual expenditure over the last 100 time steps more
than or equal to 25,000). This reduced the analysis by a further 4073 runs, mainly
from runs using the Cluster-Outcome (2560) and Outcome (1120 e all the runs
conducted in phase 2) government rules. This leaves 16,949 runs.

The remaining results were analysed with three points of interest in mind: (i)
nonlinearity of the relationship between incentive and biodiversity outcomes; (ii)
any effect of government rule on this relationship; (iii) effects of context (market,
aspirations and break-even threshold). We fitted Generalised Additive Models
(GAMs, Hastie and Tibshirani (1990)) to the data to examine trends, using species
richness over thewhole landscape as a measure of biodiversity. GAMs can be used to
test for nonlinearity (e.g. Banks et al., 2000) by comparing fits generated using
different numbers of smoothing terms. Nonlinearity can also be assessed by
comparing a GAM fit with a fit using a linear model, using ANOVA to test if there is
a significant difference between the fits, and comparing the sum of squared differ-
ence between the fitted functions to see if it is large. The Akaike Information
Criterion (AIC; Akaike, 1973, 1974) is also used to compare statistical fits, and
includes a penalty for the number of parameters. Lower values are preferred, and
this can also be used to compare the linear model with the GAM.

To test (i), we deployed a number of tests of nonlinearity in the results data. We
fitted a GAM G() to the data using thin-plate regression splines, and then compared
it with two further statistical models: K(), a GAM where the dimension of the basis
used to represent the smooth term was set to 4 (effectively constraining the fit to
a cubic); and L(), a linear model. Using these three statistical models, the following
tests were performed to assess the nonlinearity of each scenario:

1. G() has estimated degrees of freedom more than 3, and the p-value of the
smooth term is significant.
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Fig. 3. Portions of the data from six of the scenarios using sunflower plots (see text), with in
prediction of a classification tree built using recursive partitioning on the incentive/richnes
2. An ANOVA comparing G() and K() has a significant p-value, the sum of squared
difference between G() and K() is ‘large’, and the sum of squared error of G() on
the data is less than that of K().

3. The AIC of G() is at least 2 less than that of K().
4. As per test 2, but comparing G() and L().
5. As per test 3, but comparing G() and L().

The GAM models were fitted to the relationship between incentive and
landscape-scale species richness, where incentive is defined as reward/ratio for
Cluster-x government rules, and reward otherwise. We used Wood’s (2001; 2006)
MGCV package (version 1.7e2) for R to fit GAMs. This computes the smoothing
parameters for G() by minimising an unbiased risk estimator criterion (see MGCV
documentation). The sum of squared difference between two models, computed in
tests 2 and 4, uniformly sampled each model at the same 10,000 points on the x-
axis; a ‘large’ difference being inferred if the sum of squared difference is more than
10,000 e implying a mean difference in richness (the y-axis) of one species. Since 76
tests of significance are involved in the above tests on the 32 scenarios, the p-value
for a significant result was set at 0.0001 to avoid type I error. The ANOVA and AIC
were computed using standard R functions.

To examine (ii) and (iii) we used recursively partitioning classification trees
(Breiman et al., 1984), with government expenditure, government rule, market,
break-even threshold and aspiration as explanatory variables, and landscape-scale
species richness as the response variable. We cannot use incentive as an explana-
tory variable for this analysis because of the differences in the ways each govern-
ment rule uses this parameter. Expenditure, though it is itself an outcome variable, is
a fairer comparator.
3. Results & analysis

Fig. 3 shows some of the results using a sunflower plot, in which
the incentive and resulting species richness in each run is repre-
sented by a ‘petal’ of the sunflower (or a darker coloured small dot if
there is only one run with that incentive/richness combination).
Visual inspection of these results suggests there are thresholds in
incentive occurring in scenario A/F/30/1 between 3 and 4 at which
richness jumps from 4 to 8, and then from 8 to 9 between incen-
tives 8 and 9. In scenario A/V/30/1, although the variable market
has led to more uncertainty in the outcome, at incentives 4 and less
species richness higher than 3 does not occur, whilst between 5 and
10 richness lies mainly in the range 4e7 (with a single run
exception at incentive 5 having richness 3). A further threshold
somewhere between incentives 10 and 15 results in modal
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centive on the horizontal axis, and landscape scale species richness on the vertical. The
s relationship is shown using straight lines.
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richness 9. Scenario CA/F/25/5 shows a threshold between
incentives 1 and 1.5, where the richness jumps from 4 to 8 or 9;
between incentives 6 and 10, higher richness values are seen less
and less frequently as the modal richness declines from 10 to 7.
Scenario O/F/30/5 has a peculiar shape e the richness rises from
3 to 7 somewhere between incentives 1 and 2, then to 9 between
3 and 4. This is followed by a decline to modal richness 5
between incentives 4 and 5, before a rise to 7 between incentives
6 and 7. Scenario O/V/25/1 has a clear threshold between
incentives 1 and 2 where the modal richness jumps from 0 to 6.
Scenario CO/V/25/5 has thresholds in the minimum richness as
the incentive increases, from 3 to 0, then 4, 6 and 7 for incentives
0.1, 0.2, 0.3, 0.5 and 0.7 respectively.

The visual analysis is supported by predictions from a recur-
sively partitioning classification tree fit to the incentive/richness
relationship. Predictions from the tree are shownwith straight lines
in Fig. 3 e vertical lines show incentive partitioning thresholds,
horizontal lines show the classification tree’s predicted class, which
where more than one richness value is associated with the same
incentive, is based on the most common richness in runs over the
incentive range. The classification tree identifies thresholds in
incentive that are reasonably consistent with visual inspection of
the raw data.

The results of the nonlinearity tests for each scenario are shown
in Table 4, with graphs in Fig. 4 showing the fits provided by G(), K()
and L() for scenarios selected for their relevance to analysis of Fig. 5.
(The other scenarios are shown in Fig. A.1.) Twenty-eight scenarios
passed at least two of the tests, and two scenarios passed all five.
Scenario O/F/25/5 (Fig. 4(b), bottom left), one of the two scenarios
passing none of the tests, did so because the GAM failed to fit the
data, which, by inspection of the raw data plotted as sunflower
plots, is nonlinear. In all other scenarios, the deviance in the raw
data explained byG() was at least 68%; in 26 scenarios, the deviance
explained was more than 80%. G() nevertheless tended to overfit
the data (a common problemwith GAMs), and in only six scenarios
(one of which is shown in the top-right graph in Fig. 4(b)) does it
provide a significantly better fit to the data than K() as measured by
test 2. Even so, test 4 shows that G() is a significantly better fit than
a linear model in all but nine scenarios (of which Fig. 4(c) shows an
example). The AIC (test 5) seems to set a higher benchmark than
test 4 for superiority of G() over L(), with ten scenarios passing this
test. However, this is not so when comparing G() with K() (tests 2
and 3), where G() mostly has a better AIC than K(). Since the AIC
includes a (negative log-) likelihood term as well as a penalty for
Table 4
Results of the nonlinearity tests for each scenario, with deviance explained by G() in par
a dash otherwise. See Section 2.3 for a description of the tests.

Scenario (Deviance explained) Test

1 2 3 4 5

A/F/25/1 (68%) * e e e e

A/F/25/5 (83%) * e * * e

A/F/30/1 (85%) * e * * *
A/F/30/5 (88%) * * * * e

A/V/25/1 (77%) * * * * *
A/V/25/5 (95%) * e * * e

A/V/30/1 (83%) * e * * *
A/V/30/5 (87%) * e * * e

CA/F/25/1 (75%) * e * e e

CA/F/25/5 (93%) * e * * *
CA/F/30/1 (93%) * e * * *
CA/F/30/5 (77%) * e * * *
CA/V/25/1 (82%) * e * * *
CA/V/25/5 (80%) * e * e e

CA/V/30/1 (86%) * e * * e

CA/V/30/5 (88%) * e * e e
the number of parameters, and G() typically has a higher number of
parameters than K(), this suggests that, the results of test 2
notwithstanding, G() has a better enough likelihood than K() to
overcome the parameter penalty difference.

The results in Fig. 5 show that expenditure is the most signifi-
cant determinant of landscape-scale species richness: lower
expenditure being generally associated with lower richness, and
higher expenditure with higher richness. However, whether
expenditure is high or low, all the scenario variables may have an
effect on richness. Market variability has the most significant
influence on richness when expenditure is low (split leading to leaf
node A vs. BeH), and when expenditure is high, richness is most
affected by the use of an activity- or outcome- (split to leaf node I
vs. JeO) based government rule. This might be what one would
expect: at some point as expenditure increases, government policy
is a large enough proportion of land managers’ income that it has
amore significant effect on biodiversity than themarket. Aspiration
and break-even threshold influence richness in the fixed market
when expenditure is low (nodes CeH); a clustering element to the
activity-based government rule affects the distribution of richness
in the variable market when expenditure is high (node K).

Nonlinearity in the expenditure/richness relationship is clear
from this tree, particularly in the case of scenario A/F/25/5 (the
incentive/richness relationship of which is shown in Fig. 4(a), in
which the modal richness changes from 4, to 8, then 9, then 7
(nodes B and D, E and M, O, then N respectively) as the expenditure
increases:

� Nodes B and D show a predominance of land use GL3, and some
use of AL3: these will be the only land uses that satisfice for the
incentive values associated with this low level of expenditure,
and they only provide habitat for species G1e3 and A1. In
a fixed market, GL2 returns a profit of 2.5 without any incen-
tive. To meet the aspiration threshold in this scenario, an
incentive of 2.5 is needed.

� Node E shows GL2 being used, with species G4e5 and A2e3,
for which it provides habitat, showing low, but above zero
levels of occupancy.

� NodeM shows greater use of GL2 than node E, and use of AL1 in
many of the runs, which requires an incentive of 7.5 to satisfice
in this scenario. AL1 allows species G6 to survive, and increased
use of GL2 also means greater abundance of G4e5 and A2e3.

� Node O has a landscape in which land managers are mostly
using AL1e despite GL2 having a higher profite this is because
entheses. An asterisk is used to indicate that the conditions of the test were passed,

Scenario (Deviance explained) Test

1 2 3 4 5

O/F/25/1 (88%) e e e e e

O/F/25/5 (1%) e e e e e

O/F/30/1 (94%) * * * * e

O/F/30/5 (93%) * * * * e

O/V/25/1 (90%) * * * * *
O/V/25/5 (86%) * e * e e

O/V/30/1 (87%) * e * e e

O/V/30/5 (89%) * * * * e

CO/F/25/1 (71%) e e * * e

CO/F/25/5 (80%) * e * * e

CO/F/30/1 (96%) * e * * e

CO/F/30/5 (90%) * e * * *
CO/V/25/1 (84%) * e * * *
CO/V/25/5 (86%) * e * * e

CO/V/30/1 (89%) * e * * e

CO/V/30/5 (76%) * e e e e
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Fig. 4. Results from selected scenarios, shown as sunflower plots of incentive against richness. In each graph, G() is plotted with a thick black line with dotted lines showing 95%
confidence intervals, K() with short dashes, and L() with long dashes. Vertical lines are drawn at split points identified by recursive partitioning of the incentive/richness rela-
tionship. Scenarios in (b) and (d) are related to those in (a) and (c) respectively by changing one scenario variable.
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Fig. 5. Recursive partitioning, with richness as the response variable, and mean annual expenditure (X), government rule (G), market (M), break-even threshold (B) and aspiration
(A) as explanatory variables. For each leaf node, three graphs are plotted. From left to right, these are: a histogram of richness and boxplots of species and land use occupancies. The
species boxplot shows, from left to right, distributions of G1e6, A1e3 and C mean occupancies over the last 100 time steps of each run. The bottom and top of each box shows the
first and third quartile, with a thicker line drawn to depict the median. ‘Whiskers’ (dashed lines) are drawn at the most extreme datapoints that are not more than 1.5 times the
interquartile range from the box. Similarly, the land use boxplot shows distributions of mean occupancies of GL1e3 and AL1e3 from left to right.
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land managers are satisficing on AL1, which for many is the
initial land use their parcel is assigned, and hence do not
experiment with GL2.

� Node N, meanwhile, shows GL1 being used more than GL2 or
GL3, despite each GL1 parcel making a loss of 3 units of wealth.
This is possible because land managers may own more than
one parcel, and assess their aspirations at the enterprise level.
A land manager having GL2 on one parcel can cross-subsidise
GL1 on another and still satisfice in this scenario when the
incentive is 10.5. When the incentive is 15.5, a land manager
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with AL1 can also cross-subsidise GL1. With GL1 being used
more than GL2 or GL3, there is much less refuge for species
G1e3 from species C, which outcompetes them. The result is
more likely to be a richness of 7.

It is worth comparing the above analysis of A/F/25/5 with what
would happen in this scenario if land managers optimised their
profit, to see the effect this would have on nonlinearity. With zero
incentive, GL3 has the highest profit (at 8, it is slightly higher than
AL3’s 7.5). Assuming the incentive for GL2 and AL1 is the same (as
has been the case in these experiments), GL2 will always return 5
units of wealth more than AL1 in a fixed market. GL2 has higher
profit than GL3 once the incentive is more than 5.5. At incentives
below 5.5, the landscape would be entirely GL3, and only three
species (G1e3) would survive; above 5.5, the landscape would be
entirely GL2, providing habitats for all species except A1, though
poor habitats for G6 and C. Landscape scale richness could be in the
range 4 (if G6 died out, and C outcompeted G1e3 and then died out)
to 9 (if G6 and C survived, the latter in low enough numbers that it
did not outcompete G1e3). Neither extreme is particularly likely
given the low level of habitat for G6 and C, and a richness of 7 may
reasonably be expected to be the outcome.

Increasing the break-even threshold from 25 to 30 (Fig. 4(b), top
right graph), does not change the incentive point at which GL2
overtakes GL3 e the profit of both is simply reduced by 5 units of
wealth. Thus,with optimising landmanagers, A/F/30/5 andA/F/25/5
would look exactly the same from a land use perspective: at incen-
tive 5.5, the landscape will shift from GL3 to GL2. Aspiration is, of
course, irrelevant to optimising algorithms, and hence A/F/25/1
(Fig. 4(b), top left graph) would also look the same as A/F/25/5.

For A/F/30/5, Fig. 4(b) shows a greater incentive required to
achieve the highest level of richness, and no decline to richness 7
by incentive 50, as there is in A/F/25/5. Ignoring the latter point
briefly, it is reasonable to postulate that the effect of increasing
break-even threshold has been to increase the amount of incentive
required to achieve the same effect. This is supported by the
vertical lines in Fig. 4 representing break-points drawn by a clas-
sification tree with incentive as the explanatory variable and
richness as the response. Turning back to the difference between
A/F/25/5 and A/F/30/5 at incentive 50, the incentive 100 runs were
excluded because mean annual expenditure was too high (34,500,
averaging about 73% of income). In A/F/30/5, all these runs have
richness 7, just as the A/F/25/5 runs do at incentive 50.

Whilst A/F/25/1 shows a decline in richness from 10 to 7 as
expenditure increases from 0 to 30, from node H the lower break-
even and aspiration thresholds mean that even at low expendi-
ture, though GL3 and AL3 dominate, they can more easily cross-
subsidise other land uses enabling a wider diversity of species to
survive. Hence, A/F/25/1 is sufficiently benign that the behaviour
observed at low incentives in A/F/25/5 and A/F/30/5 does not occur.

The effects of outcome and clustered incentives are less
straightforward to compute from an optimising perspective, as
income depends on the behaviour of others. For clustered incen-
tives, only the behaviour of the immediate neighbours is impor-
tant; for outcome incentives, all other agents’ decisions affect
species’ occupancy of the landscape, though arguably those nearer
are more important than those further away. We may consider two
extremes e one in which all farmers ‘defect’ by choosing the land
use providing the highest profit assuming their neighbours do not
attempt to acquire incentives, and another in which all farmers ‘co-
operate’ by assuming their neighbours will attempt to acquire
incentives.

In scenario CA/F/25/5, the ‘defect’ extreme will have the same
threshold as A/F/25/5; the difference will be that when all
managers switch to GL2 from GL3 at incentive 5.5, they will receive
nine times more money for the same incentive value. The ‘co-
operate’ extreme will lower the incentive threshold e an incentive
of 11/18 would be enough to cause these optimising managers to
switch from GL2 to GL3. The graph in the bottom right of Fig. 4(b)
has a similar shape to those of A/F/25/5 and A/F/30/5, but with
changes in outcome occurring at lower incentive values.

Scenario O/F/25/5 has the further complication that it is influ-
enced by species’ occupancy probabilities. In the ‘defect’ case, the
fact that the incentive is outcome based means that this compli-
cation is irrelevant if we assume that one parcel is not sufficient to
sustain species occupancy: landmanagers will never choose GL2 no
matter what the incentive, and since GL3 provides habitat for G3,
they will still receive some incentive. Turning to the ‘co-operate’
case, GL2 offers habitat for all the awardable species e at an 80%
level for A2, A3, G3 and G5, but only at a 20% level for species G6.
AL1 offers habitat at a 100% level for A2, A3, G5 and G6. For opti-
misers, using Pi(x) to represent the agents’ perceived probability of
occupancy of species x on land use i, the choice will be between the
more certain profit of 8þ Incentive� PGL3(G3) when using GL3, and
a riskier profit with GL2 of 2.5 þ Incentive � (PGL2(A2) þ P-
GL2(A3) þ PGL2(G3) þ PGL2(G5) þ PGL2(G6)). Using DPGL2, GL3 to
represent the difference in probabilities of occupancy of awardable
species between GL2 and GL3, the threshold between GL3 and GL2
adoption is when Incentive >5.5/DPGL2, GL3. If the differences
between the habitat provision of AL1 and GL2 are sufficient that
DPAL1, GL2 is positive, then assuming DPAL1, GL2 << DPGL2, GL3 there
will be a second threshold at which AL1 is adopted over GL2 when
Incentive >5/DPAL1, GL2. AL1 supports fewer species than GL2, and
hence the higher incentive will result in lower landscape-scale
species richness.

The fact that there is a social dilemma in the clustered and/or
outcome incentive rules raises the interesting possibility of bifur-
cation in emergent outcomes, as has been demonstrated, for
example, in the prisoner’s dilemma (e.g. Perc, 2006). Bifurcation is
a technical term associated with the nonlinear dynamics literature,
and without further analysis should perhaps be used with caution
here. Nevertheless, Fig. 4(b) shows for scenario O/F/25/5 that with
incentive 1 roughly half the runs (31) have richness 4, and a similar
number of runs (25) have richness 8, suggesting that with these
parameters, stochasticity in either the initial conditions or the
ensuing dynamics has resulted in notably different biodiversity
outcomes.With respect to the foregoing discussion, landmanagers’
choices are of greater relevance than species richness, however.
Since the question of whether land managers ‘co-operate’ or
‘defect’ is not specifically addressed by the decision-making algo-
rithm, this matter may best be analysed through further research.

A variable market also complicates matters. From Fig. 2, none of
the land uses satisfices or breaks even all of the time. (The
minimum gross income from GL3, the land use with the highest
minimum gross income, is 24.) The difference in ‘phase’ between
the GLx land use market and ALx market means that optimising
land managers will change land use. If all land managers are opti-
misers, the species that can possibly survive an optimising pop-
ulation of land managers will be those that can survive in both GHx
and AHx habitats: A2, A3, G5 and G6. The habitats for these species
are provided by GL1, GL2, AL1 and AL2. Hence, at low incentive
values, whatever the government rule, optimising land managers
switching between GL3 and AL3 will cause the extinction of all
species. In scenario A/V/25/5, only GL2 and AL1 are incentivised,
though these provide some habitat for all four of the above species,
GL2 only has 20% habitat for G6, meaning that its long-term
survival is unlikely. Thus a richness of 3 should be the expected
outcome from optimising land managers in this scenario, once the
incentive is high enough that managers never choose GL3 or AL3
over GL2 or AL1. This means the ALx market is the more critical, as
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the difference in yield between AL1 and AL3 is larger than that
between GL3 and GL2, and hence the threshold in incentive
between a richness of 0 and a richness of 3 is when the maximum
profit for AL1 is more than the maximum for AL3: 13.5. A/V/25/5
is shown in the bottom left of Fig. 4(d). Interestingly, it is similar to
A/F/25/5, except that it does not diminish to a richness of 7 by
incentive 50, but stays around 9. From node L in Fig. 5, higher
expenditure in A/V/25/5 is associated with GL2 and AL1 being used,
which can be accounted for through land managers experimenting
when AL1 is unprofitable, and learning that GL2 provides a higher
rate of return than GL3.

Comparing Fig. 4(a) and (b) with (c) and (d), it is clear that with
a variable market and outcome-based incentive rule instead of
a fixed market and activity-based incentive rule, the other scenario
variables do not have the same effect on the relationship between
incentive and richness.

From the above, two important points emerge. First, a nonlinear
relationship between incentive and richness arises when land
managers optimise their profits, with thresholds associated with
incentive levels that compensate for more profit-making land uses.
Second, while the agents’ non-profit-maximising decision algo-
rithm means the thresholds are less pronounced, it also causes
further nonlinear behaviour in the incentive/richness relationship.
A corollary of the latter point is that non-profit-maximising
behaviour can drive spatial variation in habitat beneficial to
species, separately from any biophysical considerations (which
have not been addressed in these experiments). The following lists
the effects that arise from the decision algorithm used that are
apparent from the foregoing analysis:

� Satisficing means that, no matter how high the incentive for
other land uses, any land use that meets aspirations will be
chosen. This will cause greater landscape diversity than opti-
misation, particularly if aspirations and break-even thresholds
are low. (Nodes I, N and O in Fig. 5, featuring AL1 dominating
instead of GL2, show this happening.)

� Assessing aspirations at the enterprise rather than land parcel
level allows a land use making enough profit to cross-subsidise
another that makes a loss. (Nodes I, K, L, N and O show use of
GL1.)

� In variable markets, the relationship between the length of
time for which a land parcel fails tomeet aspirations and a land
manager’s change delay parameter will be important. Longer
change delays can mean land uses survive that fail to satisfice
for shorter periods, preserving their associated habitats.
(Nodes A and J, for example, show survival of G1e3, when
switching between the ALx and GLx land uses through opti-
mised decision-making would cause their extinction.)
4. Discussion

The results show that the relationship between incentive and
biodiversity is far from trivial. A naïve expectation would be that
more money buys more biodiversity. The relationship, however,
is not linear. There seem to exist thresholds of expenditure (Figs. 4
and 5), which relate to habitat provision, below which landscape-
scale biodiversity remains low (i.e. many species extinctions
occur, because their habitat is not sufficiently common). Whilst
intervening samples on the incentive axis would give a clearer
picture of the shape of the nonlinearities (specifically, whether
they are discontinuities, such as in the analysis of the optimal case
for A/F/25/5 above), our use of the term ‘threshold’ is consistent
with other authors’ (e.g. Samhouri et al., 2010). Spending money
below such thresholds thus seems ineffective if the objective is
saving species from extinction, and finding such thresholds is
therefore important. It is not clear that fixed incentives or even
mechanisms such as auctions would be able to find such thresh-
olds, and real-world incentive schemes in any case tend to be
aimed at the individual farmer rather than the landscape scale.
As such they might be efficient to implement in the short term,
but are probably ineffective in the long term at maintaining
landscape-scale species diversity. (Exploring these issues is the
possible subject of future work.) A more sophisticated model
would also recognise that there are limits to biodiversity, sug-
gesting a sigmoidal shape to the relationship.

Of particular interest are those results such as in Fig. 4(a) and (b)
showing biodiversity reaching a peak at a point before maximum
incentive/expenditure is reached e these suggest that biodiversity
is not necessarily a monotone increasing function of incentive.
Comparisonwith profit maximisation shows that various aspects of
the land managers’ decision-making algorithm create situations
where lower incentives can outperform higher incentives with
respect to species richness, though in some scenarios (e.g. O/F/25/5,
discussed above), this can occur with profit-maximising agents if
species’ occupancy probabilities have appropriate values. Whether
these aspects of decision-making are artefactual or not, it is clear
from our results that the success of an agri-environmental
incentive scheme is sensitive to the way farmers make decisions
in subtle ways that would be difficult, if not impossible, for
a government to cater for in the real world.

What is also clear from the results is that there is not a general
pattern to the incentive/richness relationship, highlighting the
importance of the context in which this relationship occurs. Not
only do each of the non-government-related scenario variables
have an effect on the richness, these effects interact with each other
in a context-sensitive way: certain features of land manager
decision-making only become apparent when, for example, aspi-
rations are too high, or the variable market is used. Edmonds and
Akman (2002), in a special issue on context, contrast approaches
in Artificial Intelligence to context treating it as a series of prop-
erties of the environment the inclusion of which broadens gener-
ality, with their stance, which is based on a “messy and contingent”
(p. 234) worldview. They argue for a more cautious approach to
generality, which starts with a search for aspects of context that are
shared at a local (spatial/temporal/organisational/cultural) scale.

Ostrom et al. (2007) introduce a series of articles challenging the
views that general solutions (panaceas) to issues of environmental
degradation in socio-ecological systems exist and can be deduced
from simple, predictive models of them. Ostrom (2007) proposes
instead a framework for analysing socio-ecological systems that is
aimed at developing answers to questions on: (a) the relationship
between institutions for resource distribution and governance and
patterns of social and environmental outcomes; (b) the possible
bottom-up development of such institutionswithout other external
incentives; and (c) the robustness of various institutional
arrangements to shocks. The framework comprises a number of
variables that empirical studies of socio-ecological systems could
report on to facilitate meta-analyses of case studies. Whilst she
acknowledges that these variables are neither exhaustive nor
universally relevant, Edmonds (2012a) points out that in any
complex system, there are no bounds to the possible causes of an
event, suggesting a potentially limitless number of variables. For
example, biodynamic farmers take into consideration the positions
of celestial bodies in land management practices; it is doubtful that
simulations of socio-ecological systems will ever include a sub-
model simulating the positions of stars and planets in the night sky.

The issue of context-sensitivity and generality of governance of
socio-ecosystems raises questions of the appropriate scale at which
to design and implement agri-environmental incentive schemes.
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Scottish biodiversity incentivisation is largely embedded in the
Scottish Rural Development Programme2 e SRDP. This scheme
includes rural priorities: the relative importance of five outcomes
(not all of which have biodiversity or more general pro-
environmental potential benefits) have been agreed with stake-
holders in each of 11 regions of Scotland. The context sensitivity of
our results lends theoretical support to a more localised element to
incentive schemes, However, there is no reason to believe that
a regional approach is optimal with respect to locality. Indeed,
Brondizio et al. (2009) argue that there is no fixed appropriate scale
for ecosystem governance. Until recently, the Farming and Wildlife
Advisory Group (FWAG) offered advice to farmers in the UK,
tailored to their business type, location, aspirations and financial
resources. Insofar as advice tailored to location factored in a co-
ordinated approach to conservation at the landscape scale, the
recent closure of this service (Driver, 2011) may represent a signif-
icant lost opportunity for the integrated cross-scale management of
biodiversity.

Findings from the conservation literature have already high-
lighted that if grazing intensity is too low, there can be a negative
impact on biodiversity (Wallis de Vries et al., 1998) and this is re-
flected in the setup for these simulations through the lowest
intensity grazing land use (GL1) providing habitat for a competitor
species (C) that outcompetes species G1, G2 and G3. However, in
these simulations, the government agent is assumed to know about
this, and provides incentives for GL2 rather than GL1 in the activity
rules, and for G3 in the outcome rules. What these results show is
that despite providing incentives to manage landscape-scale
biodiversity, the response of biodiversity to government policy
can be non-monotonic as a result of land managers’ decision-
making processes. In the model, satisficing and the scale at which
aspirations are assessed by land manager agents are key contrib-
utors to higher incentives providing lower biodiversity, as these
lead to AL1 providing enough income to satisfice and cross-
subsidise use of GL1 in the same enterprise, and hence no moti-
vation to try GL2, which provides much poorer habitat for C.
Nevertheless, the analysis of scenario O/F/25/5 above shows that
biodiversity loss at higher incentive values is possible if the model
used profit-maximising land use selection algorithms.

Though it would be a mistake to regard farmers as less inter-
ested in profit than other businesses, profit maximisation is an
unrealistic goal, particularly given costs that may be associated
with some changes in commodity or land management regime.
Laboratory experiments comparing resource allocation of human
actors with utility-maximising agents suggest that non-maximising
decision-making algorithms should be deployed in agent-based
models of land use change (Evans et al., 2006). Furthermore,
qualitative research of Scottish farmers has revealed that farmer
identity can play a significant role in determining land use activity,
and in particular, as shown by Burton (2004), a predominantly
productivist mindset means that conservation activities are seen as
‘not farming’. A more recent study of farmers in the Upper Deeside
area of northeast Scotland identified three motivations for incen-
tive scheme uptake: the scheme offers payments for activities they
are already doing; a sense of entitlement to farming subsidies; and
an opportunistic culture (Sutherland, 2010). However, Sutherland’s
(2011) study of English farmers finds that there are a number of
farmers who regard themselves as ‘effectively’ or ‘semi-’ organic,
owing to their relatively low use of chemical inputs, but without
organic certification or agri-environmental incentives to do so.
Though this may be driven in part by legislation on chemical inputs,
and by increasing input costs, she found a more positive attitude
2 http://www.scotland.gov.uk/Topics/farmingrural/SRDP.
towards some organic ideals among the farmers she interviewed,
leading her to borrow the term ‘organification’ from Rosin and
Campbell (2009) to describe trends in conventional farming.

Though the results show that government policy, both theway it
is administered and the amount spent, can have an effect on
biodiversity, these studies have all kept both the administration
and amount constant throughout any one run. Thus the results
cannot necessarily be used to infer that a particular change in policy
(either increasing incentive or changing administration rule) will
achieve the particular effect on biodiversity suggested here within
a single run. In separate work, we have explored the possibilities
of using techniques from control theory (Nise, 2004) to navigate the
space of possible incentive schemes in an initial investigation
(Polhill et al., 2010a).

Most incentives schemes reported in the literature are based on
agreed activities. These entail cost-sharing or total compensation to
carry out conservation-related activities (e.g. Hacker et al., 2010), or
to refrain from some practices, such as excessive grazing ormowing
grass before a given date or with some frequency (e.g. Humbert
et al., 2009; Berg and Gustafson, 2007).

Points-based schemes are an alternative that have been used to
reward land use activities in various countries from Latin America
(Pagiola et al., 2004) to Scotland. However, doubts have been raised
in many studies regarding the effectiveness of existing incentive
schemes (Stoate et al., 2009; Goldman et al., 2007; Vickery et al.,
2002, 2004). This is partly due to the limited and fragmented
scale at which they often operate, when what is really needed is
land management action at the landscape scale (e.g. Parkhurst and
Shogren, 2007; Davies et al., 2004; Selman, 2006; Gimona and Van
der Horst, 2007; Pelosi et al., 2010). In our model results, given the
right incentives and land managers’ circumstances, often enough
land managers took on incentives to promote the landscape-scale
species diversity. However, our model does not include producti-
vist incentives, which often compete with environmental ones and
might contribute to explaining the poor performance of real
incentives schemes lamented by the authors above. The SRDP, for
example, provides farmers with a series of options of activities for
which they can obtain incentives, not all of which have a biodiver-
sity benefit. Moreover, non-compliance is a possible land manager
option in the real world that is not simulated here, and this requires
potentially costly monitoring. These problems are therefore similar
to those associated with a regulation-based approach.

Another alternative increasingly being discussed is rewarding
based on outcomes, which aims to overcome the risk of cheating
and the asymmetry of knowledge between land manager and
government, and has proven successful in number of cases. These
include a range of ecosystem services in the USA, and in different
areas of Australia (Latacz-Lohmann and Schilizzi, 2005). However,
while there are theoretical reasons that make economists favour
such schemes (e.g. Horowitz et al., 2009), evidence of their actual
superiority in terms of delivering conservation is not clear-cut, due
to scarcity of evaluation studies. Our results suggest outcome-based
schemes may be less sensitive to other scenario variables with
possible influences on behaviour (node I in Fig. 5). An important
disadvantage associated with many outcome-based schemes is the
time delay between activities and outcomes, which means that
most of the risk is borne by land managers. This might make such
schemes less attractive. For this reason, some schemes combine
more traditional conservation activity incentives with further
outcome-based rewards if the activities prove effective (Whitten
et al., 2008).

Sutherland et al. (2012) also note environmental benefits
deriving from clustering of organic farms, andwe have explored the
use of a clustering rule to incentive schemes in these experiments.
Our results suggest that it can have an effect only in a restricted set

http://www.scotland.gov.uk/Topics/farmingrural/SRDP
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of contexts (nodes K and L in Fig. 4), and one that is surprisingly
slightly detrimental (at least in terms of the modal species richness
of the applicable runs). Our earlier results with clustered incentives
found they created a more stable habitat for vulnerable species (A3
and G6) than non-clustered incentives, though at a lower overall
level of occupancy that nevertheless enabled longer persistence
times (Gimona and Polhill, 2011). The results here suggest that this
difference between clustered and non-clustered incentivisation
might only be observed at higher levels of mean annual expendi-
ture. However, there are various ways that a clustering rule could
be implemented, including the potentially interesting prospect of
simulating land manager agents explicitly arranging to co-operate
in applying or bidding for participation in such schemes. Clus-
tering is also only one of several ways inwhich an incentive scheme
could be designed to deliver landscape-rather than farm-scale
biodiversity.

A proper comparison of the cost-effectiveness of incentive
schemes would also take into account transaction cost, due to
assuring compliance. Schemes with outcomes that can be easily
monitored (e.g. through remote sensing or rapid assessment
methods) are clearly more efficient than those that cannot. In many
real-world cases, however, considerations about cost-effectiveness,
including the effect of transaction costs, are under-examined
(Coggan et al., 2010) and therefore secondary with respect to
biophysical ones. The government agent in our model is omniscient
with respect to species and activity on each patch of land, and these
costs are not factored in to the model. Future work could examine
the effects of different sampling mechanisms for monitoring
species presence.

Edmonds’s (2012b) more recent reflections on context in social
simulation include criticisms of the general application of models
to different contexts. Whilst these are, perhaps, more focused on
application of models of magnetism to decision-making in social
systems (e.g. Sznajd-Weron and Sznajd, 2000), it is reasonable to
question whether the decision-making algorithm used here is
generally applicable across all the scenarios studied. For example,
in the variable market case, perhaps managers should have a price
prediction submodel; or in the outcome incentive case, managers
should attempt to develop predictive models of species occupancy
based on their own and neighbouring activities. In cases of very
high incentives, the satisficing heuristic may need adjustment. For
example, perhaps there is a ‘temptation’ threshold, whereby,
although managers are content with their present income, with
high enough incentives, they will nevertheless change activities in
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Fig. A.1. Plots in the style of Fig. 4 for t
order to obtain them. An alternative would be to adjust aspirations
e either on the basis of incentives themselves, or on evidence of
higher profits made by neighbours. The question is whether
making such adjustments would detract from our observations e

would the nonlinearity, dependency on non-optimality of decision-
making, and context sensitivity go away? This is the potential
subject of future research. An alternative would be to assume that
our observations would go away if the proposed modifications
were made e this would make policy design easier. There is
a precedent for making convenient ‘heroic assumptions’ (to borrow
a term from Johnson (1998)), such as that heterogeneities among
agents cancel out (Weisskopf, 1955); but suspicion of these is
among the motivations for agent-based modelling in the first place.
5. Conclusion

We have shown that there are turning points in biodiversity
delivered for incentive invested, that such delivery is not a mono-
tone increasing function of incentive, and that, although these
turning points depend partly on incentive scheme delivery, they
also depend on other aspects of the ecological, economic, psycho-
logical and social agricultural environment that would be very
difficult for a government to ascertain. As such, these simulations
lend theoretical support to incentive schemes that feature
components tailored to more local scales, perhaps even down to
the farm gate itself.
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Appendix A

Fig. A.1 shows the scenarios not already shown in Fig. 4. An
explanation of the plots is given in the caption to Fig. 4.
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Fig. A.1. (continued).
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